
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

Block-Level Fault Isolation Using Partition Theory

and Logic Minimization Techniques�

C.-J. Richard Shi

ECE Department, University of Iowa, Iowa City, Iowa 52242, U.S.A

Abstract|Multichip modules are emerging as a key

packaging technology for mixed-signal circuits and

systems. In this paper, we consider how to localize

a failure within a chip boundary as rapidly as possible

in order to expedite the rework process and to min-

imize its overall impact on manufacturing through-

put and cycle time. A key contribution of this pa-

per is to provide a uni�ed block-level fault isolation

framework for analog and digital circuits, and to show

that optimum fault isolation reduces to set covering.

This allows us to apply directly powerful set cover-

ing techniques and solvers developed recently in logic

minimization. In addition, we present a greedy peel-

ing heuristic with performance bound computation.

Some preliminary experimental results are included

to demonstrate the feasibility and performance of the

proposed approach.

I. Introduction

The work here is motivated primarily by the need for ef-

�cient fault isolation in mixed-signal Multichip Modules

(MCMs). Multichip modules is an attractive packaging

technology for many applications. A bottleneck that lim-

its the availability of economic MCMs is the high cost of

testing. Typically, an MCM may contain over 40 large

very large scale integrated circuits (VLSIs), analog and

digital, interconnected by wire bonds. Because of the

complexity, size and high cost of VLSI dice, a problem

of interest in the manufacturing and testing of high den-

sity MCMs, especially large MCM-D types, is to locate

faulty dice and then to perform a repairing or replace-

ment [11]. Such MCM rework-diagnostic procedures are

used frequently and extensively throughout the manufac-

turing process [2]. A primary goal is to localize a failure

within a chip boundary as rapidly as possible in order

to expedite the rework process and to minimize its over-

all impact on manufacturing throughput and cycle time.

In this paper, we use blocks to refer to smallest replace-

able units, and use block-level fault isolation to refer to

�This work is sponsored by U.S. Defense Advanced Research
Projects Agency (DARPA) under grant number F33615-96-1-5601
from the U.S. Air Force, Wright Laboratory, Manufacturing Tech-

nology Directorate.

the problem of locating a faulty block in a malfunction

system.

A viable approach to digital diagnosis is to use the pre-

calculated fault dictionary produced during test genera-

tion [1]. Unfortunately, it is di�cult to apply this ap-

proach to analog and mixed-signal circuits. There are

three problems. First, analog fault models are not clearly

de�ned. Second, it is well known that analog simulation

is time consuming. Even a single fault-free system-level

simulation of an analog circuit is generally considered pro-

hibitive at the transistor-level. Third, although research

e�ort has been directed to test generation for analog and

mixed-signal circuits [7], a common practice is to either

generate tests randomly or based on the designer's prior

experience; this leads to many unnecessary tests.

Optimum Isolator

simulation results

Mixed-Signal Simulator

test partitions

test inputs

Behavioral Fault Models

Inductive Layout Analysis

Behavioral models
Process statistics

layouts

Analyzer and Extraction

simulation results

SPICE

transistor-level faults

Fault Coverage Analyzer

Synthesis

Extraction

Compact test set

Induced Behavioral Fault Modeling

Fig. 1: The block-level fault isolation methodology.

To address the �rst two problems, we have developed a

new fault isolation methodology, as illustrated in Fig. 1.

The key idea of this methodology is to use net-oriented

fault analysis for fast extraction of realistic transistor-level

faults, and to use hardware description language (HDL)

based behavioral models to replace both faulty and good

circuit blocks for fault simulation [16].

The aim of this paper is to solve the third problem|

how to �nd a minimumset of tests that can isolate a faulty
block. For example, in Fig. 2, we assume that die 3 and 4
are faulty-free by using known good die (KGD) and all in-
terconnects are free of faults using known good substrate
(KGS). Associated with die 1 and die 2 are faults ff2,...f6g
and ff7,f8,f9g, respectively. We assume that ff1g is asso-
ciated with passive components (a resistor). We would
like to generate a minimum set of tests that identi�es the
faulty block if the system fails. We note that if only one
fault appears in each block, then this is the classical fault
diagnosis problem. Techniques exist for constructing a
small fault dictionary for digital testing [1, 14]. Unfor-
tunately, they are tailored speci�cally for digital circuits.
Analog fault dictionary reduction was previously studied
by others [8, 12, 13] and by us [15]. In this paper, the
framework originally presented in [15] is further developed
to cope with block-level fault isolation.

