
VIDE: A Visual VHDL Integrated Design Environment ∗∗

Jinian Bian, Hongxi Xue and Ming Su

Dept. of Computer Science and Technology

Tsinghua University

Beijing 100084, CHINA

Tel: +86-10-62785564

Fax: +86-10-62562463

email: [bianjn|xuehx|suming]@tiger.cs.tsinghua.edu.cn

∗ This work is supported by National Project and Tsinghua Science Research Foundation.

Abstract −− In this paper, a visual VHDL integrated
design environment VIDE for high level design is pre-
sented. In VIDE, there are several graphical and textual
mixed design entry tools (VDES) and a graphical object-
oriented debugger (VDBG). VDES consists of several
diagram editors and a visual text editor, while VDBG is
a debugging environment based on a hierarchical VHDL
simulator. The graphical objects can be specified as a
debugging target.

 I. INTRODUCTION

VHDL has strong description facilities. However,
the complexity of VHDL syntax and flexibility of the
description make it very difficult for the user to code
and understand the description programs. Since IC
design becomes larger and more complex rapidly,
traditional VHDL entry approach is more and more
difficult for designers and is easier to cause some
mistakes.

To solve the problems, a convenient graphical de-
sign entry approach and a convenient verification
debugging tool will make it much easier for the user to
enter his design and find his mistakes. Since most
designers are familiar with graphical approach to
describe their design idea, to build a graphical design
entry environment is useful. Another way is to build
an interactive simulator with convenient visual de-
bugging.

In this paper, a graphical object-oriented visual
VHDL integrated design environment (VIDE) is
presented. We propose an object-oriented graphical
model for design entry approach and a graphical
object-oriented visual debugger based on a hierarchi-
cal simulation.

 II. OBJECT-ORIENTED GRAPHICAL DESIGN ENTRY

TOOLS

A. The Architecture of the Graphical Design Entry Tools

VIDE consists of several object-oriented visual de-
sign entry tools (VDES) and a visual debugging envi-
ronment based on a hierarchical mixed-level VHDL
simulator (VDBG). Using VIDE, the designer can
enter and verify his design conveniently. It can also
support synthesis tools. The whole environment is
managed through design library manager.

The hardware designers prefer diagram approach to
show their design ideas and design results. VDES
supports several graphical editors and a visual text
editor (TXT). The graphical editors are for finite state
machine diagram (FSM), data flow diagram (DFD),
control flow diagram (CFD), structural schematic
diagram (SCD). The diagrams and the text are hierar-
chically mixed together to form a complete design.

Each graphical entry tool consists of 3 parts: an
editor, a transformer and a translator.

Each editor is an interactive user-interface. The
designer can enter, load and edit his design in a
graphical manner or/and a textural manner. The logic
data of the result are translated into VHDL or other
hardware description languages such as Verilog by the
translator.

A transformer is used to isolate the editor and the
hardware description language (HDL), so the editor
orients objects. The graphical diagrams are independ-
ent of the HDL, so the designers need not be familiar
with the HDL in detail. The transformers also do some
rule-checking of the graphical diagram.

ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

B. The Object-Oriented Graphical Models

1) Graphical Objects

In all of the editors, besides the graphical informa-
tion, there are some information which can not be
displayed. So a graphical model consists of graphical
objects and textual objects.

A textual object is unable to display in a graphical
window, such as a data type, a package, the synchro-
nous or asynchronous flag.

A graphical object is a principal object or an at-
tribute object. A principal graphical object is a main
graphical element of the diagram, such as block, state
node, signal, port.

An attribute object is a displayable string, such as a
name, a parameter, an electrical value and a notation,
which is subordinated to a principal object. An attrib-
ute object can be operated independently. The user can
create, delete, move, and change its position and its
size. If a principal object is deleted, then all of its
subordinate attribute objects will be deleted automati-
cally.

In the data flow diagram (DFD), a principal
graphical object can be a block, a signal or a port. A
block is displayed as a rectangle or a circle, which
stands for a functional block, a process or a sub-
module. They are parallel. The communication be-
tween two blocks is through a signal. Each signal is a
broken line with two ends (ports), which connects two
blocks and stands for a data flow. The signal has a
value of a data type, and it can have an initial value. A
signal port must be specified in mode in, out, or inout,
which decides the direction of the data flow.

A control flow diagram (CFD) expresses the inter-
nal sequential program of a block in graphical ap-
proach. There are 3 kinds of graphical symbols: con-
trol node, control flow and local connector. A control
node has 7 types: start, end, action, decision, wait,
loop-start or loop-end. An action node is a functional
module. A wait node is correspondent to the wait
statement in VHDL. The other nodes express control
sequences. A control flow consists of one or more line
segments. A connector is used to break the line of
control flow. It is an entry connector or a leave con-
nector, which is connected by the same name. Each
graphical node can have its name and its attributes.
The action node should be specified as the action
statements like HDL statements. A finite state ma-
chine diagram expresses a finite state machine, that is,
the internal sequential process of a functional element
by transition.

