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Abstract|The high-order �-� modulator is an appropri-

ate approach for high-bandwidth, high-resolution A/D con-

version. However, non-ideal e�ects such as the �nite op-

amp gain and the capacitor mismatch have great impacts

on its performance at a low oversampling ratio. To achieve

greater performance under the inevitable non-ideal e�ects,

we explore several multiple-bit schemes, based on our CIQE

high-order �-� architecture, to remove the non-ideal dete-

rioration. Design rules of these multiple-bit schemes are

developed and veri�ed by extensive simulations.

I. Introduction

The A/D converter is an important element for digital-
signal processing systems. The cruxes of an A/D con-
verter are high resolution for precise representation of the
original signal and high bandwidth for fast processing.
Conventional A/D architectures, e.g., ash, 2-step ash,
and successive approximation, are not suitable for high-
resolution applications because of the need of near-ideal
analog components and/or precise trimming. To imple-
ment a high-resolution A/D converter, the Sigma-Delta
modulator (SDM) is considered a suitable approach and
widely used due to its simplicity and e�ectiveness [1].
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Fig. 1. (a) First-order SDM. (b) Second-order SDM.

Fig. 1 depicts two popular SDMs: the �rst-order and
the second-order ones. Though able to achieve high res-
olution, the SDMs must operate under a su�ciently high
over-sampling ratio, which in turn limits the input band-
width [1{4]. For applications requiring both a high resolu-
tion and a high bandwidth, a high order SDM should be
used instead [5].
The hypothetical N -th order SDM has the following I/O

relationship:

ZxA (z)X(z) + (1� z�1)NE(z) = YA(z); (1)

where ZxA (z) represents the possible modi�cation of the
input signal X (z). Generally, ZxA (z) exhibits an ideal

all-pass frequency response in the signal band (baseband)
with a possible linear-phase delay so as to pass the sig-
nal without skew, except for a pure delay and attenuation.
Note that (1� z�1)N is a baseband noise-depressing �lter
which attenuates the noises out to the high-band. Con-
sequently, the output YA(z) resembles the input X(z) in
baseband with a slight deterioration exclusively caused by
the baseband-depressed noise source E(z). The larger N
is, the less E(z) a�ects the �nal output. Thus, A high
signal-to-noise ratio (SNR) can be obtained if N can be
made larger. Several works on high-order SDMs have been
published [6{11].
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Fig. 2. The M-stage N-th order CIQE SDM architecture.

In [5], a general high-order SDM architecture|
the cascaded intermediate quantization error (CIQE)
architecture|is proposed and shown to be a better ap-
proach for high-order SDM applications. It consists of
three functional blocks: the analog SDM network (AS-
DMN) for oversampling the external analog signal, the
digital output mixture network (DOMN) for mixing the
intermediate quantized signals, and the decimation �lter
to remove high-band noise from the �nal digital output
[12]. The M -stage N -th order CIQE SDM has the pro�le
as shown in Fig. 2. In practical applications, each of theM
SDM stages in Fig. 2 is of order ni, 1 � ni � 2; 1 � i �M ,

such that
MP
i=1

ni = N . DOMN is a multiple-input single-

output system having the following transfer function:

YA(z) =

N�1X
l=1

 
N�lY
k=1

ZxN�k+1(z)

!
(1�z�1)

l�1P
i=1

mi

Zyl(z)Yl(z)

+ (1� z�1)

N�1P
i=1

mi

ZyN (z)YN (z): (2)



In Fig. 2, Ei = Qi � Ri, 1 � l < M , are the intermedi-

ate quantization errors at the corresponding stages, while
EM is the intrinsic quantization error. Each Ei, represents
the quantization error of the A/D-D/A loop in the corre-
sponding stage, and can be considered as an additive white

Gaussian noise (AWGN) with a power spectral density of
�2

12
[13]. Analysis has been made to explore the charac-

teristics of di�erent ASDMN organizations, and simulation
results show that a total signal-to-noise ratio (TSNR) of
102dB under an oversampling ratio of as low as 16 can be
achieved by using a 7-th order CAFO SDM (a CIQE-based
SDM made up of only �rst order SDMs in its ASDMN)
[5]. In the context, TSNR is de�ned as the ratio of the
signal power to the total power of the noises and harmonic
distortions.