{f1}

known good dies

known good substrate

{f2-f6} {f7-f9}

Die 1 Die 2

Die 3 Die 4
system
outputsinputs

system

system
inputs

Fig. 2: Block-level fault isolation.

This paper is structured as follows: Section II presents
a uni�ed fault isolation framework for analog and digital
circuits, and shows that optimum fault isolation prob-
lem reduces to the set covering problem. This enables
us to use directly the powerful exact set solver devel-
oped recently for logic minimization [6] directly to our
problem. An e�cient greedy heuristic with performance
bound computation is described in Section III. Some pre-
liminary experimental results are reported in Section IV.
Section V concludes the paper.

II. Problem Formulation

In this section, we present formal notations and some
partition-theoretic results. We de�ne a new representa-
tion for diagnostic resolution, and formulate the optimum
fault isolation problem as the set covering problem.

A. Partition-Theoretic Background

Let E be a set of elements. A partition on a set E is a
grouping of the elements in the set into disjoint subsets,
called groups, such that every element belongs to exactly
one group. For example, we may de�ne a three-group
partition � of the set f1,2,...,6g as ff1; 3; 5g; f2g; f4; 6gg.
The partition with just one element in each group is called
the 0-partition; where the partition lumping all elements
into one group is called the I-partition.
By a

�
= b (partition equates a and b), we mean that

elements a and b are in the same group of partition. In
the previous example, 1

�
= 3

�
= 5, and 4

�
= 6.

Similarly, by a
�
= b (partition � nonequates a and b),

we mean that elements a and b are in the di�erent groups
of the partition. The characterization set, denoted as
�(�), of partition � is de�ned as the set of element-wise
nonequalities. In the previous example,

�(�) = f1
�

6= 2; 3
�

6= 2; 5
�

6= 2; 1
�

6= 4; 1
�

6= 6; 2
�

6= 4; 2
�

6= 6g

If x and y are two partitions (unless otherwise noted,
it is assumed that partitions mentioned together are on
the same set), we say that x � y if each group of
y is contained in a single group of x. For example,
f135; 2; 46g � f15; 3; 2; 46g.

Proposition 1 Let x and y be two partitions. Then x �

y if and only if �(x) � �(y).

The product, or intersection, of two partitions x and y,
denoted as xy, is the partition that equates a and b if and
only if both x and y equates a and b. For example,

f135; 2; 46gf1246;3; 5g= f1; 2; 3; 46; 5g

The observation on the following property of the intersec-
tion operation is a key to our results in this paper:

Proposition 2 Let x and y be two partitions, and �(x)
and �(y) be their respective characterization sets. Then

�(xy) = �(x) [�(y).

Proposition 3 Let x, y and w be three partitions such

that x � w and y � w. Let z = xy. Then z � w.

Therefore xy is sometimes referred to as the greatest

lower bound of x and y.

B. Test Partition and Diagnostic Resolution

We are now ready to model fault isolation using the
partition-theoretic notion introduced above. Suppose
that for a given circuit, the preselected fault list consists
of n� 1 faults designated f1; :::; fn�1. The good circuit
condition is designated f0. Let F = ff0; :::; fn�1g.
Following the convention of Simpson and Sheppard [17],

a test refers to any means that can group faults in F into
disjoint subsets. Thus a test introduces a partition of

