
A Transformational Codesign Methodology

Tommy King-Yin Cheung, Graham Hellestrand and Prasert Kanthamanon

VLSI and Systems Technology Laboratory
School of Computer Science and Engineering

University of New South Wales
Kensington 2052 Australia

Abstract ææWe present a hardware/software codesign method-
ology using formal transformations. The goal is to refine a
given function specification of a task to an operational struc-
ture involving both hardware and software components. The
refinement process is separated into two levels, the algorithmic
and the structural. Within each level, refinement is accom-
plished by applying sequences of transformations that preserve
the functionality of an initial specification. This allows various
'correct' design alternatives to be generated and their costs
analyzed. At the algorithmic level, different algorithm designs
are explored, each producing a computational schedule that
has a different performance cost. At the structural level, differ-
ent spatial structures with different resources and performance
costs are explored. These costs which characterize the designs
are used to assist in the hardware/software partitioning. An
example is used throughout to illustrate this methodology.

since each transformation step preserves the correctness of
the original function, the resulting design is guaranteed to be
correct. Intuitively, the transformation steps can be viewed
as the primitive operations of a more general design-synthe-
sis process, and hence many design automation techniques
can be applied to automate the transformation steps. In this
paper, the transformations are applied at two different levels
within the codesign process: the development of a high-level
algorithms and the optimization of low level structural im-
plementations [2]. In practice, these two levels of transfor-
mation are coupled together and applied iteratively. The ob-
jective is to integrate the process of algorithm design, early
on, with lower level structural design. This allows a broader
design space to be explored than the traditional high level
synthesis methodology which typically assumes a fixed al-
gorithmic specification of the problem [3,4,5].

I. INTRODUCTION

The specification is written in a single high level func-
tional notation, called form [6,7,8] which provides for
codesign a unified system specification device. The notation
is aimed at describing various forms of control compositions
and synchronisations over a set of functions and forms. Form
has three key features. First, it has a semantic model [9] that
captures the causal ordering of function applications on a
stream of data possibly in a multidimensional structure [6].
The notion of continuity in streams [10,11] provides a tem-
poral abstraction of data. The resulting model specifies a re-
active behavior of a system which relates outputs to inputs in
time. Second, parametrised function or form can be used as a
type which defines a context to be instantiated by other func-
tions [7]. Composite types can be built using the set of com-
position laws for functions. The binding of composite func-
tion types is particularly important for building systems hier-
archically. Third, it supports syntactic transformation and
verification [1]. The transformation mechanisms themselves
are encoded using the notation. This supports a formal vali-
dation of both the design and its transformation mecha-
nisms, thus supporting the concept of correct-by-construction
in our approach.

The goal of hardware/software codesign is to synthesize
efficient implementations consisting of mixed hardware/
software components from initial function specifications. A
function specification is a description of an input/output re-
lation, which is 'abstract' in the sense of being independent
of any specific implementation or partitioning. The central
idea behind our codesign process is to incrementally refine
the high-level function specification until an implementation
is derived which is as a mix of procedural software processes
and applicative hardware modules. The process involves the
exploration of hardware/software tradeoffs such as the opti-
mization of the hardware/software interface or the movement
of processing functions from one domain to the other. The
process is based on a transformational synthesis approach
which constructs the implementation by repeatedly applying
a set of correctness-preserving transformation rules. The
transformation is said to preserve correctness if the resulting
implementation is functionally equivalent to its initial speci-
fication [1]. This transformational approach has practical as
well as theoretical advantages in codesign. The practical ad-
vantage is that applying different sequences of correct trans-
formations can generate alternative designs for performance
and cost-benefit analysis. The theoretical advantage is that
verification of the resulting design is achieved by the appli-
cation of a sequence of correct transformation steps. That is,

Another important component in a codesign system is a
measure of design cost. Given a basic function specification,
several transformations which lead to different correct hard-
ware/software implementations may be applied. Each of the
resulting implementations usually has a different design
cost. A major task is to select an implementation that best

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

fits the cost requirements. We have established a system per-
formance model in terms of various design metrics to be
used to estimate the cost and to determine a feasible solution
that satisfies the requirements. Some of the design metrics
include software code size, throughput of processors, mem-
ory size, access time, interrupt cycle time, costs of function
units, and computation time etc.

loop/feedback structures [14]. There are some other primitive
functions, such as the identity function (id) and selectors (a
and w - where a selects the head of a sequence, w selects
the last element of a sequence and (a+i) selects the (i+1)th
element of a sequence in a finite multi-dimensional struc-
ture). The intuitive meaning of each construct is to follow.

