
A Hardware/Software Co-simulation Environment

for Micro-processor Design

with HDL Simulator and OS interface

Yoshiyuki Ito Yuichi Nakamura

C&C Research Laboratories

NEC Corporation

Kawasaki, Japan

Abstract We proposed a hardware/software co-

simulation environment using an RTL simulator with a

software language interface. The proposed simulation

environment introduces the \OS interface (OSIF),"

which invokes system calls in the OS on the simula-

tion platform to execute application software. The

OSIF consists of data adaption facility and function

correspondence management allowing it to cooperate

with the OS of the simulation platform. We show the

results of experiments with an R3000-compatible pro-

cessor model. This environment veri�ed our processor

model with SPEC benchmarks that require various

operating system services. For example, with a lisp

interpreter program li, our detailed RTL description

for the core part of R3000 was simulated only within

20 hours on a 109 MIPS workstation.

I. Introduction

For detailed veri�cation of micro-processor design, exe-

cution of application software with operating system (OS)

functions such as system call transactions and accesses to

external devices is indispensable. Since designers desire

to try several types of processor architectures, the veri-

�cation environment needs to be available as quickly as

possible. Thus, simultaneous simulation of hardware and

software on processor design is crucial.

There is a trade-o� between accuracy and simulation

time in the veri�cation environment. When the hardware

is modeled in higher level description, the software is eas-

ily applied to the model and simulation time is short, but

the veri�cation may be inaccurate. On the other hand, al-

though the simulation will be accurate when the hardware

is modeled in detail, it could be too di�cult to execute

the application software with the model, or its execution

speed is extremely slow.

In order to solve this problem, in most current design

styles software simulation uses hardware models which

are di�erent from detailed hardware designs. Applica-

tion software is executed with a trace-level or pipe-line-

level simulator. Since such simulation environments treat

an ideal hardware, processor performance might not be

realistic. For development of circuit-level hardware de-

signs, hardware description language (HDL) simulation is

used. At this level of simulation, hardware/software co-

veri�cation with HDL simulation is not easy, because the

software must be executed with system calls and accesses

to external devices. In addition, veri�cation speed on the

HDL simulator is at most 100 patterns per second. Thus,

executing application software such as SPEC benchmarks

[1] requires a great amount of simulation time for emu-

lating full operating system codes on the HDL processor

model.

Several simulation methods have been proposed for ef-

�cient veri�cation and quick software development [2, 3,

4, 5, 6]. Since most of these simulation environments are

aimed at developing embedded systems. Therefore they

are unsuitable for a developing general micro-processors.

For example, the Virtual Processor model [7] divides a

processor model into two abstractions. One is a target

hardware model to verify, and the other is a trace-level

software CPU model. This transformation from HDL to

software CPU model makes implementing a simulator for

application software execution possible. Although this ap-

proach is suitable for software development, the hardware

model is too simple to detect several types of
aws such

as hazards.

In this paper we propose a hardware/software co-

simulation environment attained through the use of an

RTL simulator with a software language interface. To

execute the application software, we introduce the \OS

interface (OSIF)" which invokes system calls in the OS

on the simulation platform. Designers can omit those

parts of HDL descriptions which are dispensable in the

early stages of the target processor design. The OSIF

consists of proxy functions for the omitted parts of the

HDL descriptions. It also has transform functions that

translate several hardware-dependent parameters such as

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

address space from the target processor into the simula-

tion platform, and vice versa. Whereas the Virtual Pro-

cessor model abstracts hardware parts, our simulation en-

vironment substitutes OSIF functions, including the en-

tire simulation of system calls for application software, for

a large part of the hardware model. Thus, our environ-

ment achieves high-speed simulation for general purpose

processor design.

The simulation environment, on which application pro-

grams are executed, consists of the following components:

1. Description of the target processor core written in

RTL HDL.

2. Operating system of simulation platform through the

OSIF.

3. Proxy functions that equate to abridged functions on

the HDL description.

Since our simulation environment combines detailed

simulation for the core part of the processor with rapid

simulation using proxy software, it greatly decreases sim-

ulation time.