F , called a test partition. Faults in each group of a test
partition are non-distinguishable, or ambiguous, under the
corresponding test. Groups in a test partition have been
traditionally called ambiguity sets [8].
Intuitively, the test partition for a given test reects the

diagnosability of the test. Therefore, test partition has
been previously de�ned as the diagnostic resolution of a
test [1]. In this paper, the diagnostic resolution of a test
is de�ned as the characterization set of its corresponding
test partition.
For example, Fig. 1 shows the DC voltages measured

at a test node for a given circuit after applying particular
direct voltages under the good (f0) and �ve fault (f1 to f5)
conditions. To take into account the measurement noise,
voltage values within the range of 0.7 Volt are considered
to be indistinguishable. The test partition introduced by
this test node is

� = fff0; f5g; ff3; f2; f4g; ff1gg; (1)

where f1 is uniquely identi�ed at this test node. Clearly,
the concept test partition is general enough to modeling
the results from digital testing, AC measurement, and
other types of failure analysis [17]. This allows us to treat
both analog and digital circuits in the same manner.

1.0 2.0 4.00.0 3.0 5.0

f0 f5 f3 f2 f4 f1

Voltage measued at a test node
(volt)

Fig. 3: A test partition and ambiguity sets.

Then the fault resolution of a test sequence is de�ned to
be the union of the characterization sets of all the tests in-
volved; this reects precisely the capability to distinguish
among faults. Intuitively, if a 6= b does not appear in any
set, then we cannot distinguish a and b. But if any test
can distinguish a and b, then the whole test sequence can
distinguish a from b.
A test is said to achieve a given diagnostic resolution

G if the characterization set of its corresponding test par-
tition is a superset of G. The maximal fault resolution is
given by the following set F where each element corre-
sponds to a pair of distinct faults in F . Given F with n

elements, there are 1
2
n(n�1) elements in F . The complete

fault isolation is to have a test sequence that achieves F .
Remark: Very often, two faults in a digital system

may cause the same change to the system functionality.
Such faults are said to be functionally equivalent. For
such a system, the maximal fault resolution is a partition
where each group represents a set of functionally equiv-

alent faults. For analog systems, such a situation rarely
occurs. Therefore, in this paper, we assume that all the
functionally equivalent faults are presented by a single
fault.

C. Block-Level Fault Isolation

We are interested in locating faults downto each indi-
vidual block. For the simplicity of our discussion, all the
faults are assumed to be associated with blocks; inter-
connect faults can be treated in the same way as in [4].
Hence the structure of a multichip module, i.e., how VLSI
dice and other components (if any) connect naturally de-
�nes a structure partition S of F . The characterization
set �(S) of partition S consists of pairwise nonequalities
among faults in di�erent blocks. A test (sequence) that
can locate every faulty block if its characterization set is
a superset of �(S), i.e.,

�(T) � �(S):

Then test T is said to be a complete faulty block isolation

test.
The optimum fault isolation problem can be stated as

follows:

� Given a fault set F .
� Given a structure partition S on F .
� Given a set of test partitions Ti, i = 1; :::;m on F .
� Find a minimumnumber of test partitions such that
their intersection is no greater than S.

D. Set Covering Formulation

The characterization set F of the 0-partition of F con-
sists of elements corresponding to all the pairs of distinct
faults from F . Clearly jFj = n(n� 1)=2,

�(S) � F

and
�(Ti) � F ; i = 1; :::;m:

Then the problem is to �nd a minimum number of �(Ti),
i = 1; :::;m such that their union covers every element in
�(S).
We observe that they may exist many elements in E

which never appear in �(S). This is particularly true,
since for multichip module fault isolation, there are not
too many blocks but each block may have a signi�cant
number of faults. We can reduce the problem signi�cantly
by removing all the elements in F but not appearing in S,
i.e., replacing �(Ti), i = 1; :::m, by �(Ti)\�(S), i = 1; :::m.
Each �(Ti) \ �(S), i = 1; :::m is a subset of �(S). With
this reduction, the optimum block-level isolation problem
can be formulated as the following standard set covering
problem: Given a set �(S), and a collection of subsets,
called clusters, �(Ti) \ �(S), i = 1; :::m, of �(S) �nd a
minimumnumber of clusters that all together cover every
element in �(S). A set of clusters that all together cover
every element in �(S) is called a cover of �(S), where the
number of clusters is the cost of a cover.
Remark: The classical test point selection problem in

analog fault diagnosis [12] is a special case of our fault iso-
lation problem, where the structural partition is replaced

by a partition I, and each test partition is a test node
partition. Therefore, our algorithm here will be directly
applicable to the classical test point selection problem,
which may have increasing importance in analog design
for testability.
Remark: In practice, they may exist some elements

in �(S) that do not appear in any of those clusters,
then those elements cannot be satis�ed by any solution.
That means, there exists a set of faults that are not-
distinguishable under the given set of tests. This can be
handled by a pre-processing process.