Serial composition ƒ1×ƒ2 means that the result of apply-
ing ƒ2 to a stream is a stream which is passed to ƒ1, where
both functions operate at a rate correlated to the input
stream. Conditional composition (ƒ1,ƒ2)?p means that for
each data stream, the predicate p is computed first, then
either ƒ1 or ƒ2 is applied depending on the truth value of p.
Concurrent composition [ƒ1,ƒ2] means that the input stream
is passed to both functions and the applications are per-
formed concurrently. The resulting structured stream is then
passed out at a rate correlated to the input stream. Thus, it
induces synchronization on concurrent activities, even
though they may have vastly different execution time. Fi-
nally, the delay functional Zƒ returns the previous stream
element of the result of ƒ applied to the original input
stream, where the initial output function is denoted by
ƒ@[0]. The default value of Zƒ is # (an undefined function)
which always returns the undefined object ^.

 This paper is organized as follows. Section 2 gives a
brief introduction to the form notation. Section 3 defines the
two levels of transformations, algorithmic level and struc-
tural level, and their correctness properties. Section 4 uses a
case study to illustrate the transformational codesign process,
including specification, algorithm derivation, hardware/soft-
ware partitioning, structural refinements and structure map-
pings. Section 5 concludes the work.

II. THE FORM NOTATION

The form is based on a variant of FP [12], with extensions
to support multi-dimensional structured streams, delay func-
tional and synchronized concurrent forms [6,13]. The main
advantage of FP is its combinative property that allows func-
tion composition and construction by means of combining
forms. The primary data structure in form is the stream
which is used to model the time-ordered flow of continuous
data during function evaluation. However, the data structur-
ing of each stream element is operational, that is, its data
structure is represented by the composition and decomposi-
tion operators used to construct them. Function application
on a multi-dimensional data structure is distributive and con-
current over the elements in the default least significant di-
mension, for example, applying a sum operator to a two di-
mensional structure will sum its columns (the least signifi-
cant dimension) concurrently to produce a one dimensional
structure (Fig. 1a). A higher order operator could be defined
to alter the default operating dimension of a function, for ex-
ample, a multidimensional map operator (denoted by fú)
which has been defined in [2] operates on the most signifi-
cant dimension. As an example, the application of a map-se-
quence-sum, +ú operator to a two dimensional structure is
illustrated in Fig. 1b.

Form also supports named streams and treats them as
first class objects which can be referenced or passed as ar-
guments to forms. Technically, multiple named streams can
be grouped into one sequence to be passed as a single argu-
ment to a form, where the argument is then decomposed to
the streams using the selector functions. Thus, there is al-
ready the possibility of representing sequences by means of
composition and decomposition operators, so that naming is
simply a convenience in the notation. However, associating
names with streams does improve appreciably the readability
of the notation.

As an example, here is a simple counter that counts the
number of clicks between a start and a stop signal (two
named input streams) for a mouse-like device.

Pulse start stop :: (0, (1, ZPulse)?start)?stop.
ClickCounter click start stop

:: ((inc�P, P)?click, (P, 0)?stop)?(Pulse start stop)
 where P = ZClickCounter.

= =
(a) (b)

+: + :

The function Pulse produces a period of ones between the
start and the following stop signals and the function Click-
Counter which makes use of an incrementer (inc) counts the
number of clicks during that period.

III. M ULTI-LEVEL TRANSFORMATIONS AND CORRECTNESS

Form describes systems as a set of continuous stream proc-
essing functions which are possibly recursive. The output of
the system for a given input stream is determined by the least
fixpoint of the functions [10,15]. This input-output relation
defines the functionality of the system. Generally, for a given
specification function f, there exists many possible imple-
mentation functions that have the same functionality as f, but
they differ by their ways of structuring the input-output data

Fig. 1. The applications of the sum and map-sequence-sum operators to a two
dimensional data structure.