Experimental results obtained with an R3000-compat-

ible processor model are presented to demonstrate the

validity of this approach. This environment successfully

veri�es the e�ectiveness of our processor model in exe-

cuting SPEC benchmark programs which require various

operating system services. As an example, with a lisp in-

terpreter program li, our detailed RTL description for the

core part of R3000 was simulated in less than 20 hours on

a 109 MIPS workstation. Since a detailed RTL descrip-

tion for the whole R3000 takes weeks to simulate, our

simulation environment achieves greatly improved target

processor core veri�cation in the early design stages.

II. Background to the

hardware/software co-simulation

with an HDL simulator

In this section, we describe the di�culties in executing

application programs on the HDL simulator.

A. Executing an application program with a gen-

eral HDL simulator

In the circuit design stage, a processor model is written

in a hardware description language (HDL) such as Verilog

or VHDL.

However, there are two main problems in simulating

a new processor with an HDL simulator which does not

specialize in processor modeling:

Simulation speed:

It takes several weeks merely to boot up the operating

system.

Manipulation of external devices:

The time scale of an HDL simulator is about 1M

times slower than the speed of the external devices.

External physical devices

boot up login load

exec.

 several weeks

< day

I/O

> minute

m sec., u sec.

Bench mark, etc.

Operating system

Fig. 1. Typical simulation progress

Consequently, it is not easy to verify the result of large-

scale software code execution. In the last phase of devel-

opment, the processor model is veri�ed by executing the

software. For this reason and because of time limitations,

it is sometimes necessary to dispense with fully su�cient

veri�cation.

B. System-level behavior veri�cation

Processor performance must be evaluated not only

through the processor movements but also the system-

wide behavior.

In a conventional simulation environment, system-level

behavior is evaluated and veri�ed by the HDL processor

model and bus-level simulation models of external devices,

because the simulator uses only an HDL description.

1. In general, bus models of the external devices are

provided as existing processor families.

2. The scope of bus-level architecture is limited to that

of existing external device models.

3. These external devices will be outdated by the time

the processor is put on the market.

For these reasons, external devices must be developed

at the same time as the processor in a conventional de-

velopment sequence.

C. Process of debugging system programs with

the HDL processor model

Since a new processor's system software is modi�ed

from other software, the core of the debugging process is

repeated execution around the updated code, even if the

processor being designed has wholly new specs. There-

fore, two main problems of HDL simulation environment

(cf. Section II{A) also have a very serious e�ect on the

software debugging process. Furthermore, state control is

a characteristic problem of a debugging process:

The RTL processor model is too strict and compli-

cated to set the status safely through the debugger.

III. The hardware/software

co-simulation method

In this section, we describe the design
ow of a pro-

cessor model through the use of a hardware/software co-

simulation environment.

A. The process of gradually designing the proces-

sor description

We propose a co-simulation environment which man-

ages partially implemented HDL processor models.

The de�cient region of these HDL processor models are

supplemented by software-based proxy functions (S/W-

PF). Therefore, our simulation environment can handle

both behavior-level HDL descriptions and detailed gate-

level HDL descriptions.

Fig. 2 shows an outline of the partially implemented

HDL processor model.

In the early stage of processor design, designers investi-

gate many kinds of architectures which are partially writ-

ten in HDL. In this stage, other areas of the processor

model such as FPU or bus interfaces are substituted by

S/W-PF (Fig. 2(a)).

As the processor design progresses, the HDL description

is enlarged and increasingly detailed (Fig. 2(b)). Finally,

the �xed area of the processor design is replaced with a

high-speed simulation tool (Fig. 2(c)).

OS
I/F

OS
I/F

OS
I/F

 FPU

bus
I/F

 processor
 core

 processor
 description

 processor
 description

(a) (b) (c)

Core part of processor : HDL
Other part : proxy S/W

HDL descriptions are enlarged
and detailed gradually

Boost up fixed area with
high-speed tool

Fig. 2. The gradual processor description process

B. Software-based proxy functions

The functional capacity of S/W-PFs ranges from the

scale of an H/W functional block to that of a software

procedure which includes the execution of system calls.