III. Exact and Heuristic Algorithms

The reduction of optimumfault isolation to set covering
enables us to apply directly powerful set covering tech-
niques. In particular, a Zero-Suppressed Binary Decision
Diagrams (ZBDD) based solver, originally developed for
logic minimization [6], can be used to solve substantially
large problem instances exactly. The focus of this section
is to describe a very simple but e�ective greedy heuristic.
Greedy peeling is perhaps a simplest idea to set cover-

ing. It proceeds by picking the largest cluster, and then
remove those elements in the cluster, and repeat the pro-
cess until all the elements have been covered. Each repeat
is called an �iteration of greedy peeling.
The idea is very simple, however, Johnson proved that

the number of clusters needed by greedy peeling is at most
H(jP jmax) times the minimumnumber of clusters, where

H(jP jmax) =

jP jmaxX

i=1

1

i
;

and jP jmax is the largest cluster [9]. It can be veri�ed that
H(jP jmax) � lnjEj + 1, where E is the set of elements
to cover. This is a worst case theoretical bound, and
is usually very loose for a typical problem instance. In
the following, we describe a variant of the greedy peeling
algorithm, which not only �nds a greedy solution for set
covering, but also computes a performance bound that is
no greater than (usually much smaller) thanH(jP jmax) in
practice. Our algorithm is based on an idea of Chv�atal [5].
To motivate the algorithm, we consider the following

set cover example: given E = fe1; :::e7g and a set P of
clusters P1 = fe1; e2; e3g, P2 = fe1; e4g, P3 = fe2; e3; e7g,
P4 = fe3; e5; e7g, P5 = fe3; e6g, P6 = fe4; e5; e7g, and
P7 = fe4; e6g. We apply greedy peeling to �nd a complete
cover of E.
Each time when a cluster Pi 2 P is peeled o� by greedy

peeling, we remove those elements in Pi from the set of

clusters in P. For convenience, we use P
(k)
i to present the

cluster Pi after k�1 iterations of greedy peeling. The set

of non-empty cluster P (k)
i after k� 1 iterations of greedy

peeling is denoted by P(k). We use C to denote the cover.

Initially k = 1, C = fg, and P
(1)
1 = P1, P

(1)
2 = P2, P

(1)
3 =

P3, P
(1)
4 = P4, P

(1)
5 = P5, P

(1)
6 = P6, and P

(1)
7 = P7.

Since P
(1)
1 , P

(1)
3 , P

(1)
4 and P

(1)
6 all have the same largest

size, greedy peeling picks an arbitrary one, say P
(1)
6 , and

adds it to the cover C. After removing elements of P
(1)
6

from all the clusters in P(1), we have the following set P(2)

of non-empty clusters: P
(2)
1 = fe1; e2; e3g, P

(2)
2 = fe1g,

P
(2)
3 = fe2; e3g, P

(2)
4 = fe3g, P

(2)
5 = fe3; e6g, and P

(2)
7 =

fe6g. Next, P
(2)
1 has the largest size, it will be added up

to the cover C. After peeling o� P
(2)
1 from clusters in

P(2), there are two non-empty clusters: P
(3)
5 = fe6g and

P
(3)
7 = fe6g. We can choose P (3)

7 to add to the cover C.
By now, all the elements of E have been covered, so we
have obtained a cover C = fP1; P6; P7g. Its cost is 3.