In a finite state machine (FSM) model, there are 4
kinds of graphical symbols: state, transition, local
connector, global connector. A FSM may be a Moore

or Mealy model. A state is shown as a circle. Any two
state nodes are connected by one or more directional
transitions. Every state can be specified its actions,
and every transition can be specified the transition
condition expressions, the own actions and the prior-
ity. A local connector breaks a transition line and
connected through the same name. A global connector
only connects a source end of a transition called global
transition. The global connector expresses briefly
connection from all of the states with the same transi-
tion condition.

A structural schematic diagram (SCD) model is
like the DFD model, but there are following differ-
ences: (1) Since a block expresses a circuit component,
it may have a special shape (i.e., the symbols of AND,
OR, DFF, ADDER, etc.), and may have some input
ports and some output ports. A signal connects with
special ports of the block. (2) A signal is a net, which
may have several input ports and/or several output
ports. (3) There is an additional graphical element --
external-port, so no signal has disconnection ports. A
block in SCD can also be defined with all of the VDES
editors, in behavioral or structural.

2) Hierarchical Design

VDES supports a hierarchical and mixed type of
diagram and mixed level design. A functional module
can be defined by the design of the lower level, called
sub-design.

In DFD and SCD model, a block is as a functional
module, which can be defined by all of DFD, CFD,
FSM, TXT or other VHDL description program.

In CFD, each action is a functional module. The
sub-design can only be defined by CFD.

In FSM, each state is a functional module. The sub-
design can only be defined by FSM.

VDES enables mixed-level description by describ-
ing on hierarchical levels. The primary advantage of
DFD, CFD and FSM lies on the ability to describe
hardware on the behavior level. Furthermore, DFD and
SCD are perfectly suitable for the structure descrip-
tions, i.e., the register transfer level or the gate level.
On the levels under the behavior level, a data flow
represents a bus and an interconnection wire, a proc-
ess or an operation represents a function unit, a gate
or multiplex, and a data store represents a register.

VDES allows rebinding of a design to incorporate a
different implementation of a module. A module may
be described by VDES in lower hierarchical level, but
it may be bound to a specific module in the library by
the name of a module configuration. With the feature
of hierarchical description, VDES support the devel-
opment of large scale design and design reuse.

3) The Concept of Flow

The concept of flow is an abstraction on data com-
munications between two components, states, proc-
esses, operations, or data stores. We use the concept of
flow to build a consistent graphical model of all of the
graphical editors.

 At least one end of each flow must be connected to
a component, a block or a state. The other end may be
connected to a data store, a branch, another compo-
nent, state, process or operation, or an external port.
In the last case, the source or destination of the flow is
interpreted as being external to the diagram.

C. Generating the VHDL Description

In order to make the graphical editors object-
oriented, VDES first generates internal logic data
which are independent to the HDL, and then translates
the internal description to VHDL, or to other HDL,
such as Verilog.

Before generating the internal functional data, the
first step is to do the design rule checking: checking
the attributes of the graphical objects; checking the
connection of the flows with blocks or nodes; checking
the flow network whether valid or not.

The graphical data file is dependent on the corre-
sponding diagrams. For example, in FSM, it consists
of package use information, interface information,
generic parameters, local data types, local signals,
variables, state machine description, and so on. Some
internal graphical data formats are close to VHDL, but
the state machine description is different from VHDL.

Each diagram is translated into a VHDL entity and
an architecture. The interface is translated to an
entity, while the types, signals, variables and the
actions are translated to the corresponding elements of
an architecture.

In DFD, each block (module) is translated to a
component instance. Its sub-design must be an entity.

In CFD, the top design is an entity, but all of the
sub-CFD are translated to several procedures. The
flows in CFD are just control sequences, which need
not be translated into any VHDL elements.

The actions of a state or a transition are translated
to a procedure, and the state machine is translated to a
process including a case structure. If it is a synchro-
nous state machine, a process of the clock and reset
signal actions must be added.

 III. GRAPHICAL OBJECT-ORIENTED VISUAL VHDL
DEBUGGER

Since a complex, hierarchical circuit design in
VHDL generated from VDES diagrams is quite cum-
bersome to understand, a powerful debugger is im-
perative in our VHDL design environment. We provide

a graphical object-oriented visual VHDL debugger
(VDBG). In the debugger, the graphical objects in the
diagram may be the debug targets. It controls the
simulation. The graphical objects can be specified as
observation points and interruption points to control
the simulation process. The simulation result is dis-
played in the waveform window and back-annotated
into the graphical objects.

A. The architecture of the VHDL debugger

The environment is chiefly constructed with a de-
bugger console and some design entry windows. In
VIDE, all design entry tools may work in two modes:
editing mode and simulating mode. In the editing
mode, they are used to provide to designers a means to
express their design ideas, but in the simulating mode,
they can interact with the debugger console to build a
visual debugging environment.

The architecture of the VHDL debugging environ-
ment is shown in Figure 1.