The set of primitive combinators include serial composi-
tion (denoted by ƒ1×ƒ2), conditional composition (denoted by
(ƒ1,ƒ2)?p), concurrent composition (denoted by [ƒ1,ƒ2]) and
delay functional (denoted by Zƒ) which is used to construct

stream [1]. Each implementation function could be obtained
from f through a series of correct transformations that pre-
serve the functionality of f. If g is a correct transformation of
f, then the following equation holds:

Function
Specification

Algorithm Derivation

Function
Specification

Analytical Hw/Sw
Partitioning

Function
Specification Specification

Function

Interface

MODAL HDL

Structural Transformation

Structural Synthesis
& Mapping

Function
Specification Specification

Function

Interface

Software Hardware

MODAL HDL

HardwareSoftware

Interface

MODAL HDL

coprocessor

microcode

microprocessor

High-level
language

ϕO�f = g �ϕI
where the functions ϕI and ϕO are structuring functions that
map the structures of all objects in the domain of f into their
corresponding object structures in the domain of g.

Despite the generality of this property, it is only suitable
for the refinement of functions at the algorithmic level where
the structuring of the input-output data is not fixed yet. At
the structural level, spatial refinement is generally needed to
explore the variety of spatial structures appropriate to realize
a given implementation function. Each realization could be
obtained from the implementation function through a series
of spatial transformations that preserve not only the func-
tionality of the function, but also the structuring of its input-
output data. As an example, a pipelined realization is struc-
turally different to a non-pipeline one, but they both exhibit
the same input-output structuring of data and have the same
functionality. Some spatial transformations include grouping
common conditional expressions, pipelining, serializing
components in a concurrent form, and many of the simple
algebraic laws [1]. By integrating both functional and spatial
refinements during the design process, derivation of input-
output behavior and optimization of structure yielding the
best design under some constraints, become possible.

Fig. 2: The transformational codesign process

(1) a processor core for interpreting software processes, (2) a
coprocessor which contains many parallel function units for
processing the partitioned data at a high speed and (3) a
buffered interface unit for synchronizing the interaction be-
tween the software processes and the hardware coprocessor.

IV. TRANSFORMATIONAL CODESIGN

The codesign process proceeds from the top-down as
shown in Figure 2. It starts with a form specification of a
task and constructs an algorithm that computes the desired
function. The construction of algorithms requires analysis of
the structure of the specification that matches a desired class
of computational strategy, such as divide-and-conquer or dy-
namic programming etc, and to direct appropriate transfor-
mation mechanisms to derive an algorithm using the compu-
tational strategy [16]. The resulting implementation function
is to be partitioned into hardware and software parts which
satisfy the cost constraints. During the partitioning process,
structural exploration of the hardware and software compo-
nents is carried out iteratively to obtain optimistic and
achievable cost estimates of the overall system. A perform-
ance model of the system which assumes a fixed architecture
is used to evaluate this cost. The final structural forms are
then mapped into the target implementation technologies to
produce high level pseudo-code for the software components
and applicative descriptions for the digital hardware compo-
nents. The rest of this section illustrates this codesign proc-
ess with an example.

The structure and effect of the three components is de-
scribed below:

Processor Core: There are two software processes running
on the processor core, one for the partitioning of input data
and arranging it in sequence into the data buffer, and the
other for the loading of appropriate instructions into the
control buffer, where the instructions in the buffer are ready
to be executed by the coprocessor.

Buffered Interface Unit: It contains three FIFO buffers, a
control buffer, and an input and an output data buffer. When
the control buffer has been loaded, it starts a coprocessor
execution cycle by sending it an instruction. When the buffer
becomes empty, it signals an interrupt to the processor core
which will then suspend its current process and invoke an-
other one that fills up the buffer.

Coprocessor: The coprocessor begins its instruction execu-
tion when the processor core has filled up both the input and
the control buffers. It stops when the buffer becomes empty
and resumes when the buffer has been refilled. When the
coprocessor completes its computation, it sends the data to
the output buffer which will be periodically read by the proc-
essor core.

A. An Example of the Codesign Process

In this case study, the objective is to codesign a system
for computing the two dimensional fourier transform opera-
tion (2DFT). The target system has three components:

The overall system structure is shown in Fig 3. Details of
the design steps that lead to an implementation of the 2DFT
operation are described next.