In spite that CIQE con�guration behaves well under
ideal-case simulations, non-ideal e�ects such as �nite op-
amp gain and capacitor mismatch have great impacts on
its performance when the oversampling ratio is very low
[14{16]. Hence, higher quality components are required for
high-order CIQE SDM to achieve the high-resolution capa-
bility. In this paper, to preserve the performance of high-
order SDMs under the non-ideal circuit e�ects, we propose
several multiple-bit schemes to reduce performance dete-
rioration caused by the non-ideal e�ects. The multiple-
bit schemes remove the requirement of high-quality cir-
cuits in previous CIQE SDM designs [16], and help provid-
ing higher TSNR for the conventional low-order and high
oversampling-ratio SDM. We �rst give quantitative analy-
sis to explore the relationship between the non-ideal e�ects
and the noises induced. Multiple-bit schemes are then in-
troduced to remove the noises and some implementation
speci�cations are presented. Simulations are also made to
validate our multiple-bit solutions.

II. Sources of Errors

So far the CAFO SDM is the most cost-e�ective design
for high-bandwidth, high-resolution applications. However,
it is shown that non-ideal e�ects will deteriorate the CAFO
SDM [16]. We now demonstrate how the non-ideal e�ects
inuence the CAFO SDM. Other CIQE-based SDMs can
be analyzed in a similar way [16].

In the CIQE architecture, non-ideal e�ects are attributed
to the analog block, including the loop �lter and the quan-
tizer at each stage of the SDM in the ASDMN. The loop
�lter is generally an integrator. Non-ideal e�ects such as
the �nite op-amp gain and the capacitor mismatch deteri-

orate the loop �lter of an SDM to be �z�1

1��z�1
rather than

z�1

1�z�1 in the ideal circuit, where � and � represent the
non-ideal gain and the non-ideal integration factor of the
integrator, respectively.

Consider the non-ideal loop �lters in our high-order

CAFO SDM. Substituting Gz�1

1�z�1
with �z�1

1��z�1
in YA (z)

yields

YA (z) =
�z�MX(z)
1+(���)z�1 +

PM�1
l=1 ZEl(z)El(z) + ZEM (z)EM (z);

(3)

where

ZEl(z) =
(1� �+ (�� �)z�1)

1 + (�� �)z�1
z�(M�l)(1� z�1)l�1

(4)

for 1 � l < M and

ZEM (z) =
1

(1 + (�� �)z�1)
�
1� �z�1

(1� z�1)
(1� z�1)M :

(5)

In [16] it is shown that �z�M

1+(���)z�1
is a constant with a

value close to 1 in baseband, i.e., the CAFO SDM will pass
the input signalX(z) to the combined digital output YA (z)
without distortion, except for a little attenuation. Thus,
in the baseband, we have

YA (z) = X(z) + ZEM (z)EM (z) +

M�1X
l=1

ZEl(z)El(z):
(6)

The intermediate errors Ei; 1 � i < M , do not vanish as in
the ideal case because of the non-ideal � and �, and they
are de�ned as the leakage errors. Eq. (6) illustrates that
YA (z) is additionally contaminated by the leakage errors
Ei(z), 1 � i < M , besides the intrinsic quantization error
noise EM (z).
Let fs be the sampling frequency and R the oversampling

ratio, and �tEi denote the noise power caused by leakage
error Ei (z). Then, we have

�tEi =
�2
i

24�

R 2�fb
0

��� (1��+(���)e�j!T )1+(���)e�j!T
(1� e�j!T )i�1

���2 d!;
(7)

where fb =
fs
R

is the bandwidth of the oversampled input
signal. Note that (1� e�j!T )i�1 is a baseband-depressing
�lter, so the e�ect of the leakage error of a later stage is
less than that of its preceding stage if all coarse quantizers
in ASDMN have the same resolution. Generally, we have

�tEM�1 < �tEM�2 < : : : < �tE2 < �tE1 : (8)

The noise power of the leakage errors is far more than that
of the intrinsic quantization error unless near-ideal circuits
are available [16]. The leakage error E1 has more noise
power impact than the others. It is the dominant leakage
error in our multiple-bit schemes.