The kernel of debugger console is a simulator, and
designers can control the simulation process via it.
While simulating, debugger console starts the wave-
form editor, and it can also start multiple design entry
windows automatically and open the original design
files simultaneously. The designer can operate in the
debugger console window or the design entry window,
such as making breakpoints, displaying signal values.
The simulation process will be visual in the apprecia-
tive design entry window. All operation messages will
be displayed in the console command analyzer. It
guarantees to generate the same effort for same opera-
tions in different windows. During debugging process,
the values of all signals in the circuit will be written
to a memory file in delta format. The waveform editor
can read these values from a pipe, then refreshes the
signal waveform in the display window.

There are also two other important windows for de-
bugging: data visual simulation result window and
design hierarchy browser window. They can make the
debugging easier.

As a hardware description language, one of the
VHDL features is that it supports for design sharing
and hierarchical design methodology. According to a
specific configuration, a hardware may have different

debugger

console

graphical

design entry

VHDL

text window

waveform editor

design

hierarchy graph

simulation result

visualization

Fig 1. VDBG subsystem

constitution. For instance, in VHDL, an entity can
map into two different components, and two entities
can map into one component. Therefore, for a multi-
level design, it becomes difficult for designers to
comprehend the construction of the practical circuit,
especially when the circuit scale is large. Design
Hierarchy Graph (DHG) is aimed to solve the problem.
All information about circuit components and their
connection can be extracted from the simulation data.
The debugger console can analyze it and generate a
whole design hierarchy graph. The designer can
browse the graph, open or close specified component.
When a component is opened, its design description
will be displayed.

Simulation result visualization is another means to
display simulation status and data. It is a valid way to
express the sophisticated data type and the relation-
ship between objects.

B. Hierarchical Mixed-Level Simulator with Debugging

The simulator is the kernel of the debugger. In or-
der to implement the debugging function, the simula-
tor uses hierarchical mixed-level circuit model, which
remains the component reference structure and mixed
level components. The advantage of the model is that
it reduces the space occupied, and it is easy to get all
VHDL source information during debugging opera-
tions.

In a circuit model, there is a top module and some
sub-modules referenced hierarchically. The top module
or each sub-module is an entity with a corresponding
architecture. Each architecture may be described in the
behavioral or structural level, and may be in the
system level, the register transfer level, the gate level
or the switch level. The simulator runs the top module
and then calls the sub-modules when executing the
component instance statement.

Because the hierarchical model is a hierarchical
network but not a real tree, a sub-module may have
several parent modules, so it has several calling paths.
Therefore, when a sub-module is executed, the values
of the local signals and the variables are different
depending on the current calling path. In addition,
when the processes in the VHDL description are
reactivated or the simulator continues after interrup-
tion, the execution must recognize the current point
with the calling path, and be continued.

The simulator is isolated with entry tools. It is only
able to recognize the VHDL description. A break point
in the VHDL description may be at one of the follow-
ing positions: at a simulation time; on a statement
line; in an architecture, a block, a process, a procedure
or a function; on a signal or variable; when a condi-
tion is true. Besides, it may be traced on each step and
displayed the state messages.

C. Setting Break Point In Design Entry Window

Although the simulator orients to the VHDL de-
scription file, VIDE supports a graphical object-
oriented debugging approach. The designer can set
break points in the diagrams of the design entry win-
dow. After simulation, the simulation state can be
back-annotated in the corresponding diagram.

When the simulation is running, the corresponding
editor window goes to simulating mode. In this mode,
can set break points and send them to the simulator.

Every graphical object can be as a break point.
VDES transforms the graphical break point to a tex-
tual breakpoint in VHDL program. For example, a
graphical break point in a block of the DFD can be
transformed to a textual break point at the component
instanciation statement line, and a break point at a
state of the FSM is transformed to a statement line in
a case structure.

VDES sends the transformed textual point to
VDBG. VDBG manages all of the textual break points,
and control the simulation.

When the simulation is interrupted caused by a
break point, VDBG gets the simulation status and
sends it to VDES. VDES transforms the information
and displays the status in the diagram.

The VHDL file generated from VDES or entered
into text editor can be open in debug console window.
The designer can also set break point in debug win-
dow. The simulation dynamic status shows in the
window simultaneously.

 IV. CONCLUSION

In this paper, we showed a graphical object-
oriented design entry and debugging approach. Using
VIDE, designer can enter his design in diagram ap-
proach. While simulation is running, he can control
and observe the simulation status in the design entry
window or in the textual debug window, so it is easy to
verify his design and correct the mistakes.

REFERENCES

[1] Reda A. Ammar and PE Roaiene. “Visualizing a Hierarchy of

Performance Model for Software Systems”,Software Practice

and Experience, March 1993.

[2] Winchester and Sally Jane, "Modeling Language To Become

An Expert Logic Circuit Debugger", DAI-B, Jun 1994.

[3] Bergman and Lawreace D., "VIEW: A System For Prototyping

Scientific Visualizations", DAI-B, Oct. 1993.

[4] D.S.Boning, M.L.Heytens, and A.S. Wong, “The Intertool

Profile Interchange Format: An Object-Oriented Approach”,

IEEE Transactions on CAD of IC&S, Sept 1991.

[5] Take Shimonura and Saduhiro Isoda, “linked-list Visual-

ization for Debugging”, IEEE/SOFTWARE, May 1991.

	CD-ROM Home Page
	ASP-DAC home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