Thread B

2DFT
program code

Processor Core

Thread A

Data Address
Generation

Task
Switching

Interface Unit

Coprocessor

execution of data

Dedicated function
units for high speed

Data buffer

Ctrl buffer

(b)

Fa :: +×´
o

 (a
o

 WN
(2)) (G

o

 (divideR xN
(2)))

where G = +×´
o

 (a WN
(2))

 divideR = identity

combine

(a)

G

Fb :: +×´
o

 W4
(1) (Fb

o

 (divideQ xN
(2)

) W4
(3))

where W4
(1) = [wN

0, wN
(m/2)k2, wN

(m/2)k1, wN
(m/2)k2+(m/2)k1]

W4
(3) = [aq,...,aq] WN

(2)

divideQ = [aq,...,wq]
and aq, wq are quadrant selectors that select all
elements of the first and last quadrants respectively
in a 2D-sequence.

combine

Fb

Fig. 3: The embedded system structure for computing the 2DFT operation

Now the specification, algorithm derivation, partitioning,
transformation and synthesis activities are delineated.

Specification: The 2DFT operation of an input matrix x(n1,
n2) is expressed in the form notation as shown below.

Xk1k2
 :: +× +o× (´

o xN
(2) WN

(2))

where the 2D input sequence xn1n2
, ∀ 0≤ n1,n2 ≤ (N-1), is expressed as:

xN
(2) = [[x00,...,x0(N-1)],..., [x(N-1)0,...,x(N-1)(N-1)]]

and the coefficient matrix as:

WN
(2) = [[WN

0,...,WN
(N-1)k2],..., [WN

(N-1)k1,...,WN
(N-1)k2+(N-1)k1]]

The form description of 2DFT

 X = W Wk k n n N
n k

N
n k

n =0

N-1

n

N 1

1 2 1 2

1 1 2 2

21

xåå
=

-

0

mathematical formulation of 2DFT

The above form description of the 2DFT operation is formu-
lated in terms of a multidimensional map operator which is
defined in the box below.

Fig. 4. Two possible implementation functions of the 2DFT specification
obtained by partitioning the 2D input sequence into (a) rows and (b) quadrants.

Fb xm
(2) Wm

(2)

 :: +× +
o

× (´
o

xm
(2) Wm

(2)
)

 :: +× +
o

× +
o

× (´
o

 ([aq,...,wq] xm
(2)) ([aq,...,wq] Wm

(2)
))

 :: +× ´
o

 ([+× +
o

× (´
o

(aq xm
(2)) (aq Wm

(2))),...,+× +
o

× (´
o

 (wq xm
(2)) (aq Wm

(2)))])
 [wN

0, wN
(m/2)k2, wN

(m/2)k1, wN
(m/2)k2+(m/2)k1]

 :: +× ´
o

 ([Fb (aq xm
(2)) (aq Wm

(2)) ,...,Fb
 (wq xm

(2)) (aq Wm
(2))])

 [wN
0, wN

(m/2)k2, wN
(m/2)k1, wN

(m/2)k2+(m/2)k1]

 :: +× ´
o

 (Fb
o

([aq,...,wq] xm
(2)) ([aq,...,aq] Wm

(2)
))

[wN
0, wN

(m/2)k2, wN
(m/2)k1, wN

(m/2)k2+(m/2)k1]

recursive definition of Fb

� simple algebraic laws, e.g. associative/distributivity
� expands the definition of map-function

definition of map function

h
(n) denotes a n-D sequence and the function ƒh : h

(1) → h is defined
only if the function ƒ : h´h → h is an associative operation with an
identity element. The function divide is a structuring function
which partitions a 2D sequence into many sub-2D-sequences and
compose them back to form a 3D sequence. This commuting
diagram satisfies the equation in Section III, that is, the function
ƒh×¦h

o

×¦h

o is a correct transforamtion of the function ƒh×¦h

o.

divide
h

(3)
h

(2)

h

ƒh×¦h

o ƒh×¦h

o

×¦h

o

h
id

Multidimensional Map operator f
o

:

f
o

 An
(m) Bn

(m) :: [(f
o

 aAn
(m) aBn

(m)), ... , (f
o

 wAn
(m) wBn

(m))] , m > 1

f
o

 An
(1) Bn

(1) :: [f
o

 aAn
(1)

aBn
(1), f

o

 (a+1...w)An
(1) (a+1...w)Bn

(1)] , m £1

where An
(m), Bn

(m) denote a m-dimensional block with n elements in each
dimension. The function f o is defined recursively by applying itself to each
element in the most significant dimension. Note that the elements in
[aAn

(m), ...,wAn
(m)] have one smaller dimension than An

(m), so that this
recursive definition terminates. The base case (second line) states that f is
applied to each element in a single-dimensional sequence.

