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Abstract| In this paper, we present our datapath

synthesis and layout tools which are targeted toward

large-scale con�gurable systems with the logic capacity of

up to millions of gates which consists of an easy design

entry using C++, customized bit-serial circuit library

for SRAM-based FPGAs, bit-serial pipeline circuit gen-

erator, and a circuit partitioner.

I. Introduction

Large-scale con�gurable systems composed of a num-
ber of FPGA devices have been developed by many re-
search groups which demonstrate the capability of high-
performance computing in various areas such as signal and
image processing, data base search, pattern recognition, en-
cryption, and embedded real-time systems. The main fea-
tures of these con�gurable systems are the drastic speed up
achieved by the highly parallelized hardwired computations
whose architecture is strictly customized to a speci�c ap-
plication, and also the large exibility of the SRAM-based
FPGAs for implementing a wide variety of applications.
There are a number of challenging problems in develop-

ing such a large-scale con�gurable system, especially on the
software environment. We have been working on develop-
ing such a software system for the large-scale con�gurable
system. Our focus has been on the following subjects:

Design entry on C++ Since con�gurable systems are
not intended to be used by expert hardware engineers
but by the software-oriented application designers and
researchers, we have developed a C++ design entry
system which allows the designers to enter their de-
signs on the algorithm-level by means of di�erence

equations which is widely used in discrete time system
speci�cations.

Bit-serial circuit library We have developed a collec-
tion of bit-serial operator circuits such as adder, sub-
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tracter, multiplier, shifter, scaler, rounder and satu-
rater. Because of the bit-serial architecture, all the
critical paths are minimized to a single 5-input look-
up table, and thus capable of functioning at a very
high clock speed.

Bit-serial pipeline synthesis The algorithm captured
by the C++ design entry system is mapped directly
onto the pipelined hardware. In other words, every
distinct operations are mapped onto distinct bit-serial
circuits, and the data-ow is pipelined at the word-
level as well as the bit-level.

Circuit partitioning The bit-serial pipeline circuit is
partitioned into subcircuits in order to �t the target
FPGA device. We have developed a partitioning al-
gorithm based on Fiduccia and Mattheyeses' biparti-
tioning heuristic which maximizes the logic utilization
while minimizing the IO utilization.

In this paper, we will introduce our work on these topics
in some detail, and devote the rest of the paper on the
layout results which exhibit some drastic improvement in
device utilization, and also its implications of the e�ect
on the future FPGA architecture and also on standard-cell
designs.

II. C++ Programming for Hardware Design

Capture

We have developed a design capture tool using C++ as
the input. Unlike existing hardware description languages
such as Verilog and VHDL, the designers are merely re-
quired to describe their design at the algorithm-level in
terms of di�erence equations.

1. The C++ code is compiled by the standard GNU C++
compiler (g++), therefore the code can include any
type of expressions supported by C++. Existing hard-
ware design tools using various high-level program-
ming languages all have dedicated compilers where a
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Fig. 1. C++ capture system compilation ow.

1D FIR(int & in, int & out, Interface & bus, Single x[8],
Single & y, Double a[8], double coef[8])
f

set signal precision(16);
// Setting the signal word length to 16 bits

for(int j = 0; j < 8; j ++)f
if(j == 0)f

x[j] = bus.read(in); // x[0] is the data input

a[j] = x[j] * coef[j];

g

else f
x[j] = delay(x[j - 1]); // x[j] is the delayed by

// one sampling period from x[j - 1]
a[j] = x[j] * coef[j] + a[j - 1];

g

g

y = round(a[7]); // conversion from Double to Single

bus.write(out) = y; // y is the output data

g

Fig. 2. 1D FIR �lter C++ description. The underlined codes refers

to the hardware description.

1D FIR main(int in[], int out[], double coef[8])
f

Interface bus;
Single x[8], y;
Double a[8];
for(int i = 0; i < TMAX; i ++)f
1D FIR(in[i], out[i], bus, x, y, a, coef);
// calling the convoluter routine
clocker(); // incrementing sampling clock for simulation

g

g

Fig. 3. 1D FIR �lter C++ description including the application

software codes.
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Fig. 4. Bit-serial operator circuits.

great deal of e�ort is needed in developing and main-
taining these tools. The compilation ow is illustrated
in Fig.1.

2. The computational algorithm is described in di�er-
ence equations. This form of design speci�cation is
widely used in many of the High-Level Synthesis sys-
tems for applications on digital signal processing such
as SILAGE.

3. Distinction between hardware operators, computa-
tions which are to be implemented on the con�gurable
hardware, and software operators is made by the C++
compiler which examines the data types of the argu-
ment variables. Expressions with prede�ned hardware

class objects are automatically translated into various
hardware object functions which construct the hard-
ware description.

