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Abstract - This paper presents an effective and robust an original solution for vector compaction problem which
technique for compacting a large sequence of input vectors into gotentially reduces the gap between simulative and
much smaller input sequence so as to reduce the circuit/gate levelonsimulative approaches. Having an initial sequence (assumed
simulation time by orders of magnitude and maintain the accuracyrepresentative for some target circuit), we tardessy
of the power estimates. In particular, this paper introduces andcompressior{15], that is the process of transforming an input
characterizes a family of dynamic Markov trees that can modelsequence into a smaller one, such that the new body of data
complex spatiotemporal correlations which occur during power represents agood approximationas far as total power
estimation both in combinational and sequential circuits. As the consumption is concerned.
results demonstrate, large compaction ratios of 1-2 orders of The foundation of our approach is probabilistic in nature; it
magnitude can be obtained without significant loss (less than 5%relies onadaptive(dynami¢ modelingof binary input streams as

on average) in the accuracy of power estimates first-order Markov sources of information and is applicable both
to combinational and sequential circuits. The adaptive modeling
|. INTRODUCTION technique itself (best known as Dynamic Markov Chain or DMC

CAD tools have played a significant role in the efficient design modeling) was introduced very recently in the literature on data
of the high-performance digital systems. In the past, time andcompression [16] as a candidate to solve various data
area were the primary concerns of the CAD community during compression problems. However, the original model introduced
the optimization phase. With the growing need for low-power in [17] is not completely satisfactory for our purpose. In this
electronic circuits and systems, power analysis and low-powerpaper, we thus extend the initial formulation to manage not only
synthesis have become crucial tasks that must also be addressedorrelations among adjacent bits that belong to the same input

Power estimation is in general a difficult problem; the key task vector, but also correlations between successive input patterns.
in this process is the accurate and fast estimation of average As demonstrated and supported by practical evidence, this
switching activity. To date, both simulative [1]-[4] and new framework is extremely effective in power estimation. The
nonsimulative approaches [5]-[10] have been tried, each onebasic idea is illustrated in Fig.1. To evaluate the total power
having its own advantages and limitations [11]. More consumption of a target circuit for a given input sequdnge
specifically, general simulation techniques provide sufficient (Fig.1a), we derive first the Markov model of the input sequence
accuracy, but at high computational cost; it is simply expensivethrough a one-pass traversal technique and after that, having this
to simulate thousands of vectors. On the other hand,compact representation, we generate a much shorter sedyence
nonsimulative approaches (best represented by probabilisticequivalent withLo, which can be used with any available

power estimation techniques) are in gt_eneral faster, bUt_leS%imulator to derive accurate power estimates (Fig.1b).
accurate than those based on simulation; usually, the input

correlations and the reconvergent fan-out in the target circuit DMC
make things very complicated and simplifying assumptions (like in out
input independence) become mandatory. |:>targe :> ¢
As a conclusion, a number of issues appear to be important . crredt (nitial | [Sequence
for power estimation and low-power synthesis. Tin@ut sequence.q) sequenceo) || 98N || mpacied
statisticswhich must be properly captured and kaegth of the @) sequence «Lo)

; X . . b
input sequencesvhich must be applied are two such issues. ©

Generating a minimal-length sequence of input vectors that
satisfies these statistics in not trivial. The reason is the elaborat%a
set of input statistics that must be preserved or reproduced during0
sequence generation for use by power simulators. One suclyic. sces parameters which makes this approach effective in
attempt is [13] where authors use deterministic FSMs to model ractice. Section IV presents a DMC-based procedure for vector
user-specified input sequences. Since the number of states in thp .