There are several ways to incorporate S/W-PFs in the

system. As an example, these functions can be connected

through the TEXTIO feature of hardware description lan-

guage. In our environment, the HDL simulator's \soft-

ware language interface" is adopted, because of its speed

and simplicity of installation.

C. Application programs executed by processor

model

The object codes which are executed with the proces-

sor model are almost the same as the object of the �nal

product of the processor.

If a compiler of the processor is completed, we can use

it to build an object.

Our simulation environment supports the cooperative

and simultaneous development of the compiler and the

processor.

IV. Implementation of the simulation

environment including operating

system execution

We describe the implementation of an \OS interface

(OSIF)" as an S/W-PF which executes the \system calls"

of the UNIX operating system in their entirety.

Our environment enables trace data of the applica-

tion program execution to be obtained because the OSIF

solves the two major simulation problems described in

Section II{A.

As seen in Fig. 3, the rough structure of our environ-

ment comprises an H/W{S/W interface (HSIF) within

the processor descriptions and the OSIF within the HDL

simulator. These two interfaces are described in detail in

the following section.

IF ID EX MEM WB

syscall User program (Spec benchmark, etc.)

H/W-S/W interface

Simulator

Processor description

Operating system

OS interface
Memory image

Fig. 3. Construction

A. H/W{S/W interface

The HSIF is in the HDL processor description. This

function calls OSIF which executes omitted functions of

the HDL processor description.

The implementation of the HSIF adopts the software

language interface of HDL. These descriptions are written

in the same form as in the other part of the HDL proces-

sor model. On the other hand, since the OS of the design

platform accesses the target application program's mem-

ory objects, the HDL processor model operation must be

stopped while the HSIF is calling the OSIF.

Therefore, the HSIF must be put in sequential state-

ments which guarantee the order of execution by the HDL

simulator.

The boundary between the HDL processor model and

the unimplemented area is con�gurable to any position.

In our environment, the boundary is made identical to the

boundary of the H/W function blocks to reduce the load

of the HSIF.

A.1 Data transfer

Fig. 4 shows a simulated
ow of a MIPS R3000-compati-

ble trial chip (cf. Section V{A). The HSIF is set during

the MEM stage of this chip's pipeline.

t

IF
IF

IF
IF

IF

ID
ID

ID
ID

ID

EX
EX

EX
EX

EX

MEM

MEM

WB
WB

WB
WB

WB

MEM
MEM

st
ld

move
syscall

user program

simulator

MEM

memory image

OS interface

building arguments

operating system

processor desc.
OS interface

suspended
execute

H/W-S/W interface

Fig. 4. Interface

To reduce the load of the HSIF, the HSIF is substituted

for the MEM stage which accesses the external environ-

ment, in the same way as the original chip accesses the

external devices during the MEM stage.

A.2 Instruction decoding

The simulator executes a \system call" triggered by the

\syscall" instruction which is included in the target ap-

plication program.

When these syscall instructions are decoded at the ID

stage of the processor description, the HSIF calls OSIF

during the MEM stage (Fig. 3).

In a real processor, instruction streams are
ushed after

the end of a system call, because the processor brings out

a \return from exception" instruction.

The HSIF simulates this process by executing a \jump

to the next instruction after syscall" instruction.

B. OS interface

When the OSIF is called by the HSIF, the OSIF invokes

the OS system calls of the design platform as a replace-

ment for the simulation of the OS by the HDL simulator.

The OSIF has the following functions which enable it

to call the platform's OS.

� Constructing arguments

� Translation of the address space

From the implementation aspect, the OSIF is con-

structed with the following two structures.

� An interface description table (for common use of

S/W-PF).

� Each procedure entry referred to by the interface de-

scription table, such as address translation, de�nition

of the calling sequence, etc.

B.1 Interface description table

Our simulation environment employs an interface descrip-

tion table which de�nes \what is substituted" and \how

to substitute." This table can de�ne other types of prox-

ies.

through bus

Interface description

Processor description

OSIF

Each function

Data transfer through memory
with address conv.