4. By utilizing the operator overloading feature of C++,
the C++ coding style for hardware description be-
comes very similar to ordinary C++ coding. An ex-
ample of a C++ description of a 1D FIR �lter is shown
in Fig.2.

5. The C++ code is both a hardware simulator and a
synthesizer. Software codes can reside within the hard-
ware description codes for simulation purposes such as
reading in test vectors or even creating one, adding
break points, displaying the simulation results, or em-
ulating the whole application entirely (Fig.3). This
enables the designer to perform a thorough and easy
design veri�cation. This feature is also unique com-
pared to other tools.

III. Bit-Serial Circuit Library

We have designed a set of bit-serial datapath circuits
for implementing high-performance pipeline network [3][4]
which is summerized below:

1. Four types of 2's complement bit-serial data format
are provided:



TABLE I

Circuit area and operation latency of the various bit-serial

operators. Xilinx 3000 architecture is assumed for CLB

counts. (SP = single precision, DP = double precision, ESP

= extended-single precision)

input output size latency

(CLBs) (cycles)

k-input parallel SP k(N + 1)=2 1

parallel-serial

k-output SP parallel k(N + k)=2 N + 1

serial-parallel

Add(I) SP SP 2 1

Add(II) DP DP 3 1

k-bit shift-right SP, DP DP d0:5k + 2e k + 1

k-bit shift-left DP DP d1:5(k + 1)e 1

Multiplication SP DP 5N � 4 2N � 1

Scaling SP DP 4N + 2 2N + 1

Round-even DP SP 3 1

Saturation ESP SP 2N + 2 2N + 1

� single precision (sign bit, N �1 fraction bits, sin-
gle data line).

� double precision (sign bit, 2N � 1 fraction bits,
double data lines).

� extended-single precision (sign bit, N integer bits,
N � 1 fraction bits, double data lines).

� extended-double precision (sign bit, N integer
bits, 2N � 1 fraction bits, triple data lines).

Double precision data formats are for data produced
by N � N multipliers, and extended precision data
formats are for accumulation operations which may
create temporal overows on the integer part.

2. A collection of bit-serial circuits are provided (Table
I):

� Adder (Fig4(a)), subtracter (all data precisions).

� Multiplier (Fig4(b)), scaler (single precision in-
puts, double precision output).

� Rounder ((extended) double precision input, (ex-
tended) single precision output).

� Saturater (extended single precision input, single
precision output).

� Sampling delay (all data precisions).

� IO interface for system bus and memory devices
(single precision).

3. Each circuit was designed speci�cally for Xilinx 3000
architecture using its CLB primitives. Special atten-
tion has been paid to the circuit implementation so
that all the bit-serial circuits can be mapped onto the
LUT-based logic blocks and can operate at the high-
est speed. They are all implemented in a single-level

LUT logic where the critical path delay is only one
LUT plus the ip-op clock setup delay excluding the
routing delay.

4. We have compared our bit-serial multiplier against
several bit-parallel multipliers on Xilinx XC4000
FPGA architecture. The comparisons on circuit size,
sampling period and AT complexity is shown in Fig.5.
We can see that bit-serial multiplier is as twice as slow
as the Booth's multiplier, but has signi�cantly smaller
circuit area. And as a result, the AT (area-time) com-
plexity which is the product of the sampling period
and circuit area is signi�cantly lower on bit-serial mul-
tiplier than Booth's multiplier.

IV. Bit-Serial Pipeline Synthesis

Applications in digital signal processing and image pro-
cessing often have the same computational structure in
which a set of computations are applied continuously on
incoming stream of data. This type of computation can be
most e�ciently implemented by pipelining the individual
operators. We have developed a bit-serial pipeline synthesis
tool which automatically synthesizes this pipeline datapath
using our bit-serial circuit library. The basic automated
steps are described below.

Circuit Generation After the design is captured by
C++ as described earlier, bit-serial circuit modules are
created for each distinct arithmetic operation by call-
ing the circuit library and the primary circuit netlist
is constructed.

Minimum Sampling Period Calculation

Sampling period of the bit-serial pipeline needs to be
at least as long as the word size N . Also, if there are
loops in the datapath, the sampling period needs to
be long enough so that all the loop paths have posi-
tive weights. This can be done by iteratively solving
the single-source longest paths problem to �nd the min-
imum sampling period.

Pipeline Scheduling Optimization After the
minimum sampling period is determined, the pipeline
network is synchronized by inserting retiming registers
in order to equalize the latency on every path in the
network. At the same time, the number of retiming
registers are minimized in order to reduce the hard-
ware overhead. This pipeline scheduling optimization
can be formulated as a linear programming problem
and known to be e�ciently solved by simplex method

[1][2].