? @ompaction. In sections V and VI, we give some practical
FSM is equal to the length of the sequence to be modeled, th : : : ' . .
ability to gharacterize an%/thing else bﬂt short input sequences i%gziiﬂggagoli;nrgaﬁﬁg nrgSrn ?Lirﬁsclgﬁ'rifi?;: tively. Finally, we
limited. A more elaborate and effective technique was presente y g '
in [14] where, based on stochastic sequential machines, the 1. BACKGROUND ON DYNAMIC MARKOV MODELS
authors succeed in compacting large sequences without N o .
significant loss in accuracy. However, in the present research, the Without loss of generality, in what follows we restrict
limitations of that approach are pointed out and overcome by thePurselves to finite binary strings, that is, finite sequences
proposed technique. consisting only of 0's and 1's. The set of events of interest is the

The present paper improves the-state-of the art by providingS€t S Of all finite binary sequences d bits. A particular
sequences,; in S consists of vectorg,, v,,..., V,, (which may be
distinct or not), each having a positive occurence probability.
* This research was supported by DARPA under contract F33615-95-Indices 1, 2,...,n represent the discrete time steps when a
€1627, SRC under contract 94-DJ-559, and a grant from Intel Corp.  particular vector is applied to a target circuit. Imposing a total

Fig.1
The paper is organized as follows: Section Il reviews the
sic concepts of DMC modeling technique. Section Il
rmalizes the power-oriented vector compaction problem and
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ordering among bits, such a sequence may be convenientlfthe counts on the edges while scanning the original sequence. By
viewed as a binary tree (call&MTy from Dynamic Markov Tree  doing so, we would end up with the obvious disadvantage of
of order zerp where nodes at levetorrespond to bijt(1<j < k) having 15 instead of 9 nodes in the structure for the same amount
in the original sequence; each edge that emerges from a node ®@f information; this reason alone is sufficient for considering from
labelled with a positive count (and therefore with a positive Now on only dynamically grown models.

probability) that indicates how many times the substring from the Definition 1. We define thenformation sourcgto be the pair

root to that particular node, occurred in the original sequence. For<S,P>, whereP is a function fromS into [0,1] satisfying the

clarity, let's consider the following example. condition:
Example 1: For the following 4-bit sequence consisting of 8 non- P(V) = P(VX) @
distinct vectors:\(;, Vo, V3, V4, Vs, Vg, V7, Vg) = (0000, 0001, 1001, ng

1100, 1001, 1100, 1001, 1100) the construction of thelthé®, for all vin S,wherevx represents the event corresponding to the
is shown step-by-step in Fig.2a. Obviously, the whole Markov joint occurence of the stringsandx.

tree that models this sequence must have four levels because the The above condition, simply states that the sum of the counts
original sequence is a 4-bit sequence. Without loss of generalityattached to the immediate successors of nodguals its own

we assume a left-to-right order among bits that is, the leftmost bitvalueP(v). As we can easily see in Fig.2, condition (1) is satisfied
in any vectow; to vg is considered as being bit number one (and at every node in this representafioin addition, based on the
consequently represented at level oneDMTy as shown in counts of the terminal edges, we may easily compute the
Fig.2a), the next bit is considered as being bit number two and sgrobability of occurence for a particular vector in the sequence.
on. Every time a vector is completely scanned (this correspondd-or instance, the probability of occurence for string *1001" is 3/8
to reaching the level four in the tree), we come back to the root(because the count on the terminal edge that corresponds to
and start again with the next vector in the sequence. While th¢1001’ is 3 and the length of the sequence is 8) while the
input sequence is scanned, the actual counts on the edges apsobability of string ‘1111’ is zero, ‘1111’ being a ‘forbidden’
dynamically updated such that, for this particular example, theyvector for this particular sequence.

finally become those indicated in Fig.2b.

|§|000 OHOO
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IIl. POWER-ORIENTED DATA COMPACTION
A. Problem Formulation
Input pattern dependence has a dramatic impact on power
dissipation estimates. If one ignores the input statistics (which
give the actual correlations among the primary inputs), power

