The Use of Hierarchical Information

to Test Large Controllers

F.Fummi

D.Sciuto

Dip. di Elettronica e Informazione

Politecnico di Milano, 20133 Milano, ITALY

Abstract — Gate-level test pattern generators re-
quire insertion of scan paths to handle the flat
gate-level representation of a large sequential con-
troller. In contrast, we present a testing method-
ology based on the hierarchical finite state ma-
chine model. Such a model is used to specify very
complex control devices by means of a top-down
design approach. Our approach allows the gener-
ation of compact test sets with very high stuck-at
fault coverages, without any DfT logic.

I. INTRODUCTION

This paper describes a strategy for generating test se-
quences starting from a functional description of a sequen-
tial circuit without re-extraction of a STG from the imple-
mentation. In particular, we target descriptions realized
either by writing the specifications directly in a Hardware
Description Language (HDL), such as VHDL or Verilog,
or by means of graphical tools that enable a user to en-
ter hierarchical descriptions, such as Statecharts [6], that
are then converted into HDL descriptions. Since func-
tional information alone is not sufficient to achieve a com-
plete fault coverage [1], we propose an integration with
some structural information, obtained after logic synthe-
sis. This test strategy mixes the accuracy of a gate-level
test pattern generator with the efficiency of a functional
one, by exploiting the available information on the design.

The fault list is generated for the actual gate-level im-
plementation, considering the stuck-at fault model on the
combinational part of the circuit, while the fault propa-
gation and justification phases are performed on the hi-
erarchical Finite State Machine model representing the
specification.

The paper is organized as follows. In Section II testa-
bility relations are presented between the structural de-
scription of a sequential circuit and its functional repre-
sentation described by a specification STG (SSTG). In
Section IIT the hierarchical FSM model (HFSM) is sum-
marized: it allows the description of highly complex con-
trollers and the generation of the specification STG with-
out explicitly enumerating all the states of an HFSM. Sec-
tion I'V describes the proposed testing methodology based
on the identification of the set of transitions of the SSTG

ASP-DAC'97
0-89791-851-7$5.00 0 1997 IEEE

that are able to detect all stuck-at faults in the combina-
tional part of the FSM implementation and the strategy
to build the global test sequence by concatenating such
transitions. Finally, Section V presents experimental re-
sults on academic and industrial benchmarks.

IT. FUNCTIONAL/STRUCTURAL TESTABILITY

A FSM can be represented by its state transition graph
(STG), where nodes represent states and edges represent
transitions. Let us discriminate between two kinds of
state transition graphs: the implementation STG, named
simply ST'G in the following, and the specification STG,
named SSTG. The STG is the completely specified STG
which represents the FSM implementation and includes
all transition relations between circuit inputs and out-
puts. It is composed of completely specified transitions.
In addition, we also consider the state transition graph
representing the FSM specification, the SSTG. The SSTG
does not include unspecified transitions for which both the
next state function and the output function are not spec-
ified, and it can be composed of incompletely specified
transitions. We assume that all states of the specification
STG are reachable from the reset state, sg, 1.e., there is an
input sequence, for each state s; of the SSTG, that drives
the machine into s; when applied starting from sy. We
also assume that a fault-free reset input is available in the
FSM implementation which sets the memory elements to
the reset state sg.

We adopt at the functional level a single transition
Jault model [4], so that, transitions to be tested are se-
lected at the gate level while sequences able to distin-
guish the faulty next state from all other states are iden-
tified on the SSTG (see Section IV). Conversely, at the
gate level we adopt the stuck-at fault model that is put
in relation to the transition fault model as follows. Let
us assume that a combinational test pattern generator
has identified the set of all test vectors TV.S(f) for a
stuck-at fault f in the combinational part of a sequen-
tial circuit, i.e., TVS(f) = {TV(f)}. Each test vector
TV(f) € TVS(f) can be associated with a transition
t(4, 54, 55, 0) of the STG. Such a transition is called a test
transition (tt(i,s;,s;,0)) and it may not belong to the
specification STG if the FSM is incompletely specified.