III. Multiple-Bit Schemes

The non-ideal e�ects depend not only on the circuits we
use to implement the CAFO SDM but also on the over-
sampling ratio. The stray-insensitive integrator depicted
in Fig. 3 is a popular choice for SDM implementation. We
will use it as the loop �lter of our SDMs for examples. We
assume the oversampling ratio is 16 to analyze the bene�ts
of the multiple-bit schemes quantitatively. The non-ideal
factors of � and � of the stray-insensitive integrator can
be found to be � = G

1+�(1+G)
and � = 1+�

1+�(1+G)
where

G = C2
C1

and � is the reciprocal of the op-amp gain.
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Fig. 3. Single-ended version of the stray-insensitive integrator.

A. Simple Multiple-Bit (SMB) Scheme

If near-ideal analog circuits are available, then the non-
ideal e�ects which result in the leakage errors in (6) can
be neglected, and the I/O relationship of the N -th order
CIQE SDM becomes (1). The only noise component of YA
in the CAFO SDM is the intrinsic quantization error term
(1 � z�1)NEM . To reduce the noise e�ect of this error,
a multiple-bit technique can be applied to the last SDM
stage in ASDMN. The total noise power, denoted by �t,
can be expressed as

�t =
1

2�

Z 2�fb

0

j(1� e�j!T )MEM j
2d! = �2F (M; fb);

(9)

where � is the quantization step of the last SDM stage.
Eq. (9) shows that the e�ect of the intrinsic error can be
alleviated by re�ning the quantization step with a smaller
value of �, i.e., by using multiple-bit representation of the
quantized output at the �nal stage. This is called the sim-
ple multiple-bit (SMB) scheme. To be more speci�c, with
one more bit used, �t is successively reduced to a quarter
of the original value. We have

�nt = (
1

4
)n�1�t; n � 1; (10)

where �nt is the noise power with n-bit SMB scheme.
The SMB scheme is direct and simple but has only lim-

ited applications due to the fact that the intrinsic quan-
tization error is usually far less than the leakage errors in
high-order (and/or low oversampling ratio) SDM applica-
tions. In practice, the near-ideal circuits are available only
if the SDM has a low order and operates under a high over-
sampling ratio. The reason is that the leakage error should
be made less than the intrinsic quantization error to make
the circuits near-ideal. The leakage error power of a CAFO
SDM will later be shown (see (12)) to be proportional to
the reciprocal of the product of the oversampling ratio and
the square of the op-amp gain. Consequently, this SMB
scheme is valid only if we have a high oversampling ra-
tio and/or the circuit components are near-ideal. Related
discussions of this SMB scheme can be found in [17].

B. Full Stage Multiple-Bit (FSMB) Scheme

According to (6) and (7), the noise sources of the quan-
tized output of the CAFO SDM are the leakage errors
and the intrinsic quantization error. They are all pro-
portional to the square of the quantization step �. A

straightforward method to alleviate the noises is then mak-
ing � smaller while keeping the signal power unchanged.
This can be done by replacing all the single-bit quantizers
with multiple-bit quantizers. The noise sources will have

a power spectral density of 1
12

�
�
2n

�2
if n-bit quantizers are

used. Consequently, the noise power �nt of the n-bit FSMB
SDM becomes

�nt = (
1

4
)n�1�1t ; n � 1; (11)

where �1t is the total noise power of the conventional CAFO
SDM with all-single-bit (ASB) quantizers. Eq. (11) indi-
cates that increasing n will decrease the total noise power.
This method is referred to as the full stage multiple-bit
(FSMB) scheme.
FSMB is not a cost-e�ective scheme due to the exces-

sive hardware complexity. For example, if we want 2 more
bits (12dB) for a 7-th order CAFO SDM, we need 55 addi-
tional comparators and D/A capacitors. By (6), there are
two noise sources. Usually, the leakage error dominates the
others under the non-ideal situation [16]. This property im-
plies that the multiple-bit schemes can be done e�ectively
by applying multiple-bit quantizers only to the dominant
noise source, which is shown next.

