
Advanced Processor Design

Using Hardware Description Language AIDL

Takayuki Morimotoy Kazushi Saitoy Hiroshi Nakamura*

Taisuke Bokuy Kisaburo Nakazawaz

yInstitute of Information Sciences and Electronics, University of Tsukuba

�Research Center for Advanced Science and Technology, University of Tokyo

zDepartment of Computer Science, University of Electro-Communications

Abstract| In order to design advanced processors
in a short time, designers must simulate their designs
and reect the results to the designs at the very early
stages. However, conventional hardware description
languages (HDLs) do not have enough ability to de-
scribe designs easily and accurately at these stages.
Then, we have proposed a new hardware description
language AIDL.

In this paper, in order to evaluate the e�ectiveness
of AIDL, we describe and compare three processors in
AIDL and VHDL descriptions.

I. Introduction

As processors get larger and achieve higher perfor-
mance, their designs become complicated. Recently,
HDLs are usually used in processor designs, for example
VHDL[1][2], Verilog-HDL[3], SFL[4], and so on. Using
HDLs, designers can reuse what have ever been designed,
verify and simulate their designs by using tools, and syn-
thesize lower level designs.
Our purpose is shortening the required time for design-

ing advanced processors which are best suited for design
purpose. For this purpose, designers are required to select
the best design at the very early stages. In order to satisfy
this requirement, at the very early design stages, design-
ers must design several implementations which are rough
but completed, evaluate the e�ectiveness of the designs by
simulations, and reect the results into the designs. Here,
the term of implementation represents how to control the
executions of instructions.
At the very early design stage, only the basic archi-

tecture and its implementation should be considered and
described. We call this level of design as \architecture
and implementation level". At this level, designers have
to consider only instruction set architecture and control
of the instructions. Here, they do not have to consider
detailed data path structures such as connections of func-
tional units and detailed timing relations such as delays
of circuits. Even in this early design stage, there are wide
variety of architectures and implementations to be inves-
tigated.
Conventional HDLs have two major problems for de-

signing advanced processors at the architecture and im-
plementation level. First, designers must consider de-
tailed data path structures such as connections between
functional units. At the architecture and implementa-
tion level, this consideration is usually out of the scope.

Second, designers should describe detailed timing rela-
tions even in synchronous behavior. For example, clock
should be explicitly described, and designers have to pay
attention to the timings of signal changes. However, such
timing relations are too detailed at this design level. Be-
cause of these drawbacks, the initial design and the fol-
lowing modi�cations get di�cult and take longer time.
For example, in VHDL and Verilog-HDL, designers need
to consider both of them. SFL also su�ers from the �rst
problem.
Then, we have proposed a new hardware description

language AIDL[5] suited for design at the architecture and
implementation level and design approach using AIDL.
In AIDL, designers do not need to consider detailed data
path structures. Moreover, actions are synchronized with
an implicit clock in AIDL. Design ow using AIDL is
shown in Fig.1. There is no logic synthesis system for
AIDL. However, that disadvantage is solved by using a
translator from AIDL into other HDLs which can be syn-
thesized (Fig.1).
This paper is organized as follows: Section II describes

the characteristics of AIDL. To evaluate the e�ectiveness
of AIDL, we have designed three processors in AIDL and
VHDL and compared them. This experiment is described
in Section III. Conclusion and future works are mentioned
in Section IV.

II. Hardware Description Language AIDL

To attain out objective, it is important that an HDL
should satisfy two requirements:

� Designers can describe various instruction set archi-
tectures and hardware architecture simply and accu-
rately.

� Designers can modify the description easily.

In order to satisfy these requirements, AIDL is designed so
that it can describe simply and accurately timing relations
such as sequentiality and concurrency and cause/e�ect
relations between pipeline stages.

A. Timing Relation

AIDL has two characteristics for describing timing re-
lations simply and accurately.
First, the concept of timing relations is based on In-

terval Temporal Logic[6]. AIDL is de�ned on discrete
time sequences and its behavior is de�ned on time inter-
val. Therefore, designers need not to consider explicitly

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

in AIDL

Simulation

ArchitectureImplementation

Is the design correct and satisfactory?