Definition 1 A stuck-at fault f on a linel of the combi-
national part of the FSM implementation s functionally
redundant (FR) if for each TV(f) € TVS(f), the cor-
responding test transition tt(i, s;, s;,0) does not belong to
the SSTG or it belongs to the SSTG but it propagates the
fault only on unspecified output bits.

This means that functionally redundant faults do not alter
the specified behavior of the FSM, thus, they can be in-
serted into (removed from) an FSM implementation with-
out modifying the input/output behavior specified by its
SSTG. Moreover, their removal removes all combination-
ally redundant faults, the majority of the sequentially re-
dundant faults and an extra set of faults which are redun-
dant with respect to the specification only [5].
Furthermore, definition 1 highlights that a functional
test pattern generator based on the SSTG description of
a circuit can generate test patterns covering at-most the
set of functionally trredundant faults. But if functionally
redundant faults are removed from the FSM (or HFSM)
implementation [5], this guarantees that the full stuck-at
fault coverage can be achieved as shown in Section V.

I1I. HiErARcHICAL FSM MODEL

The hierarchical FSM (HFSM) model has been in-
troduced in [5]. Tt is a subset of the Statecharts [6]
representation which deals exclusively with the control
part of a device. Let us define an HFSM as a 4-tuple
HFSM =< F,I,0,R > where F is a set of finite state
machines modeled as Mealy machines, [is the set of in-
puts, O is the set of outputs, and R is the set of depen-
dency relations described below.

Each F'SM;, belonging to F| is represented by a 6-tuple
FSM; =< S;, I;, 04, 6;, A;, s;i0 > where I; 1s a finite input
alphabet, O; 1s a finite output alphabet, S; is the finite
set of states, 8; is the state transition function, A; is the
output function and s;p is the reset state. We say that
FSM; executes the transition t(4;, 544, 8;5, 0;) whenever, in
the presence of input ¢ of F.SM; (i;), there is a transition
in F'SM; from state s;; to state s;; = 6;(s;1, 4;;) generating
output o; = A;(sii, 4).

A dependency relation A(FSM;, DI, s;p, FSM;) € R
exists if F'SM; must be in state s;;; to allow F.SM; to
execute each transition with input i¢;; € DI. DI C 1
is a subset of the inputs of F'SM; corresponding to un-
specified transitions. In fact, the dependency relation con-
strains the behavior of the HFSM , for all inputs belong-
ing to DI, to be described by the transitions of F.SM;.
We say that F'SM; depends on F'SM; through s;;, and
that F'SM; isin dependency relation with F SM; (through
sir). All states s;; are called hierarchical states since they
allow the execution of transitions of the FSMs which de-
pend on them. A particular state (ID;), called the idle
state, is added to the original specification to allow the
synthesis tools (e.g. the VHDL synthesizer) to correctly
implement the entire architecture. In fact, each F.SM;
of a dependency relation A(FSM;, DI, s, FSM;), must

be put in an idle state whenever it is not allowed to exe-
cute any transition, that is, whenever F'SM; is not in the
hierarchical state s;3.

A. Hierarchical SSTG construction

The HFSM model is well suited for testing purposes
since 1t allows the analysis of one FSM at a time for test
generation or testable synthesis as proved in the follow-
ing. In fact, the synthesis of an HFSM starting from its
representation in a hardware description language (e.g.
VHDL) produces an implementation where memory ele-
ments are in a direct relation with the states of each FSM.
This depends on the inability of VHDL synthesis tools to
make inter-process or inter-procedure optimizations since
each FSM is modeled as a process (set of processes), pos-
sibly calling procedures. (The HFSM is modeled as a
pair of processes and each FSM as a pair of procedures.)
For this reason, the set of states of each F'SM; is imple-
mented through an independent state register!. On the
contrary, combinational logic is shared among the FSMs
implementations due to the minimization performed by
logic synthesis algorithms. A global reset signal is in-
serted by the synthesis process to simultaneously put all
FSMs into their idle states.