V. Circuit Partitioning

After the bit-serial pipeline network has been synthe-
sized, we have to deal with the problem of partitioning
the pipeline network into subgroups in which each can be
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Fig. 5. Sampling period, circuit size and AT complexity of various multiplier circuits.
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�tted inside a single FPGA. We have developed a sim-
plistic multi-way partitioning method based on Fiduccia-
Mattheyses bipartitioning heuristic [5] which maximizes
the logic utilization while minimizing the IO utilization.
Our partitioning algorithm is described below:

1. For a bit-serial pipeline network HG(E; V ), let Y0 =
V . For i = 1; 2; � � �, recursively partition the pipeline
the network Yi�1 into Xi and Yi (Fig.6):

Xi [ Yi = Yi�1 (i = 0; 1; � � �)
Xi \ Yi = �:

(1)

We call fXiji = 0; 1; � � �g the leaf partitions and Yi

the residue partition after producing i leaf partitions :
V = (X1 [X2 [ � � � [Xi) [ Yi.

2. Impose the size capacity and IO capacity constraints
only to leaf partitions (Xi) which reect the actual
physical capacities of the FPGA :

jXij � Fs

jXijIO � FIO
(2)

where Fs and FIO are represents the size capacity and
IO capacity of the target FPGA device, respectively,
jXij is the size of Xi, and jXijIO is the IO count of Xi.

TABLE III

Rent's parameters for bit-serial circuits.

design  k

N-12-14-4 0.3724 4.916
N-8-8-4 0.3264 5.878

1D-FIR30-II 0.2218 6.018
2D-FIR8x8 0.3245 4.665
1D-IIR20-III 0.3264 5.878
adapt10T-7 0.3735 5.150
IDCT-I 0.3394 5.493

3. Continue the above procedure until YK�1 becomes
empty. The K leak partitions essentially becomes the
K-way partitioning solution (X1; X2; � � � ;XK�1; XK)
in which all the partitions satisfy the size capacity and
IO capacity constraints.

In Table II, partition results of the various bit-serial designs
developed by our bit-serial synthesis system are shown. We
can see that the average logic utilization of each design is
consistently well over 90%. In fact, most of the partitioned
subcircuits are close to 100% utilization, except for the
last leaf partition since there is little control over the size
of the last partition. Considering the low IO utilization
of 17% � 30% and also the fact that all of these parti-
tioned subcircuits were completely routed, we can observe
the e�ciency of bit-serial circuits in terms of layout, where
the consumption of IO and routing resource is signi�cantly
low. In the next section, we conduct further analysis on
the routability of the bit-serial circuits using Rent's rule.

VI. Routability Analysis for Bit-Serial Circuits

In analyzing the circuit structure to evaluate the area
required for VLSI layout, Rent's rule is commonly used
[8][6][7]. This rule de�nes the relationship between the
average number of pins and the average number of logic
circuits in a subcircuit. It is expressed as

P = k �G
 (3)



TABLE II

Synthesis results of bit-serial pipeline networks. \N-12-14-4" is a digital neural network with 12, 14, 4 nodes on each layer.

\N-8-8-4" is a digital neural network with 8, 8, 4 nodes on each layer. \1D-FIR-30-II" is a 30-tap 1D FIR filter. \2D-FIR8x8"

is an 8�8-tap 2D FIR filter. \1D-IIR20-III" is a 20-tap recursive filter with 2 sampling period lookahead on the feedback

loop. \adapt10T-7" is a 10-tap 1D adaptive FIR filter where the coefficient updating cycle delay is 7 sampling periods.

\IDCT-I" is an Inverse-DCT circuit.

sampling

design signal # CLBs # gates # chips CLB IO critical frequency

precision (XC3164A) util. util. delay (@40MHz)

N-12-14-4 8 6964 127962 32 97.2% 30.3% 24.6ns 2.5MHz

N-8-8-4 8 3082 56465 14 98.3% 30.7% 24.6ns 2.5MHz

1D-FIR30-II 16 2004 35813 9 99.4% 17.4% 20.3ns 1.25MHz

2D-FIR8x8 8 2272 39957 11 92.2% 21.1% 25.0ns 2.5MHz

1D-IIR20-III 16 2132 41165 10 98.1% 22.9% 23.4ns 1.25MHz

adapt10T-7 8 871 16036 4 97.5% 27.3% 22.8ns 2.5MHz

IDCT-I 16 1038 15909 5 90.4% 23.7% 23.2ns 1.25MHz

where P is the average number of external pins in a subcir-
cuit, and G is the average number of modules in a subcir-
cuit. k is the Rent's constant which has empirically been
found to correspond to the average number of pins per mod-
ule.  is the Rent's exponent which ranges between 0 and
1. First discovered by E. F. Rent of IBM in the late 1960's,
Donath [6] derived the same relationship from a stochastic
model of hierarchical design process. From his model which
assumes a two-dimensional layout, he has derived the aver-
age wire length r of the circuit using the Rent's parameters
as

r �

8<
:

f() ( < 0:5)
logG ( = 0:5)
G�0:5 ( > 0:5)