E, estimation results can be seriously impaired.
= Assuming that a gate level implementation is available, to
8 estimate the total power dissipation, one can sum over all the
g gates in the circuit the average power dissipation due to the
o o — capacitive switching currents, that is:
fretbitin,y fecomdbiting | ownb bt foe s
|§|°°1 OHOl oooB Pavg = - Voo [Z(Cn w,) where fy, is the clock

frequency, Vpp is the supply voltageC, and sw, are the

capacitance and the average switching activity of gate

respectively. From here, the average switching activity per node

(gate) is the key parameter that needs to be correctly determined,

mostly if we are interested in node-by-node power estimation.
Having these issues in mind, the vector compaction problem

can be formulated as follows: forkabit sequence of length

first bit inv, second bit irv, IS‘;)?Q@';,S”;Y; (consisting .of_vectorsl,vz,...,vn). find another sequence of length

is processéd is processed : @) m< n (consisting of the subset,u,,... Uy, of the initial sequence),

such that thegerage transition probabilitgpn the primary inputs

is preserveavordwise More formally, for any generic inputand

u (seen as collections of bits) in the original and in the compacted

sequence, respectively, the following holds:

lP(v =x0Ov™® =Y)=P( =Xx0u"® =Y)<e (2

In relation (2),v,, vt (u, u*) denote the current and the next
vector, respectively, in the original (compacted) sequenc&and

Y are any two patterns that appear in the initial sequence. This

condition simply requires that the joint transition probability for
any group of bits is preserved within a given level of error.

processing of,

Fig.2
The Markov tree in Fig.2b c%ntains in a compact form all the
spatial information about the original sequergev,,..., vg. We B. A DMC-based Approach
point out that this sparse structure is possible only by using the  An attempt to solve the vector compaction problem for power
dynamic (adaptive)fashion of growing the tre®MT, just
illustrated. Another approach would have been to consider a static
binary tree capable to model any 4-bit sequence and just to update

2This is actually similar to Kirchoff's law for currents.



estimation was recently presented in [14]. In that paper, the
authors use elements from probabilistic automata theory to
synthesize stochastic machines which can be used in a stand-
alone mode for sequence compaction.

From a practical point of view, however, this approach has
two inherent limitations:
e The values in the initial transition matrix themselves are
important in the decomposition process: some distributions of
transition probabilities tend to favor a small number of degenerate
matrices, as opposed to others which result in much longer
decompositions.
 The compaction technique on stochastic machines is a
multiple-step compaction technique. An initial pass through the
sequence is performed to extract the statistics of interest; after
that, the stochastic machine is synthesized and then the new Fig.3

. € " : . 9
sequence is generated. This is especially disadvantageous fa&imilarly, continuing this process for all leaves DMT, in

large sequences when the on-line computer memory and timgsig o e end up by building the whole tMT; as shown in
requirements become prohibitive.

The disadvantages mentioned above can be eliminated b)}:'g'4'
using DMC modeling. To this end, in what follows we introduce
an original framework for power-oriented data compaction.

From Section Ill.A, it follows that not only a particular
vectorv; in a given sequence is important, but also its relative
position in that sequence matters. More precisely, different
permutations of vectors belonging to the same initial 8gt (
Vy,..., V), define completely different input sequences. Coming
back to the model presented in Section Il, we observeDitidi,
alone cannot capture this property; we say BT, hasno
memoryand therefore the relative order of vectors in the initial
sequence is irrelevant in the constructiodMT,. In Fig.2b for
instance, the value of 3/8 is the probability that we find the
particular string (state) ‘1001’ in the original sequence, but this

Fig.4
In Fig.4, the upper subtree (levels 1 to 4) represBM3,

gives us no indication at all about the sequencing of this vectorthat is, it sets up the state probabilities for the sequence; the lower

subtrees (levels 5 to 8), give the actual sequencing between any
To solve properly the compaction problem, we refine now the tWo successive vectors. To keep the counts in these subtrees
above structure by incorporating infiitst-order memory effects consistent, Wh”e we traverse the Iowe.r sub.trees and update the

counts on their edges, we also accordingly increment the counts

Specifically, we consider a more intricate structure, namely a tree i g
calledDMT, (Dynamic Markov Tree of ordef).1 on the paths in the upper subtree. In practice the counts of these