C. Single-Stage Multiple-Bit (SSMB) Scheme

Eq. (8) reveals that the noise power of the leakage error
from the �rst SDM stage, �E1 , dominates the total noise
power. Consider a practical application where the stray-
insensitive integrators are used as the loop �lters. The
noise power consists of the following.
1. Noise power due to the �nite op-amp gain, �fgE1 . The

op-amp gain (��1) is a �nite value while assuming all
other components are ideal. It can be shown [16] that

�
fg
E1

=
�2�2

12(1 + 2�)2
(
5

R
�

2

�
sin(

2�

R
)): (12)

2. Noise power due to the capacitor mismatch, �cvE1.
Given the op-amp with a �nite gain, the mismatch of
the capacitors results in nonzero j4Gj to the nominal
value G. The corresponding noise power is [16]:

�cvE1
=

�2�j�Gj

12

���� �6

R(1 + 2�)2
+

3

�(1 + 2�)2
sin(

2�

R
)

���� :
(13)

�cvE1 is generally not as important as �
fg
E1, since the

capacitor-mismatch can be made as small as 0:1% by
using a larger unit capacitor [16], though doing so has
the disadvantages of a large area cost as well as a pos-
sible degradation of the sampling frequency. Conse-
quently, the leakage power in the light of capacitor-
mismatch can be alleviated easily if the area cost is
the second consideration. Note that in a traditional
design of low-order SDM, the oversampling ratio R

can not be made small for high-resolution consider-
ation; thus, �cvE1 is negligible since sin( 2�

R
) � 2�

R
in

conventional SDMs. It is not the case in our CAFO



SDM because it can provide a TSNR of 102dB under
an oversampling ratio as small as 16. Instead, we use
a large unit capacitor to alleviate this leakage power.

3. Apart from the integrators, the rest of ASDMN are
the quantizers. There are several non-ideal e�ects in
the quantizers which result in more noise power; how-
ever, they are negligible compared with �

fg
E1 and �cvE1

[16].
As a result, the noise power coming from the 1st SDM

stage, �tE1 , under non-ideal considerations can be written

as �tE1 = �
fg
E1

+ �cvE1 � �
fg
E1
. The noise power of the other

intermediate quantization errors Et
i ; 2 � i � M , can be

derived in a similar way. The total noise power is

�t =

MX
i=1

�tEi �

MX
i=1

�
fg
Ei
: (14)

Let �1 and �2 be the quantization steps of the �rst two
SDM stages in ASDMN. We have

�
fg
E2

==
�2
2�

2

12(1 + 2�)2
(
14

R
�

9

�
sin(

2�

R
) +

1

�
sin(

4�

R
))
(15)

for our CAFO SDM. Substituting R = 16 into (12) and
(15), we obtain �

�tE1 = 0:0689�2
1;

�tE2 = 0:0038�2
2:

(16)

If �1 = �2, then �E2 is about 6% of �E1 . Similar results can
be found between �Ei and �Ei+1 for 2 � i < M . Therefore,
the relationship of (8) can be expressed more precisely as

�tEM << �tEM�1 << : : : << �tE2 << �tE1 : (17)

E1 is then referred to as the dominant leakage error with
the dominant noise power �tE1 . Since E1 is the dominant
leakage error, our single-stage multiple-bit (SSMB) scheme
has a multiple-bit quantizer exclusively in the �rst SDM
stage.
Let the �rst SDM stage has an n-bit quantizer. With

the SSMB scheme, the SNR of the CAFO SDM can be
expressed as

SNR �
�signal
�noise

�
�signal
�t

� 10log(
�2

8

�t
E1

)

' �10 log
h
�2
1

�2

�
2�2

3

�
5
R
� 2

�
sin
�
2�
R

���i
= 6:02 (n� 1)� 10 log

h
2�2

3

�
5
R
� 2

�
sin
�
2�
R

��i (18)

Eq. (18) reveals that increasing one bit of resolution for
the intermediate quantized output at the �rst SDM stage
will eventually result in one extra bit of resolution (6dB)
at the �nal decimated output. Though it seems that the
increased resolution is proportional to that in the quantizer
at the dominant SDM stage, it should be noted that the
resolution of the quantizer is larger than 3 when R = 16.
Recall that (18) is valid only when (17) is true. Let n1 and
n2 be the resolution in number of bits for the intermediate

quantized outputs in the �rst and the second SDM stages,
respectively. Since the �rst SDM stage is the dominant
one, we must have

2(n1�n2) <
5
R
� 2

�
sin( 2�

R
)

14
R
� 9

�
sin( 2�

R
) + 1

�
sin( 4�

R
)
; (19)

i.e., n1�n2 � 2. In practice, n2 is chosen to be as small as
possible (usually 1) to minimize the hardware cost. This
leads to the 3-bit resolution limit of the quantizer at the
dominant SDM stage in our SSMB.