lower level design

No

Modification

Yes

 target
program

Translation hardware
information

in other HDLs

Fig. 1. Design ow in AIDL

detailed delay or timing relations in AIDL. Because we fo-
cus on advanced processor design at the very early stages,
synchronous model is su�cient.
Second, sequentiality or concurrency of behavior is

clearly de�ned in AIDL. Each behavior is described as a
part of stage in AIDL. Stage usually correspond to stage of
instruction pipeline at the architecture and implementa-
tion level. Sequentiality and concurrency between stages

or within a stage are de�ned as follows. Fig.2 shows the
syntax of stage de�nition. A stage is activated whenever
its \activating condition" is satis�ed unless the same stage
is under execution. If there are other stages whose \acti-
vating conditions" are satis�ed, those stages are also acti-
vated and executed in parallel. The operator of \//" ex-
presses sequentiality. \A // B" represents that the \B" is
executed after the execution of \A" has been completed.
Therefore, \ag-set parts" and \data-transfer parts" in
the same stage are executed sequentially.
A \ag-set part" is de�ned on a time interval of length

�. Because � is a constant which is common through-
out all the stages, the end of executed ag-set parts are
synchronized even if they belong to di�erent stages. A
\data-transfer part" is de�ned on a time interval whose
length is \execution-time". The \execution-time" should
be a positive integer. Statements in a \ag-set part" or
in a \data-transfer part" are executed in parallel.
A data assignment to a variable is expressed by \<-"

operator. The statement of \A <- B" represents the value
of \B" at the beginning of the interval is assigned into \A"
at the ending time of the interval. An example is shown
in Section II.C.

B. Cause/E�ect Relation

AIDL has two kinds of variables, that is, ag variables
and register variables. Flag variables are introduced to
specify cause/e�ect relations between stages. Value of
each ag variable is either TRUE or FALSE. Each ag
variable has a value of priority. When di�erent values
are simultaneously assigned to a ag variable, the prior
one is assigned to it. Intuitively, this variable represents

stage <stage name>(activating condition){
<flag-set part> //
block(execution-time){ data-transfer part } //

<flag-set part> //
block(execution-time){ data-transfer part } //

...
}

Fig. 2. Syntax of stage de�nition

a latch in control logic. By evaluating the values of ag
variables in the activating conditions, cause/e�ect rela-
tions between stages are speci�ed. An example is shown
in Section II.C.
Register variable has a value of multiple bits. Intu-

itively, this variable represents a register in data path
part. This variable can be assigned in only \data-transfer
parts".
In AIDL, both variables are global and can be referred

to or assigned from wherever in the descriptions. This
nature is bene�cial for controlling cause/e�ect relations
between stages which behave independently.

C. Example

Here, the characteristics mentioned in Sections II.A and
II.B are explained by using a simple example. In Fig.3,
(A) is a part of instruction pipeline description in AIDL
and (B) represents how (A) is executed. The �rst un-
derlined part of Fig.3-(A) represents that \decode" stage

is activated if the ag variable \decode start" is \TRUE"
and \datahazard" is not \TRUE". The second underlined
part represents that \execute" stage is activated if \exe-
cute start" is \TRUE". The register variable \counter" is
a four-bit register which is used to arise pipeline stalls.
Suppose that \decode" stage is active on the time inter-

val between clock t and (t+1) (illustrated as]1 in Fig.3-
(B)) because \decode start" is \TRUE" and \datahaz-
ard" is \FALSE" at clock t. Next, the ag-set part (line
3 in Fig.3-(A)) is executed in a time interval �. The ag
variable \decode start" is assigned to \FALSE" at (t+�).
Then the data-transfer part between line 5 and line 10 in
the block is executed on the time interval between clock
(t+�) and (t+1). The statement at line 5 in Fig.3-(A)
represents the cause/e�ect relation between \decode" and
\execute". By this statement, \execute start" is set to
\TRUE" at clock (t+1).
At clock (t+1), both \decode" and \execute" stages are

activated. The part of (counter<3> == 'b1) (line 8)
represents the condition that the third bit of \counter" is
equal to \1". Because the least signi�cant bit of \counter"
is 1, the statement at line 9 is executed and \datahazard"
is set to \TRUE" at clock (t+2).
At clock (t+2), \decode" stage is not activated be-

cause its activating condition is not satis�ed. However,
\execute" stage is activated. Then, \datahazard" is set
to \FALSE" at clock (t+3) because the condition repre-
sented at line 15 is satis�ed. Therefore, at the next clock
(clock (t+3)), \decode" stage is activated again (]2 in
Fig.3-(B)).
In this way, timing relations are described simply in

AIDL. Cause/e�ect relations are also expressed simply
and accurately by using ag variables.