Example 2: For the same sequence in Example 1, suppose WtWo subtrees may differ by one, due to the finite length of the
—p_want to construct its corresponding t&IT;. We beéin as in gequences. A practical solution to this issue is to consider the

DMTgand for each leaf that represents a valid combination in thelnplgsgquercg,aﬁ_belng_gycllc. inf tion thadMT~. T
original sequence, we construct a new tree (having the same depth VIously, 1 p.row‘ es rr,10re information ‘0' 0,
as DMT,) which is meant to preserve teentextin which the ~ 9ive an example, string *1001" can follow only after "0001" or
next combination occurs. For instance, the vestor= 0001 1100", information that cannot be gathered by analyZigTo
follows immediately aftery; = 0000; consequently when we alone. . . )

reach the node that correspondstéthe leftmost path in Fig.3a), ~Proposition 1[19]. We write the probability of a vector string=
instead of going back to the root (and therefore ‘forgetting’ the ViVa-.. \p @s follows:

context), we start to build a new tree (rooted at the current leaveP(v) = P(v;) EP(v2|vl) a.. EP(vn|vlv2...vn_1) 4)
of DMTy) as indicated in Fig.3a. Basically, we added a new path

that corresponds to ‘0001'. The newly constructed tree will
preserve the context in whict, = 0001 occurred that is,

immediately afterv; = 0000 (denoted bwy; — Vv,). After
processing the paiv{,v,), we come back to the root and continue

relative to another one, say ‘0001".

where the conditional probabilities are uniquely defined by:
P(x|v) = P(vX) / P(v).

This property, used in connection with the counts on the edges,
allows a quick calculation of the transitions probabilities that
With (v,v3) as shown in Fig.3b. characterize any particular sequence. For example, if we want to

) alculate the transition probability ‘100%’ ‘1100’ we have from
In fact, all vectors except the first and the last are processecﬁ o ~ _ _
exactly twice, once in the upp&MT, and next in the lower roposition 1 P(v) = P(v;v,) = P(vy) [P(v,|vy) = 3/8
subtree. What is important to note here, is gllavectors in the which is exactly the count on the path ‘10011100’ in the tree
original sequence are processed, thanasie of them is skipped DMT, divided by the sequence length.
during the construction dMT;. This is the theoretical basis for Theorem 1.Any sequence S can be modeled as a first-order
accurate modeling of the input sequences as first-order Markoyy5rkoy sou.rce using the structudMT, and parameterB. We
sources of information. . ) 1 -
call this process Dynamic Markov Chain (DMC) modeling.
Theorem 2 The structurdMT; and parametei are equivalent



to a stochastic sequential machine. (Proofs can be found in [12]).while the input sequence is scanned incrementally, both the set of

Generally speaking, the theory of stochastic sequentialstates and the transition probabilities change dynamically making
machines is far more developed than the theory of DMC this technique highly adaptive.
modeling. However, the DMC modeling technique based on Input sequences having a large number of bire very
DMT, seems to be more effective as it offers a much morecommon in practice; the success of DMC models for sequence
compact structure and generally outperforms the compactioncompaction wheitis large is based on two key observations:
techniques based on stochastic machines. » The larger the value dfis, the sparser the structure®¥T,

The structureDMT; just introduced is general enough to will be. The DMC modeling technique exploits this observation
capture completely spatial correlations and first-order temporalby starting with an initially empty model and dynamically
correlations. Indeed, the recursive constructionDMT, by growing (‘on-demand’) the Markov tree that characterizes the
considering successive bits in the upper and lower subtreedNPUt sequence. By doing so, one can expect to build much
completely captures the word-level (spatial) correlations for eachSmaller trees than the ones otherwise obtained by using a static

individual “input vector in the original sequence. Furthermore, Model based on an initial full tree. ) ) _
cascading lower subtrees for each path in the upper subtree, give'sB'ased sequences which usually occurs in practice as candidates

the actual sequencing (temporal correlation) between twofor power estimation, contain a relatively small number of distinct

successive input patterns. patterns which arise in many different contexts in the whole
sequence. Therefore, a probabilistic model is ideally suited for