At each iteration, when a cluster, say P
(k)
i , is picked

up and added to C, the size of C increases by 1. We may
say that the algorithm incurs a cost of 1. This cost can

be spread evenly among the elements in the cluster P
(k)
i ,

i.e., each element ei in P
(k)
i is associated with a cost of

ci =
1

jP
(k)
i

j
. In our example, at the �rst iteration, P

(1)
6

is peeled o�, each of the three elements e4; e5; e7 in P
(1)
6

is associated with a cost of 1
3 . At the second iteration,

P
(2)
1 is peeled o�. Each of three elements e1; e2; e3 in P

(2)
1

is associated with a cost of 1
3
. Finally, P7 is peeled o�.

There is only one element e6 covered in this iteration.
Thus it has a cost of 1. In summary, we have c1 = 1

3 ,
c2 =

1
3 , c3 =

1
3 , c4 =

1
3 , c5 =

1
3 , c6 = 1, and c7 =

1
3 .

We can view these costs as weights associated with el-
ements. Then the weight Pi:cost of a cluster Pi can be
calculated as the sum of the weights associated with all its
elements. Therefore we have, P1:cost = 1, P2:cost =

2
3 ,

P3:cost = 1, P4:cost = 1, P5:cost =
4
3 , P6:cost = 1, and

P7:cost =
4
3 .

Let C
0

be an arbitrary cover of E, then

j [Pi2C
0 Pij � jEj;

and,

X

Pi2C
0

Pi:cost �
X

e2E

ce

= jCj

Since an optimal cover, denoted by C�, is one of these
C

0

, we have, X

Pi2C�

Pi:cost � jCj:

Thus,

jCj � jC�
j

P
Pi2C� Pi:cost

jC�j

Note that = jCj

jC�j
is the performance bound of greedy

peeling. Hence,

 �

P
Pi2C� Pi:cost

jC�j

= average Pi:cost in C�

� maxfPi:cost; Pi 2 Pg

That means, if we can compute a cover C by greedy
peeling, then we know that the cost of an optimum cover
C� must be no greater than jCj times the maximum
Pi:cost; Pi 2 P. In our example, the largest Pi:cost is
4
3 . Thus � 4

3 , and jC
�j �

jCj

> 2. Since jCj = 3, we

know that we have an optimal solution.
Note that Pi:cost can be computed during the process

of greedy peeling. This gives rise to an algorithm, called
GREEDY, depicted in the pseudo-code in Fig. 4.

GREEDY(E;P)

1 E0
 fg;C fg; k 0

2 for P 2 P do

3 P:cost 0

4 while jE
0

j < jEj do

5 k k + 1
6 Pk largest cluster in P
7 for P 2 P and jP j 6= 0 do
8 P P � Pk
9 P:cost P:cost+ jP \ Pkj=jPkj
10 E0 E0 [Pk
11 C C [Pk
12 maxfP:cost; P 2 Pg

13 return (C;)

Fig. 4: Greedy peeling for set covering.

Theorem 1 Let H(jP jmax) =
PjP jmax

i=1
1
i
, where jP jmax

is the size of the �rst cluster picked up by greedy peeling.

Let C be a complete cover computed by greedy peeling, and

C� be an optimum cover. Then computed by algorithm

GREEDY is a performance bound of greedy peeling, i.e.,

jCj

� jC�

j � jCj:

Further,

 � H(jP jmax):

In our example, = 1:33, whereas H(jP jmax) = 1:83
and lnjEj + 1 = 2:36. If we use either H(jP jmax) or
lnjEj+1 as a performance bound, we can only know that
jC�j � 2. They do not indicate jCj = 3 is optimum,
whereas the use of does. The similar behavior has been
observed on a set of randomly generated examples.