III. Experiment

In order to evaluate the e�ectiveness of AIDL and our
design ow, we have designed three processors in both

1 stage decode(decode start == TRUE

2 && datahazard != TRUE){

3 decode start <- FALSE;//
4 block(1){
5 execute start <- TRUE;
6 decode start <- TRUE;
7 counter<0:3> <- counter<0:3> + 'b0001;
8 if (counter<3> == 'b1) then
9 datahazard <- TRUE;
10 endif;
11 }}
12 stage execute(execute start == TRUE){

13 execute start <- FALSE;//
14 block(1){
15 if (datahazard == TRUE) then
16 datahazard <- FALSE;
17 decode start <- TRUE;
18 endif;
19 }}

(A): Instruction pipeline in AIDL

clock
time

decode executeinstructions

decode

decode execute

i

i+1

i+2

#1

#2

T F T T TTF F
F F T F FT FF

TF F F F T F F
0000 0001 0010 0010

execute_start
decode_start

datahazard
counter

δ

t t+1 t+2 t+3

(B): Executing the description of (A)

Fig. 3. Example of stage control

AIDL and VHDL. Here, we just designed at the archi-
tecture and implementation level, because, in our design
approach using AIDL, a description at the lower level such
as RTL is generated by using a translator which accepts
AIDL description and information on data path structure
(Fig.1). Two designers design the target processors in
AIDL or VHDL separately. They have some experiences
to design other processors by each language. We com-
pared the required time for the designs with each other.
Here, design time includes the time for describing, debug-
ging, and simulating the designs at the architecture and
implementation level. We have already developed a pro-
totype of translator which generates VHDL description.
The translator can translate a simple AIDL description
as shown in Fig.3 into VHDL in less than one second.
However, since the routine for taking the input hardware
information into account is not yet completed, the out-
put of the translator is a description at the architecture
and implementation level currently. Therefore, we do not
compare two languages on synthesis level.

A. Design Target

Three processors are called \basic pipeline", \data for-
warding", and \out-of-order completion". Instruction set
architecture of these processors is based on PA-RISC
1.1[7]. Not all the instructions but only 23 instructions
are implemented in these processors. The implemented
instructions are listed in Table I.
All the processors have data cache memory (capacity :

1 KB, line size : 32 B, writeback, write allocate). As
for instruction, all the processors do not have instruction
cache. It always takes one cycle to fetch an instruction.
The simulator of AIDL has been already developed. By

TABLE I
Instructions

Type of
data

Type of
operation

Instructions

integer load/store LDW, LDWX, LDWS,
STW, STWS

arithmetic ADDIL, SH2ADD,
OR, LDIL, LDO

branch COMBF, COMBT,
COMIBF, ADDIBT,
ADDIBF

others HALT
oating-point load/store FLDDS, FLDDX, FSTDS

arithmetic FADD, FCPY, FDIV, FMPY

using the simulator, we con�rm that each description is
grammatically correct and satis�es the given speci�cation.

A.1 Basic Pipeline

Fig.4 shows structures of instruction pipeline. When a
read after write (RAW) hazard occurs, executions of the
following instructions are stalled until the dependency is
resolved. Branch instructions have delayed branch feature
as is in PA-RISC 1.1 architecture. The number of delayed
slot is one.

A.2 Data Forwarding

\Data forwarding" is a processor where a data forward-
ing mechanism is added into \basic pipeline". In this
improvement, the structure of instruction pipeline is not
changed.

A.3 Out-of-order Completion

In order to improve performance, we modify instruction
pipeline of \data forwarding" processor. Writeback stage
is changed into four stages, \WB", \FW1", \FW2", or
\FW3", depending on the instruction type. Memory
stages of \FMPY" and \FDIV" are eliminated. Fig.5
shows the modi�ed structures of instruction pipeline.
This processor realizes out-of-order completion and con-
current writes into registers at di�erent writeback stages
by these improvements.

B. Result and Comparison

Table II shows the time for designing processors in
AIDL and VHDL. In this experiment, we focus on the
ratio of the design time in AIDL and in VHDL. Note that
real processors have more instructions and more complex
mechanisms such as trap handler, TLB, and so on. Then
the di�erence of the absolute design time gets larger.
In Table II, the di�erence in \basic pipeline" between

AIDL and VHDL is quite large. It takes about 4.6 times
to design using VHDL as long as using AIDL. There are
two reasons for this result. One reason is that since assign-
ments in process shown in Fig.6 have a sequential ordering
in VHDL, the designer has to consider the ordering of as-
signments very carefully. The other reason is that VHDL
requires the designer to be very careful of how to control
pipeline stages of multiple cycles. The consideration of
detailed timings, such as a delay for an assignment under
multiple execution cycles, is required.
The required time for improving \basic pipeline" to

\data forwarding" using VHDL is about 1.3 times as long
as that using AIDL. In improving \data forwarding" to

IF ID EX WBME

(A): Instruction pipeline (except for \FMPY" and \FDIV")

FDIF ID ME WB

(B): Instruction pipeline of \FDIV"

MEFE1 FE2 FE3IF ID WB

(C): Instruction pipeline of \FMPY"