IV. A DMC-BASED VECTORCOMPACTION PROCEDURE modeling them. , , _
A practical procedure to construBMT; and generate the A natural question still remains: when should the growing

) . . rocess be halted? If it is not halted, there is no bound on the
compacted sequence Is described suhsequently. During a Onézgfmount of memory needed. On the other side, if it is completely

I‘f\l/sesl' ;Z\t/g{ﬁ:il gff égihog:}gé&?éjgﬁsgggfv(gh\z navr\nlg :f(stcr)atchtotgg bltﬁalted we lose the ability to adapt if some characteristics of the

. . ) source message change. A practical solution is to set a limit on
statistics that correspond to pairs of consecutive vVecWvs5)(  the number of states in the DMC [17] as we actually did in [12].

(V2V3),....(0n2Vn-1).(Vn1Vn)) we grow simultaneously the tree when this limit is reached, the Markov model is flushed and a
DMT;. We continue to grondMT; as long as the number of new model is started. Although this solution may appear as too
nodes in the Markov model is smaller than a user-specifieddrastic, in practice it performs very well. The intuition behind this
threshold. After reaching the threshold we generate the newproperty is the capability of DMC model to adapt very fast to
sequence up to that point and discard (flush) the model; a detaile@hanges that occur while the input is scanned. A less extreme
example involving flushes is worked out in [12]. A new Markov Solution to limit model growing is also possible; we can keep a
model is started again and the process is continued up to the erfgackup buffer that retains the Igstectors emitted by the source

of the original sequence. In general, by alternating the generatiorand whenever the model should be discarded, we may reuse this
and flushing phases in the DMC procedure, the complexity of theinformation to avoid starting the new model from the scratch.
model can be effectively handled. The issue of accuracy in the
context of these repeated flushes is discussed in the subsequeﬁt
section.

Accuracy Related Issues

To see how the flushing technique affects the accuracy,
Each generation phase is driven by the user-specifiedSUppose that durlng the building of the Markov model, flushing

compaction parameteatio that is, in order to generate a total of occurs after the firsy, vectors, then after the nexg vectors, and

m = n/ratio vectors, we have to keep the same compaction ratioSO on. If the number of flushesfjgshenn, +n; +... +n;=n. Lety,

for every dynamically grown Markov model. For generation, we (U;) be a vector from the initial (compacteid)h subsequence

use a modified version of thdynamic weighted selection (obtained due to successive flushes) arfd) a vector from the

algorithm[20]. In that approach, a similar structure WitMTg is initial (compacted) sequence.

built; more precisely, a full tree having on the leaves the symbolsTheorem 3[12]. If the i-th subsequence is approximated with an

that need to be generated. The counts on the edges arerror less thas;, then the accuracy for the whole sequence is:

dynamically decreased and the symbols are generated according f

to their probability distribution. We use this strategy only to ¢ = (1/n) DZ n [k < maxe,) (5)

generate the first vector. After that, to ensure a minimal level of e :

error, we use aerror controlling mechanismThe pseudocode

for the generation phase and a detailed example is given in [12].

i=1
wherer is the compaction ratio.
Therefore, as long as the models for partial DMCs accurately

b In da”notuhr ext;:r)erltmg\ht_?_ wsvuseld tk:]e tD'\t/IhC tnt}?ideli?gt techorluque capture the transition probabilities for the initial subsequences,
ased on the structu 1. YWe also note that this strategy does e yransition probabilities for the entire sequence are preserved

note allow .‘forbidde.n'.vectors that is, thpse combinatiqns that.did up to somee. However, the non-homogeneous sequences that
not occur in the original sequence, will not appear in the final jhay arise in practice (e.g. sequences with bi-modal distribution)
compacted sequence either. This is an essential capability needeth, have very different transition probabilities for each
to avoid ‘hang-up’ (‘forbidden’) states of the circuit during sypsequence. In such cases, if flushing is done properly so as to
simulation process for power estimation. distinguish between subsequences with different transition
behavior, then the overall accuracy can be significantly improved.
IV. PRACTICAL CONSIDERATIONS
A. Complexity Related Issues V. EXPERIMENTAL RESULTS