(4)

where f() is a function independent of G. The intuitive
explanation for this is that the case  = 0:5 is the transition
between planar and non-planar circuits, and the circuits
whose Rent's exponent is lower than 0.5 can be placed such
that all connections essentially lie between nearest neigh-
bors with an average wire length being independent of G.
For circuits where  > 0:5, the wire length grows exponen-
tially with G. Therefore, the Rent's exponent is a good
indicator for estimating the amount of routing resources
needed for the physical layout. Landman and Russo [7]
performed an extensive study on large \real-life" circuits,
and observed the Rent's exponent to be between 0.47 and
0.75. For FPGA layout synthesis, the Rent's exponent is
very critical both in IO pin consumption and routability.
We have obtained the Rent's parameters for our bit-serial

designs by applying multi-way partitioning with di�erent
size constraints. The method for deriving Rent's param-
eters is to plot the average CLB counts and the average
IO counts per partition on the log-log scale and use linear
regression to estimate the slope and the intercept. Note
that Rent's rule on log-log scale forms a linear equation
logP =  logG+ log k. Figure 7 shows this plot for 12-14-
4 digital neural network. The Rent's parameters are sum-
merized in Table III. Compared to Landman and Russo's
work where they reported the Rent's exponent to be be-

tween 0.47 and 0.75, our bit-serial circuits have a signi�-
cantly lower Rent's exponent between 0.22 and 0.37. This
implies that our bit-serial circuits are very highly routable
circuits on two-dimensional plane. There have not been
any studies on logic circuits which reveal such a low Rent's
exponent for real applications. Our bit-serial circuit design
and our bit-serial pipeline network synthesis strategy led
to such an extremely routing-e�cient circuit structure.

VII. Bit-Serial Pipeline Synthesis on Optimized

FPGA Architecture and Standard Cell

Designs

So far, we have discussed the important properties of
bit-serial circuits in terms of layout. Their impact on the
FPGA architecture is very important if we observe the re-
lationship of routing channel density against chip area. As
an example, let us consider the Xilinx LCA FPGA devices
[10]. XC3000 series has identical routing channel density
for all chip size : XC3020 which is composed of 8� 8 logic
block array has the same routing channel width as XC3090
which is composed of 20 � 16 logic block array. For those
\real-life" circuits whose Rent exponent is over 0.5, it will
become harder to route as the chip size increases. In other
words, logic utilization tends to be lower for larger FPGAs
because of the insu�cient routing resource, which in fact
has been pointed out by many users. XC4000 series han-
dles this problem by increasing the routing channel density
as the device size increases and therefore attempts to sus-
tain high logic utilization even for large devices. Recently
announced XC4000EX/XL series is the upgrade models of
XC4000 aimed for delivering over 100k gate capacity where
the routing resource is virtually doubled from the former
XC4000 series devices in order to provide su�cient routing
resource. It easy to imagine how much silicon resource is
spent on routing and not on the actual logic.
Our routability analysis implies that since many of the

bit-serial pipeline network have a Rent exponent of lower
than 0.5, the required routing resource is independent of
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the circuit size, and therefore independent of the device
as well. This means that if we are able to optimize the
FPGA architecture strictly for bit-serial circuits, we would
not need to increase the routing channel density, or at least
not as drastically as recent Xilinx FPGAs, as the chip size
grow. As a result, we can expect this new FPGA optimized
for bit-serial implementation to have a much higher logic
density than a general-purpose FPGA.
Also, because of the �ne grain nature of the bit-serial cir-

cuits, it is possible to migrate these circuit library into the
standard-cell design environment. Standard-cells are nor-
mally used only on control circuits which has the structure
of so called \random logic", where there are no regularity
in the pattern of logic connections. Layout of the datapath
circuits are still done manually since automatic placement
and routing tools have not yet matured. We believe that
by using bit-serial architecture for the datapath circuits, it
is possible for the automatic place and route tool to handle
the layout of the datapath circuits as well.

VIII. Summary

In this paper, we have presented the work on our bit-
serial pipeline synthesis system which is composed of C++
design entry, bit-serial circuit library optimized for Xilinx
FPGAs, bit-serial pipeline synthesis and circuit partitioner
for maximum logic utilization. Our routability analysis for
a number of bit-serial designs shows that the routing den-
sity required for these circuits are signi�cantly lower than
the \real-life" circuits observed by others. We believe that
by utilizing this bit-serial architecture, we will be able to
redesign the existing FPGAs by properly allocating su�-
cient routing resource only for bit-serial implementation so
that the logic density becomes signi�cantly higher. Also,
we believe that our bit-serial architecture can be adopted
for standard-cell designs for ASICs as well.
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