� IF : instruction fetch
� ID : instruction decode, check of a data dependency, condi-
tion check and calculation of a target address for \COMBF",
\COMBT", and \COMIBF", read of source registers

� EX : arithmetic calculation except for oating-point multiply
and divide, address calculation for a load/store instruction, con-
dition check and calculation of a target address for \ADDIBF"
and \ADDIBT"

� FE1, FE2, FE3 : oating-point multiply

� FD : oating-point divide

� ME : memory operand access

� WB : write a result into general purpose or oating-point register
�les

Fig. 4. Structures of instruction pipeline

IF ID EX FW1ME

(A): Instruction pipeline of oating-point load, \FCPY", and
\FADD"

FE1 FE2 FE3IF ID FW2

(B): Instruction pipeline of \FMPY"

FDIF ID FW3

(C): Instruction pipeline of \FDIV"

Fig. 5. Modi�ed structures of instruction pipeline

\out-of-order completion", the required time using VHDL
is about 1.7 times as long as that using AIDL. The ra-
tio of time for improving \data forwarding" to \out-of-
order completion" is greater than that for improving \ba-
sic pipeline" to \data forwarding". There are two reasons
for this di�erence. One reason is that modi�cations of
timings or controls of pipeline are required in only the
latter improvement from \data forwarding" to \out-of-
order completion". The other reason is that it is more
di�cult to modify timings or controls of pipeline using
VHDL than that using AIDL. The total time of designing
\out-of-order completion" by using VHDL (156 hours) is
about 2.4 times as long as by using AIDL (66 hours).

We investigate only two improvements in our experi-
ment. However, in real processor design, designers are
required to implement more instructions, trap handler,
TLB, and so on. In such cases, the di�erence between the
required time in AIDL and in VHDL gets larger. More
di�cult implementations such as superscalar, VLIW, or
a branch prediction will make the di�erence much larger.
Then, the di�erence of required time may become several
months. Therefore, AIDL is more suitable to explore the

TABLE II
Result of design time

Design
Time [hours]

VHDL AIDL

basic pipeline 83 18
basic pipeline ! data forwarding 24 19
data forwarding! out-of-order completion 49 29

pipeline : process(clk)
begin
if (clk'event and clk = 1) then
if (activating condition of stage) then
----- stage actions -----

end if;
if (activating condition of stage) then
----- stage actions -----

end if;...
end if;

end process pipeline;

Fig. 6. Pipelined behavior in VHDL

design which is best suited for the design purpose from
possible instruction set architectures and hardware archi-
tectures than VHDL.

IV. Conclusion and Future Works

Wedescribed three processors both in AIDL and VHDL
and measured the time required for description. It takes
about 1.3 to 4.6 times in VHDL as long as in AIDL. The
main reason is that VHDL is less exible for describing
timing relations. In real designs, designers have to investi-
gate much more complex designs than in our experiment.
Therefore, AIDL is helpful for designing advanced proces-
sors.
The simulator and prototype of translator has been al-

ready developed. We have successfully evaluated the de-
scription and estimated its performance. The translator
can translate a simple AIDL description into VHDL. Us-
ing the translator, designs in AIDL can be followed by
lower level design. Therefore, the entire design time is
reduced if AIDL is utilized as the architecture and imple-
mentation level hardware description language.
As a future work, we will describe more complicated

processors to evaluate the e�ectiveness of AIDL. Another
future work is improving the translator so that it can
generate RTL descriptions of high quality.

References

[1] R.Lipsett, C.Schaefer and C.Ussery, VHDL: Hardware Descrip-
tion and Design, Kluwer Academic Publishers, 1989.

[2] H.Juan, N.Holmes, S.Bakshi, D.Gajski, \Top-Down Modeling
of RISC Processor in VHDL," Technical Report 92-96, Dept. of
Information and Computer Science, University of California,
Irvine, 1992.

[3] E.Sternheim, R.Singh, and Y.Trivedi, Digital Design with Ver-
ilog HDL, Automata Publishing Company, 1990.

[4] Y.Nakamura, \An Integrated Logic Design Environment Based
on Behavioral Description," IEEE Trans. on CAD, CAD-6,
No.3, pp322-336, 1987.

[5] T.Morimoto, K.Yamazaki, H.Nakamura, T.Boku, K.Nakazawa,
\Superscalar Processor Design with Hardware Description Lan-
guage AIDL," Proc. of APCHDL'94, pp51-58, 1994 .

[6] B.Moszkowski, \A Temporal Logic for Multi-Level Reasoning
about Hardware," Proc. of CHDL'83, 1983.

[7] Hewlett Packard, PA-RISC 1.1 Architecture and Instruction
Set Reference Manual (Third Edition), 1994.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