D. Multiple-Stage Multiple-Bit Scheme (MSMB)

High-resolution applications can be achieved by using
the multiple-stage multiple-bit (MSMB) scheme. Di�erent
from the FSMB scheme, MSMB is a high-resolution SDM
using multiple-bit technique at more than one stage un-
der the prescribed design rules. In MSMB, the total power
distortion in (14) is successively approximated by the suc-
ceeding �tEi ; 1 � i � M , until the required resolution has
been met. The goal is to make the total noise power in
(14) meet the speci�cation while keeping (8) valid.

Take the CAFO SDM discussed above as an example.
The MSMB starts by determining the pivot SDM stage, say
the p-th stage. The stages after the pivot stage (including
the pivot stage) have one-bit representation for their inter-
mediate quantized outputs, Yk; p � k � M , and for each
of the stages before the pivot stage, we increase two bits
stage by stage, from the pivot stage on. The number is
determined by (19). By doing so, the relationship of (8)
can be kept to validate our approximation from the start-
ing stage. Let ni; 1 � i �M be the number of bits used to
represent the intermediate quantized output Yi in the i-th
stage. For an MSMB with a pivot stage p, we have

ni =

�
1 + 2 � (p� i) ; for 1 � i < p

1 ; for p � i �M:
(20)

The pivot p is chosen to be the maximal p which meets the
required resolution

TSNRp =
�signalPp

i=1 �
t
Ei

> TSNRrequired: (21)

Selection of a suitable pivot can be accomplished with the
aid of (7) and (14).

IV. Simulation Results

Extensive behavioral model simulations are made to ver-
ify our multiple-bit schemes. The analysis example used
is the 7-th order CAFO SDM su�ering from non-ideal ef-
fects as discussed above. The analog input X(z) is a pure
oversampled sinusoidal signal with a frequency of 1

8
of the

Nyquist frequency whose amplitude varies from 0.1 to 1.1,
normalized to the single-bit quantization step. The over-
sampling ratio is chosen to be 16 [16].
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Fig. 5. TSNR di�erence of (a)2-bit SSMB, (b)3-bit SSMB and that
of conventinal ASB SDM.

A. The SSMB SDM

We �rst discuss the leakage noise due to a �nite op-amp
gain, �fgEi .

1. A 2-bit SSMB SDM: A 2-bit quantizer is used at the
�rst SDM stage. Fig. 4 is the simulation results of
TSNR (solid lines) from the 1-st to the 7-th order
CAFO SDMs. The dashed line marked by \Leakage
limitation" is the result obtained by directly applying
(18). It gives a close prediction about the e�ects of
leakage limitation except there is a 6dB underestima-
tion.
Given a �nite op-amp gain, noise from the dominant
leakage error dominates those of the others. SSMB
scheme successfully compensates the dominant leakage
noise by using a 2-bit quantizer at the dominant stage
shown by our simulation results for the op-amp gain of
less than 10,000. Note that for the op-amp gain larger
than 10,000, our SSMB scheme seems to be invalid.
The reason is that for a su�ciently large op-amp gain,
the intermediate leakage error noises are small enough
to be neglected. Instead, the intrinsic quantization
error noise dominates all the leakage ones. Under such
a situation, the SDM is virtually considered to be near-
ideal which needs no multiple-bit compensation. The
same situation happens in conventional all-single-bit
(ASB) CAFO SDM; however, the near-ideal op-amp
gain limit for the 2-bit SSMB SDM is less than that
of the ASB SDM which is about 30,000 [16]. That is,
SSMB does help in loosening the speci�cation of the
circuits.
Moreover, the SSMB scheme is especially suited to
high-order SDM applications. Fig. 5(a) depicts the
TSNR enhancement of our 2-bit SSMB SDM com-
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Fig. 6. TSNR di�erence of (a)4-bit SSMB, (b)5-bit SSMB and that
of ASB SDM.

pared with the ASB SDM. An enhancement is ob-
served in the region where the approximation of the
dominant leakage error noise is valid (see Fig. 4).
In the �rst-order case, there is no leakage error. The
�rst-order SDM directly gains the advantage of small
quantization steps. Therefore, 2-bit SSMB SDM al-
ways provides more TSNR than ASB SDM. It seems
that the smaller quantization steps also help reducing
the harmonic distortions and give an extra improve-
ment on its TSNR.
In the second and the third order cases, the intrinsic
quantization error is compatible with the leakage er-
rors since they inherently provide small TSNRs under
a small oversampling ratio; consequently, the enhance-
ment of TSNR is not signi�cant.
As the order goes up to four and above, an enhance-
ment of up to 6dB is observed from the simulation
results which therefore justi�es (18). Note that SSMB
scheme is more e�cient in high-order and low op-amp
gain applications where the leakage errors are signi�-
cant.