Let us now concentrate on the exploitation of such char-
acteristics with respect to test pattern generation. The
key idea is to consider the possibility of building a global
SSTG (in the following HSSTG) for an HFSM specifica-
tion, without having to enumerate all states generated by
the product of all FSMs composing the HFSM. The pro-
cedure for building the HSSTG converts each transition
t(4;, 541, S35, 0;) of the SSTG of each F'SM; into a transi-
tion of the HSSTG. The HSSTG is generated in a time
linear with the total number of transitions of the entire
HFSM. Note also that the final number of states 1s equal
to the sum of the number of states of each FSM. The
detailed procedure is described in [4].

B. HSSTG and testability

Since the HSSTG is composed of all transitions of each
SSTG composing the HFSM, it is possible to partition the
transitions of an HSSTG into sets related to each original
SSTG. From Definition 1, it follows that the identification
of functionally irredundant faults is based on the mapping
of all test vectors TV (f) € TVS(f), for a target fault f,
to test transitions t£(i, s, s;,0) belonging to the SSTG.
The definition of the HSSTG allows the proposed testing
methodology to be indifferently applied in the same man-
ner to FSMs or HFSMs. In fact, the comparison of the
test transitions, obtained from the test vectors, can be
performed in the case of an HSSTG by considering each
separated SSTG that composes 1t. Thus, the problem of
testing functionally irredundant faults of an HFSM im-
plementation is reduced to the same problem for a single

IRetiming synthesis strategies [3] are not taken into account.

FSM. This assertion is true since the following theorem
can be proved [4].

Theorem 1 For a stuck-at fault f of an HFSM wmple-
mentation and the corresponding HSSTG, each test vec-
tor TV(f) € TVS(f) corresponds to a test transition
(45, 855, 855, 05) belonging to a single SSTG of those com-
posing the HSSTG.

IV. FUNCTIONAL/STRUCTURAL TPG

The proposed test generation algorithm is based on the
FSMTest algorithm [1] that will be briefly summarized
here. The main difference concerns the selection of the
set of transitions to be tested, performed at the gate level
in our proposed algorithm, while it was performed com-
pletely at the functional level in FSMTest.

The algorithm start by identifying a set of transitions
of the SSTG able to test all stuck-at faults of the cor-
responding implementation. A test subsequence is then
built for each currently analyzed test transition by con-
catenating the appropriate bridge sequence (BS) and dis-
tinguishing sequence (EUTO). The bridge sequence is nec-
essary to drive the FSM to the activation state of the
transition under test starting from the arrival state of
the previous test subsequence; sometimes 1t can be null.
The distinguishing sequence guarantees, in the majority
of the cases, the correct propagation of the fault effects
to an output variable. EUIOs have the advantage of re-
ducing the total test length, and are easily concatenated
and overlapped using the criteria shown in [1]. More-
over, EUIOs are not likely to be masked by a fault even
if they are built by exploring the fault-free SSTG [4]. Fi-
nally, FSMTest concatenates and overlaps the identified
test subsequence to generate a global test sequence [1].

A. HFSM extension

The following three modifications must be applied to
the testing algorithm when an HFSM is considered.

Test vectors. The only difference from the case of a
single SSTG concerns the completion of the don’t care
bits of the test vectors before their fault simulation. Don’t
care bits corresponding to input or state variables which
are don’t care (-) in the transitions of the HSSTG can
be set to any value. However, state variables which are
set to unknown (U)in the transitions of the HSSTG must
remain unset, i.e., in fact don’t care. This guarantees that
test vectors can be translated in test transitions belonging
to a single SSTG of the HSSTG (Theorem 1). Note that,
the presence of don’t care bits into the test vectors implies
the use of a three-valued fault simulator to reduce the
fault list.

Hierarchical bridge sequences (HBSs). They are nec-
essary to allow the HFSM to execute the transitions of
each F'SM; not top of the hierarchy. Moreover, HBSs
are necessary whenever a transition outgoing from a hi-
erarchical state must be tested. In fact, a test transition

tt(4;, 853, 855, 0;) outgoing from the hierarchical state s;;
of F.SM;, can impose that all F'SM; which depend on
FSM; must be into a precise state. This depends on the
algorithm that randomly completes the don’t care bits of
the test vectors in the case they actually correspond to
don’t care input and state variables of transitions of the
HSSTG. Thus, an HBS must thus be used before execu-
tion of the test transition in order to apply the correspond-
ing test vector to the HFSM implementation starting from
the correct activation state.