IV. Experimental Results

A software prototype that implements the proposed
greedy peeling algorithm has been developed in the C

Table 1: Experimental results on MCNC ckts.

example tests greedy optimum

ckt #l #f #p resol ln cpu log bnd ln cpu

s27 38 74 2775 0.97 9 0.0 6.5 3.5 7 0.3

s208 238 208 26637 0.95 22 0.0 8.1 3.1 20 2.4

s208 238 100 6665 0.95 16 0.0 7.1 3.0 15 0.4

s298 336 100 6035 0.99 18 0.1 7.1 3.2 17 0.5

s344 395 100 6314 1.00 13 0.0 7.1 3.3 12 0.8

s400 452 100 5027 1.00 18 0.0 7.0 3.4 16 0.5

s510 549 100 5835 0.99 23 0.0 7.1 3.2 22 0.6

s526 578 100 5179 0.95 18 0.1 7.0 2.7 18 0.4

s953 1051 100 4577 0.91 16 0.1 7.0 2.9 16 0.7

s1423 1594 100 5142 0.98 16 0.0 7.0 3.1 15 0.5

s5378 5738 100 4971 0.98 18 0.0 7.0 3.2 17 0.4

s9234 9732 100 4187 0.83 11 0.0 6.8 2.7 10 0.5

s510 549 150 12144 0.992 34 0.0 9.1 3.5 28 0.8

s510 549 200 23558 0.987 30 0.0 8.1 3.4 28 1.8

s510 549 250 37415 0.993 41 0.1 8.4 3.6 41 2.6

s510 549 300 65950 0.993 43 0.1 8.8 3.5 43 5.7

s510 549 350 65950 0.993 43 0.1 8.8 3.5 43 5.9

s510 549 400 149219 0.992 43 0.1 8.8 3.5 43 5.9

#l : #lines in the ckt.
#f : #faults injected.
#p : number of fault pairs distinguished by the chosen vector set.
resol: diagnostic resolution of the chosen vector set.
ln : number of vectors needed after reduction.
log : log bound of greedy peeling.

bnd : proposed bound of greedy peeling.
cpu : CPU seconds on a 75Mhz SuperSparc with 96MB

programming language. It also incorporates the exact set
cover solver scherzo [6].

To test the performance of our algorithm for larger cir-
cuits, we have run our program on a set of ISCAS89
benchmark circuits for testing [3]. To simplify the is-
sues of memory initialization, feedback lines are cut, and
each circuit is used as a combinational circuit. A simple
fault simulator is used to simulate all the faults for a set
of randomly generated test vectors, and to generate test
partitions. The results are summarized in Table 1. All
CPU time includes reading and writing data.
Several observations can be made from Table 1. First,

this set of benchmarks are randomly diagnosable. For
most circuits, the randomly generated 100 test vectors can
achieve diagnostic resolution above 90%. Second, for all
the examples we tested, optimum solutions can be found
in several CPU seconds. (We have not be able to run even
large circuits or choose many faults, mainly due to the
fault simulator we used is too slow. We are currently in-
corporating a fast fault simulator PROOFS [10]). Third,
for all the examples, the greedy algorithm performs very
well in comparison with exact algorithm. It is orders of
magnitude faster, and obtained near optimum solutions.
Fourth, the proposed performance bound improved the
known theoretical bound (one third or a half). However,
this bound is still too loose. The actual di�erences be-
tween greedy solutions and optimum solutions are very
small. It is also interesting to note the results for s510.
The minimum test lengths are longer than that for the
rest of circuits. It is known that this circuit is very di�-
cult to test (and diagnosis).

V. Conclusions

This paper presented a uni�ed framework of block-level
optimum fault isolation for analog and digital circuits and
systems. A key idea is to use test partition and to de�ne
directly the diagnostic resolution of a test as the set of
fault pairs that are distinguishable under the test, whereas
previously the concepts of ambiguity set have been used
(which are essentially sets of faults that are not distin-
guishable under the test). While two concepts are directly
related, the use of \distinguishable" set (characterization
set) reduces optimum fault isolation to operations on sets,
and leads to the formulation of the optimum fault isola-
tion as the set covering problem; this enables us to exploit
a rich set of existing techniques and theory for both fast
and optimum fault isolation.
The use of ambiguity set has led to a previous formula-

tion of optimum fault isolation as the partition intersec-
tion problem (operations on partitions) [12]. The draw-
backs of such a formulation are two-folds: not e�cient,
and not extendable to handle fault isolation to blocks (not
to individual faults)| a problem of interest to multichip
module repairing.
In addition to problem formulation and understanding,

we also contributed to the generic problem solving tech-
niques. We proposed a problem-instance-dependent per-
formance ratio of greedy peeling. This ratio is interesting,
since it can be computed very e�ciently (as a by-product
of the greedy peeling algorithm), it measures the perfor-
mance of the algorithm for a speci�c problem instance,
and may even indicate that the solution found is indeed
optimum for small problem instances.