2. A 3-bit SSMB SDM:Similar results are seen by a 3-
bit SSMB SDM. Intuitively, we expect there is 12dB
TSNR enhancement, but the results are consistent
with our prediction only where the opamp gain is less
than 50 as shown in Fig. 5(b). The reason is that 3-

bit SSMB has �fgE1 compatible with �
fg
E2. As a result,

�
fg
Ei no longer dominates the leakage noises and (18)
becomes invalid.

3. The 4-bit and 5-bit SSMB SDM: The TSNR enhance-
ment of a 4-bit SSMB SDM is shown in Fig. 6(a).
Compared with Fig. 5(b), we can see that 4-bit SSMB

SDM improves TSNR by 12dB. In fact, �fgE2 becomes

larger than �
fg
E1. If the resolution of the quantizer at

the �rst SDM stage continuously increases, the dom-
inating leakage noise will be �

fg
E2 rather than �

fg
E1.

Therefore, no more TSNR improvement will be ob-
served. Fig. 6(b) illustrates the TSNR improvement
of a 5-bit SSMB SDM which is no more than that of
the 4-bit SSMB.

We now discuss the leakage noise due to the capacitor
mismatch, �cvEi . Though not as important as that caused
by the �nite op-amp gain [16], the leakage noises due to the
capacitor mismatch are discussed for completeness. Fig. 7
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Fig. 7. Comparing the TSNR of CAFO 2-bit SSMB SDM with that
of the ASB SDM when capacitor mismatch is considered. The
op-amp gain is set to 1,000.
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Fig. 8. TSNR di�erence of (a)(3,2) MSMB, (b)(5,3) MSMB and that
of ASB SDM.

is the TSNR enhancement of the 2-bit SSMB SDM over the
ASB one where the op-amp gain is 1,000. It can be seen
that for a small value of capacitor mismatch (j�Gj � 5 �
10�3), the improvement is the same as that in Fig. 4 due to

the dominance of �fgE1 . Alternatively, a larger improvement
can be observed for a larger capacitor mismatch (j�Gj >

10�2) since �cvE1 levels with �
fg
E1
. Under such a condition,

the multiple-bit scheme can alleviate both leakage error
noises simultaneously.

B. The MSMB SDM

Figs. 8(a) and 8(b) show the simulation results of the
TSNR enhancement of the (3,2) and (5,3) MSMB schemes.
A (3,2) MSMB SDM is a CAFO SDM with a 3-bit quan-
tizer and a 2-bit quantizer at the �rst and second stages,
respectively, while the rest of the stages use one-bit quan-
tizers. Similarly, a (5,3) MSMB SDM has a 5-bit and a
3-bit quantizers at the �rst two stages.

The simulation results depicted in Fig. 8(a) show that
a (3,2) MSMB SDM behaves as a 3-bit SSMB SDM with
respect to the TSNR enhancement, though it is inherently
a sophisticated design trying to alleviate �fgE2 in order to
expect a better performance. It fails since it does not obey
our design rules.

On the other hand, a (5,3) MSMB SDM, which follows
the prescribed MSMB design rules in the context, exhibits
20dB TSNR improvement. Comparing with Fig. 6(b), it
is more e�ective than 5-bit SSMB.

V. Conclusion

Based on the CIQE high-order SDM architecture,
multiple-bit schemes are proposed to compensate for the

non-ideal circuit e�ects, such as the �nite op-amp gain and
the capacitor mismatch, and shown to be valid via simula-
tions. The SMB scheme is used when the leakage errors are
not signi�cant which is usually for the SDM with a low or-
der and a high oversampling ratio; while the SSMB scheme
is well suited to the high-order SDM operating under a
low-oversampling ratio. For extremely high-resolution ap-
plications, the MSMB scheme is an appropriate approach.
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