Hierarchical EUIOs. In the case of a single FSM, EU-
10s distinguish the next state of each test transition from
all other states of the SSTG; this guarantees the propaga-
tion to the primary outputs of faults which are observable
on the next state variables only. In the case of test transi-
tions concerning hierarchical states, this is no longer suf-
ficient. First of all, if a test transition #¢(7;, s;i,8;;,0;)
of FSM; goes out from a hierarchical state (s;;), the
EUIO propagates to the primary outputs those faults
which generate a next state different from the correct
one (s;;). But, the application of (4}, s;;, s;;,0;) also
puts all FSM; € children(FSM;) into their idle states;
thus an FUIO would be necessary to verify the correct-
ness of these arrival states. But such FUIOs have been
proved by experiments to be unnecessary, since idle states
are the only states that avoid the interference between
the outputs generated by transitions of each F.SM; and
the outputs of transitions of F'.SM;. Thus, if a fault
avoids the transition of a F\SM; to its idle state, then 1t
is very unlikely that the following transitions of the test
sequence cannot identify the fault, i.e., do not generate
a wrong output. The second case concerns a test tran-
sition #t(i;, sj;, sj;, 0;) incoming to the hierarchical state
s;;. Since it puts all F'SM;, which depend on s;;, into
their reset states, an FUIQ is necessary for the reset state
of each FFSM;. Such EUIOs are inserted into the test
sequence before the actual EUIO for s;;.

V. EXPERIMENTAL RESULTS

The proposed test generation algorithm has been im-
plemented in C. The set of benchmarks reported in Ta-
ble I is used to perform all experiments. They represent
HFSM descriptions of hierarchical controllers produced
with SPeeDCHART [9] (second part of Table T). Such
a tool automatically generates a VHDL description of a
HFSM which has been synthesized and translated to SIS
for technology mapping. All implementations have been
mapped onto a subset of the MCNC library gates com-
posed of simple 2-inputs gates (and, nand, or, nor, zor,
znor, not). All functionally redundant faults have been
removed from all mapped circuits by applying the mini-
mization procedure described in [5], thus resulting in func-
tionally irredundant circuits. The same methodology also
identifies the set of transitions to be tested.

The proposed methodology 1s compared with
HITEC [7] and Veritas [2]. To take into consideration

TABLE I
COMPARISON WITH GATE-LEVEL TPGs.

Benchmarks characteristics HITEC atpg (SIS) Proposed

name #S #1 #O #M #F #L #G #Ft FC% CPU TL FC% CPU TL FC% CPU TL
bench 23 4 4 6 14 290 163 324 100.0 14.8s 185 100.0 3.9s 207 100.0 1.5s 93
giga3 96 16 17 3 16 2785 1432 2540 99.7 244.7m 2624 99.8 880.2s 2519 99.8 71.7s 1300
giga2 109 16 17 3 16 3205 1644 2882 99.4 328.9m 2305 99.9 540.6s 1869 99.8 109.1s 1046
giga6 169 16 24 5 26 5036 2579 4444 48.3 - 1166 | 100.0 879.8s 2022 | 100.0 217.4s 1144
giga 169 16 24 5 26 6191 3163 5483 99.6 514.0m 2394 99.9 29.2m 2181 99.9 153.6s 2890
gigabr 169 16 24 5 26 4927 2527 4383 99.4 363.0m 3626 51.8 - - 99.9 208.8s 2853
gigar 169 16 24 5 26 6364 3252 5637 80.4 - 2530 54.7 - - 99.9 217.2s 3268
giga7 244 30 24 9 46 6631 3413 6028 87.3 - 7646 43.3 - - 99.4 305.5s 3360
gigadr 309 30 24 12 60 7860 4044 7500 63.3 - 2146 31.0 - - 99.1 620.1s 4839
gigad 309 30 24 12 60 7957 4093 7580 59.4 - 1215 57.2 - - 99.0 808.8s 5513
gigab 309 30 24 12 60 7884 4063 7605 59.8 - 1526 35.2 - - 99.0 721.6s 5539
#S = # of states. #I = # of inputs. #O = # of outputs.