Acknowledgment: The author is grateful to Prof.
Sudhakar Reddy for several helpful discussions on this
research and Dr. Olivier Coudert for accessing to his exact
set covering solver.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,
Digital Systems Testing and Testable Design, Com-
puter Science Press, 1990.

[2] R. W. Bassett, P. S. Gillis, and J. J. Shushereba,
\High-density CMOS multichip-module testing and
diagnosis", pp. 530-539 in Proc. International Test

Conf., 1991.

[3] F. Beglez, D. Bryan, and K. Kozminski, \Combi-
national pro�les of sequential benchmark circuits",
pp. 1929-1934 in Proc. Int. Symp. Circuits and Sys-

tems, 1989.

[4] C.-Y. Chao, H.-J. Lin, and L. Milor, \Optimal test-
ing of VLSI analog circuits", to appear in IEEE

Trans. Computer-Aided Design.

[5] V. Chv�atal, \A greedy heuristic for the set cover-
ing problem," Mathematics of Operations Research,
vol. 4, pp. 233-235, 1979.

[6] O. Coudert, \Two-level logic minimization: An
overview", Integration: the VLSI Journal, vol. 17,
no. 2, pp. 97{140, Oct. 1994.

[7] G. Devarayanadurg and M. Soma, \Analytical fault
modeling and static test generation for analog ICs",
pp. 44-47 in Proc. IEEE Int. Conf. on Computer

Aided Design, Nov. 1994.

[8] W. Hochwald and J. D. Bastian, \A d.c. approach
for analogue fault dictionary determination", IEEE
Trans. Circuits and Systems, CAS-26, pp. 523-529,
1979.

[9] D. S. Johnson, \Approximating algorithms for com-
binatorial problems," J. of Computer and System

Sciences, vol. 9, pp. 256-278, 1974.

[10] H. K. Lee and D. S. Ha, \New methods of improv-
ing parallel fault simulation in synchronous sequen-
tial circuits", pp. 10-17 in Proc. International Conf.

on CAD, Nov. 1993.

[11] J. J. Licari, Multichip Module Design, Fabrication,

and Testing, McGraw-Hill, Inc., 1995.

[12] P. M. Lin and Y. S. Elcherif, \Analogue circuits fault
dictionary | new approaches and implementation",
Circuit Theory and Applications, vol. 12, pp. 149-
172, 1985; Reprinted in Selected Papers on Analog

Fault Diagnosis, R. W. Liu (ed.), IEEE Press, 1987.

[13] V. C. Prasad and N. S. C. Babu, \On minimal set
of test nodes for fault dictionary of analog circuit
diagnosis", J. Electronic Testing: Theory and Appli-

cations, vol. 7, pp. 255{258, Dec. 1995.

[14] I. Pomeranz and S. M. Reddy, \On the generation
of small dictionaries for fault location", pp. 272{279
in Proc. International Conf. on Computer Aided De-

sign, Nov. 1992.

[15] C.-J. Shi, \Finding a minimal test set for analog fault
diagnostic dictionary", pp. 303-308 in Proc. Inter-

national Workshop on Computer-Aided Design, Test

and Evaluation for Dependability, Beijing, China,
July 2-3, 1996.

[16] C.-J. Shi and N. Godambe, \Behavioral fault mod-
eling and simulation of phase-locked loops using a
VHDL-A like language", pp. 245-250 in Proc. IEEE

International ASIC Conference, Rochester, N.Y.,
Sept. 23-27, 1996.

[17] W. R. Simpson and J. W. Sheppard, System Test and

Diagnosis, Kluwer Academic Publishers, 1994.

	CD-ROM Home Page
	ASP-DAC Home PAge
	Front Matter
	Table of Contents
	Session Index
	Author Index