Calling method via entry table

with host aidDescription
for other level

H/W

Fig. 5. Interface description table

B.2 Data conversion

Since the address space of memory objects which are op-

erated by the simulator is assigned by the platform's OS,

the address spaces of these objects are di�erent from the

address space of the processor model. Therefore, our en-

vironment makes address conversion between these two

environments possible (see Fig. 6).

0x0XXX

0xYZZZ

0xYYYY

0xYZZZ

0x0XXX

0x0000

Processor description

Address MAP of the
simulator

Operating system

Address of
the object

OS
I/F

==

!=

Fig. 6. Address conversion

Data conversion functions are given on the OSIF, ex-

cept when using a type-convert function provided by the

simulator, such as \std logic to integer."

At this time, only two items need translating, because

the data structure of the simulation platform is similar to

those of the processor models. These items are:

� Address of memory object

� Descriptor of �le I/O

Additional translation, such as byte endian, can be de-

�ned according to the architecture of the processor model.

C. Application programs executed by the proces-

sor model

Application programs which are executed by the pro-

cessor model are made by the compiler for the new pro-

cessor, except for the trigger function of the system call

which uses the syscall instruction.

In our environment, the processor model simulate the

execution of user level codes which include functions of the

C-language standard library. Since these user-level codes

are independent of a system level architecture, such as an

access method of the external I/O devices, the new pro-

cessor's compiler is checked and debugged simultaneously

from the early stage of processor design.

The trigger function, which includes syscall instruc-

tions, is replaced with an exclusive library in order to

notify the HSIF of the point of the system call.

User prog.

printf

write

Object

User program

ld
C-language standard
libraries

Dummy stubs of
system call entries

stub

writeprintf, etc.

libc

cross compiler
CC

Source codes are held in common between
cross compilation and target architecture’s
native-code environment

Fig. 7. Compilation method of the target program

V. Experimental results

Through the use of the OSIF, we were for the �rst time

able to execute SpecInt '92 benchmark programs success-

fully on the HDL processor model at high speed.

A. The model case { A compatible chip for MIPS

R3000

We designed an RTL description for a MIPS R3000-

compatible chip with VHDL. This design is only the core

part of the MPU; the design specs are shown below. The

other parts of R3000's functions, such as FPU, are sub-

stituted by software functions.

Specs:

User Program

printf, etc.

write

OS interface

System Call

t

Proxy for file
descripter handling
(in OS interface)

Address interpretation

processor description

HDL simulator

Operating system

simulated

exec.

suspended

exec.

suspended

suspended

exec.

Proxy for memory access
(in OS interface)

Fig. 8. Example { printf

1. MPU core is 6K lines of behavior level VHDL de-

scription.

2. The FPU and the bus interface are substituted by

proxy functions.

3. Fifty-eight of R3000's 71 instructions are imple-

mented (not including break instruction, etc.).

4. Proxy functions are 6K lines of C language descrip-

tion.

Using this design, we applied the OS interface to the

simulation of benchmark programs in the SpecInt.

B. Veri�cation
ow

System calls used in target application programs are ex-

ecuted by the OS of the simulation platform through the

OS interface. Other instructions including library func-

tions are executed by a processor model which is veri�ed

by the HDL simulator.

Fig. 8 shows the execution
ow of a function \printf" as

a typical pattern of the library function's calling sequence.

In real systems, the printf library function analyzes

its arguments and constructs an output string at the

user level, and then outputs the composed string with

a \write" system call.

Also, in our simulation environment, the user-level in-

structions of the printf are executed in the HDL processor

model, therefore trace patterns of them are produced by

the HDL simulator. Data objects which need translation

(cf. Section IV{B.2) are interpreted one by one in the

simulation and stored into the OSIF's memory pool. The

write system call used in printf, executed by the simula-

tion platform machine's OS and displays the string on the

screen of the simulation environment.

Fig. 9 shows the simulation process of an \mmap" sys-

tem call. The mmap system call establishes a mapping

processor description

HDL simulator

Operating system

simulated

exec.

suspended

exec.

suspended

suspended

exec.