The DMC modeling approach offers the significant advantage of : : g :
) i . ; ) . The overall strategy is depicted in Fig.5. We assume that the input
being aone-pass adaptive techniquas a one-pass technique, data is given in the form of a sequence of binary vectors. Starting

there is no requirement to save the whole sequence in the On'”nﬁlith ank-bit input sequence of length we perform a one-pass
computer memory. Starting with an initial empty BT, traversal of the original sequence and simultaneously build the



basic treeDMT;; during this process, the frequency counts on 1000 vectors with a power consumption estimated as 1779.60
edges oDMT; are dynamically updated. uW. This reduction in the sequence length has a significant
impact on speeding-up the simulative approaches where the

( iti é One-step DMC modeling; running time is proportional to the length of the sequence which
Inﬂtlagfsiqnugetﬂg build DMT,; dynamically Generate compacted bg imul pd p g q
0 update counts on its edges sequence must be simulated. .
The sequences of type 2 were compacted for two compaction
ratios ¢ =5 andr =10) using PowerMill [2]; to asses the potential

v v of efficiency of the approach, for both original and compacted

e o s ot ey e °§{T§§§fﬁ,§i seauense sequences, we report also the actual running time required by
S / PowerMill to provide power estimates. The number of nodes
‘Com pw allowed for the Markov model construction, was 5,000; the CPU
Ir, time for DMC modeling was below 3 seconds in all cases.
Fig.5

The next step in Fig.5 doegs the actual generation of the output Table 2: Total Current (mA) for sequences of type 2
sequence (of length). If the initial sequence has the lengtand Initial sequence] Compacted sequenge
the new generated sequence has the length, then we say that Time to
acompaction ratioof r = n/mwas achieved. | Noof | current | Timeto | Current| Current | o W0

Finally, a validation step is included in the strategy; for short | CUlt| |y | (may | Simulate| (MA) | (mA) (sec)

. . . (sec) r=5 r=10 _

sequences we used the commercial tool PowerMill [2] whilst for r=10
long sequences we resorted to an in-house gate-level logic [ C432 | 36 0.4135| 1186 0.4350  0.4404 120
simulator developed under SIS. C499 | 41 0.8188| 2675| 0.8337  0.829 235

In Tables 1-2, we provide only the real-delay results for two C880 | 60 0.7907 2289 | 0.8324  0.802 274
types of initial sequences. Sequences of type 1 are large input | c1355| 41 1.1375| 2993| 1.1549  1.146 284
streams having the same initial lengtk100,000 and being then C1908| 33 1.2976| 4034| 1.2821  1.283 367,
prime candidates for compaction; type 1 refers to biased | c3540| 50 3.4490| 9467| 4.0500  3.858 1084
sequences obtained by doing bit-level logical operations on | ce28s| 32 | 145749 88032 14.80p0 15.9315 5006
ordinary pseudorandom sequences. The sequences of type 2 % error | 4.85 4.80
(having the length 4,000) are highly biased sequences obtained
from real industry applications. As it can be seen in Table 2, the average relative error is