#M = # of FSMs. #F = # of memory elements. #L = # of literals in factored form.
#G = # of gates. #Ft = # of equivalent stuck-at faults. FC% = percentage of fault coverage.
cPU = CPU time in seconds (s) or minutes (m). TL = test length in # of test vectors.

the evolution of the BDD technology we do not use the
original Veritas program but its re-implementation into
the SIS environment (atpg command) compiled with the
CUDD package [8]. Tt is thus possible to apply dynamic
reordering techniques and disregard the initial variables
ordering. In any case, experiments with the original Ver-
itas did not produce better results.

Results of this comparison are reported on the right
of Table I. All programs have been run on the same Sun
Sparcstation 20/125 with 128 MB RAM. To perform such
experiments, limits have been set on the CPU time and
memory usage to 10 hours and 128 Mbytes, respectively.
Results produced for the smallest benchmarks show that
we achieved the maximum fault-coverage in a fraction
of the time required by SIS and HITEC by generating
shorter test sequences. Furthermore, our approach can
produce good results in terms of fault coverage and test
length for HFSM implementations which cannot be an-
alyzed by gate-level TPGs. In fact, HITEC achieves an
insufficient low fault coverage due to the high sequential
complexity of such circuits. For the last two benchmarks,
after 10 hours of CPU time it achieves a fault-coverage
less than 60%, while the proposed approach reaches 99%
fault coverage. Conversely, Veritas cannot manage BDD
relations of such complexity. For instance, atpg does not
succeed to traverse the largest 6 benchmarks due to mem-
ory or time limits and the reported fault-coverage (column
5) is achieved by the random phase only.

VI. CONCLUDING REMARKS

A testing approach dealing with the design of large se-
quential circuits using a top-down strategy has been de-
scribed in this paper. Such an approach uses the func-
tional information, described at the specification level, in
conjunction with the gate-level structure to speed-up the
test generation process and to enable management of large

sequential circuits, otherwise untreatable. From the hier-
archical specification of a large controller, the underlying
Hierarchical Specification STG is derived, while the gate-
level implementation is represented by its combinational
part. The gate-level structure is used by the test pattern
generator to extract the list of stuck-at faults for which
a test sequence must be generated. Then, for each stuck-
at fault, the corresponding transition in the HSSTG is
identified. Given the test transition, the fault propagation
and justification sequences are identified in the HSSTG
and concatenated. Redundant faults are also identified
and removed.

REFERENCES

[1] G. Buonanno, F. Fummi, D. Sciuto, and F. Lombardi. FsmTest:
Functional test generation for sequential circuits. INTEGRATION:
the VLSI Journal 20:303-325, 1996.

[2] H. Cho, S. Jeong, F. Somenzi, and C. Pixley. Synchronizing se-
quences and symbolic traversal techniques in test generation. Jour-
nal od Electronic testing: Theory and Application, 10(4):19-31,
1993.

[3] G. De Micheli. Synthesis and optimization of digital circuits.
McGraw-Hill Series in FElectrical and Computer Engineering,
1994.

[4] F. Fummi. Design for testability problems for highly complex cir-
cuits. Ph.D. Thesis, Dept. of Electronics and Information, Po-
litecnico de Milano, 1995.

[5] F.Fummi, D. Sciuto, and M. Serra. Synthesis for testability of large
complexity controllers. Proc. IEEE ICCD, pages 180-185, 1995.

[6] D. Harel. STATECHARTS: A visual formalism for complex sys-
tems. Science of Computer Programming, North Holland, 8:231—
274, 1087,

[7] T. Niermann and J.H. Patel. HITEC: a test generation package for
sequential circuits. Proc. European Design Automation Confer-
ence, pages 214-218,1991.

[8] F. Somenzi. CUDD: CU decision diagram package. Department of
Electrical and Computer Engineering, Unwversity of Colorado at
Boulder, 1995.

[9] SPeeDCHART project designer user’s manual. Speed S.A., 1994.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