User Program

OS interface

mmap

KERNELSystem Call

Proxy for file
descripter handling
(in OS interface)

Address interpretation

Proxy for memory access
(in OS interface)

Fig. 9. Example { mmap

between a process's address space and an object, such as

the contents of a regular �le or shared memory pages.

When the application program accesses the mapped re-

gion, a kernel interrupts and delivers the contents of the

object to the application program, in the same way as a

page fault does.

In the simulation environment, the simulation platform

OS also interrupts when the target application program

accesses the mapped region. However, the actual access

to the memory is executed by the OSIF. The OSIF runs

under the simulator's address space, and the processor

model is set to safety status by the HSIF before it calls

OSIF. Thus, no contradiction is generated in spite of the

unexpected interruption occurring.

C. Performance

Table I presents the result of a control experiment, in

which an R3000-compatible MPU's simulation time on

the SUN SparcStation 10/40 is compared with the execu-

tion speed of a real system, i.e. an NEC EWS4800/220

with an R3000 MPU (30 MHz).

TABLE I

Results of the simulation

program time ratio

real system simulation

(user time) sec sec

eqntott 0.04 (0.02) 952 24,000

compress 0.09 (0.08) 12,032 130,000

espresso 0.09 (0.07) 10,660 120,000

li 0.21 (0.19) 71,518 210,000

average 120,000

VI. Conclusion

In this paper, we proposed a hardware/software co-

simulation environment using an RTL simulator with a

software language interface. The proposed simulation en-

vironment introduces \OS interface (OSIF)" which in-

vokes system calls in the OS on the simulation platform

to execute application software. The OSIF consists of a

data adaption facility and function correspondence man-

agement to cooperate with the OS of the simulation plat-

form.

Thus, with the OSIF, we achieve a system-level simula-

tion environment which includes operating system func-

tions and manipulates facilities of external devices. In

addition, our simulation environment establishes detailed

simulation for the core part of the processor in conjunction

with rapid simulation by proxy software, and therefore a

great decrease in the simulation time is achieved.

Experimental results obtained with an R3000-compati-

ble processor model were presented. Our simulation envi-

ronment successfully veri�es the e�ectiveness of our pro-

cessor model in executing SPEC benchmark programs

which require various operating system services. As an

example, with a lisp interpreter program li, our detailed

RTL description for the core part of R3000 was simulated

in less than 20 hours on a 109 MIPS workstation.

References

[1] SPEC Newsletter, SPEC, 1992.

[2] D. Becker, R.K. Singh, and S.G. Tell, \An Engineering

Environment for Hardware/Software Co-Simulation," Pro-

ceedings of the 29th DAC, pp. 129-134, 1992.

[3] R.K. Gupta, C.N. Coelho Jr., and G. De Michel, \Synthe-

sis and Simulation of Digital Systems Containing Interact-

ing Hardware and Software Components," Proceedings of

the 29th DAC, pp. 225-230, 1992.

[4] Y. Kra, \A Cross-Debugging Method for Hardware/Soft-

ware Co-design Environments," Proceedings of the 30th

DAC, pp. 673-677, 1993.

[5] J. Rowson, \Hardware/Software Co-simulation," Proceed-

ings of the 32nd DAC, pp. 439-440, 1994.

[6] A. Ghosh, M. Bershtey, R. Casley, C. Chien, A. Jain, et al.,

\A Hardware-Software Co-simulator for Embedded System

Design and Debugging," Proceedings of the ASP-DAC '95,

pp. 155-164, 1995.

[7] B. Schnaider and E. Yogev, \Software Development in

a Hardware Simulation Environment," Proceedings of the

33rd DAC, pp. 684-689, 1996.

[8] D. Patterson and J. Hennessy, Computer Architecture |

A Quantitative Approach, Morgan Kaufmann Publishers,

1990.

[9] R. Lipsett, C. Schaefer and C. Ussery, VHDL: Hard-

ware Description and Design, Kluwer Academic Publish-

ers, 1989.

[10] G. Kane and J. Heinrich,MIPS RISC Architecture, Pren-

tice Hall Inc., 1992.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