As shown in Table 1, sequences of type 1 were compactedbelow 5% while the speed-up in power estimation is about one
with two different compaction ratios (namely 50 and 100); we  order of magnitude on average. For example, using the original
give in this table the total power dissipation measured for thesequence of 4000 vectors, PowerMill took for C432 about 1186
initial sequence (column 3) and for the compacted sequenceseconds to estimate a total current of 0.4135 mA. On the other
(columns 4, 5). In the last column, we give the time in secondsside, using the sequence generated with DMC of only 400 vectors
(on a Sparc 20 workstation with 64 Mbytes of memory) necessary(r = 10), PowerMill estimated a total current of 0.4066 mA in

to read and compress data with DMC modeling. only 120 seconds. We note also, that the results presented both
tables 1 and 2, are significantly better than those reported in [14]
Table 1: Total Power (UW@20MHz) for sequences of type 1 in terms of running time and memory requirements.
Gircuit | No-of | Power for| Power for| Power for Tg‘,ﬁéor f Fm?”y’ we co]rcnpareﬂ;)ur rQSgltSl with simple rarzuioml Samp“?g
Inputs| initial seq,| r=50 | r =100 of vector pairs from the original sequences [21]. In simple
(sec) random sampling, we performed 1,000 simulation runs with 0.99
casz| so | 161032 183889 17740 42 confidence level and 5% error level on each citcMie report in
ca99 | A1 | 309784 91069 3022 18 Table 3 the maximum and average number of vector pairs needed
C880| 60 | 3314.07] 322989 332931 75 for total power values to converge [11]. We also indicate the
C1355] 41 | 320527 304420 3109.48 48

percentage of error violations for total power values, using as
thresholds 5%, 6% and 10%. Using different seeds for the random
number generator (and therefore choosing different initial states
in the sequence generation phase), we run a set of 1,000
experiments for the DMC technique. In Table 4, we give the

C3540( 50 | 10876.22 9910.0 10687.82 61
C6288| 32 | 110038.6p 114199.50 109077.42 37
s344 9 751.58 748.54 719.53 10
5386 7 818.11 844.58 848.80 8

s838 | 34 | 105205 1061.73 109114 41 DMC results for the same thresholds as those used in simple
s1196] 14 | 3687.47] 370232 3580.638 16 random sampling.
s9234| 36 | 910275 9157.3] 9200.45 43

Once again, the results obtained with DMC modeling
technique score very well and prove the robustness of the present
Since the compaction with DMC modeling is linear in the approach. As we can see, using fewer vectors, the accuracy of
number of nodes in the structuBMT;, the values reported in  DMC is higher than the one of simple random sampling in most
the last column are far less than the actual time needed tdf the cases.
simulate the whole sequence. During these experiments, the
number of states allowed in the Markov model was 20,000.

As we can see, the quality of results is very good even when
the length of the initial sequence is reduced by 2 orders of
magnitude. Thus, for C432 in Table 1, instead of simulating
100,000 vectors with an exact power of 1816.32 uW, one can 1This means that the probability of having a relative error
use only 2000 vectors with an estimate of 1838.89 uW or just larger than 5% is only 1%.

% error 2.80 2.93




Table 3: Simple Random Sampling

Number of vector pairg Error violations
Circ. Max. Avg. > 5% > 6% >10%
C432 3300 2176 1.1 0.7 0.4
C499 1500 862 14 1.3 0.2
C880 3990 2705 1.8 0.4 0.7
C1355 1380 814 1.7 1.0 0.2
C1908 1620 846 1.9 1.3 0.2
C3540 2340 1446 2.0 1.3 0.4
C6288 7470 5422 1.4 1.4 0.3

V. CONCLUSION [8]
In this paper, we addressed the vector compaction problem from a
probabilistic point of view. Based on dynamic Markov Chain
modeling, we proposed an original approach to compact an
original sequence into a much shorter equivalent one, which cang
be used after that with any available simulator to derive power
estimates in the target circuit.

The mathematical foundation of this approach relies in[lO]
Markov models; within this framework a family of dynamic
Markov trees is introduced and characterized as an effective and
flexible way to model complex spatiotemporal correlations which
occur during power estimation. The results obtained both on
combinational and sequential benchmarks show that largdlll
compaction ratios of 1-2 orders of magnitude can be obtained
without much loss in accuracy in total power estimates.

(12]
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