Algorithm Derivation: Our method of algorithm derivation
is by successive modifications to the initial form specifica-
tion using a set of transformation rules that satisfy the com-
muting property. The application of transformation rules is
directional, that is, an output scheme is provided in the deri-
vation as part of the design strategy. For instance, the chosen
strategy for designing the 2DFT operation is divide-and-
combine scheme which can be expressed in a general form:

Fig. 5: Derivation steps of the function Fb from the 2DFT specification
F :: combine × Gú

× divide
where the function divide partitions the input data into sub-
sets that are processed independently by the function G, and
the results are then combined using the combine function.
There are many possible derivations of the functions divide,
combine and G, for an initial function specification. The

selection is dependent on the final cost metrics defined as
part of the performance analysis of the implementations.
Figure 4 illustrates two possible derivations from the 2DFT
specification, and Figure 5 details the sequence of derivation
steps for the implementation function, Fb in Fig. 4b.

 Hardware/Software Partitioning: Given a divide-and-
combine implementation function, various hardware/soft-
ware partitions can be created by unfolding the function into
an evaluation tree whose leaf nodes represent the least task
size supported by the hardware module. A depth-first-tra-
versal of this tree produces a sequential schedule of software
instructions for the hardware module. The size of each hard-
ware/software partition is governed by the granularity of the
hardware module. The larger the grain size, the smaller will
be the level of interaction between hardware and software,
and the greater the concurrency, the higher the performance
the resulting system will have. However, a larger grain size
also means a higher hardware cost. Figure 6 shows the
evaluation trees for the two derived implementation func-
tions, Fa and Fb (Fig. 4) of the 2DFT specification and their
possible grain sizes. By varying the grain sizes, different
hardware/software partitions are generated (see Fig. 6). To
assist in the performance evaluation of each partition, many
design metrics were considered. The set of metrics includes:

This takes into account the sizes of data and control buffers
at the interface unit which is critical to the overall perform-
ance of the implementation function. To enable the coproc-
essor to consume its input data continuously (i.e. data is al-
ways present in the buffer for the coprocessor), the total time
needed to produce all the data from the processor core must
be less than the total time taken for the coprocessor to con-
sume it. With this requirement, an inequality for the size of
the input buffer is established (proof omitted):

S > N
codesize

Q
2-

- - -

F
HG

I
KJ ´ -

F
HG

I
KJ

1
1

t
t t t t t

p
c p comp idlec h min(,)int

If S is below the lower bound determined by the inequality,
the potential parallelism between the processor core and the
coprocessor will be reduced as the coprocessor has to stop
and wait for the processor core to fill up the buffers. Thus,
the best choice for S is its lower bound value plus one. Simi-
larly, the best choice for the control buffer size, Q is the code
size. If Q < codesize, an interrupt will be raised to the proc-
essor core when the buffer becomes empty; the processor
core then invokes a process (an interrupt routine) to fill up
the control buffer. Thus, the interrupt cycle time tint which is
the time needed to service an interrupt is directly propor-
tional to the control buffer size Q.

tp = processor data production rate (cycles/data)

tc = co-processor data consumption rate (cycles/data)

tcomp = the coprocessor processing time.

tidle = the time period in which the coprocessor is comput-
ing, but not taking any data stored in the input buffer.

tint = interrupt cycle time (interrupt latency + service time)
The calculation of the overall execution time, texec follows:

ti = memory transfer time (cycles/data) for writing an
instruction into the control buffer (FIFO). texec = the time needed to initialize the control and data

buffers, tinit + total coprocessor execution time, tcopS = input data buffer (FIFO) size

+ total interrupt service time, tserQ = control buffer size

where tinit = ti × Q + tp × Sl = the coprocessor grain size.

N = square root of the total data size tcop = codesize × tcomp
code
size =

the number of software instructions sent from the
processor core to the coprocessor

 tser = tint × (number of interrupts)

possible leaf node sizes to be
implemented on the hardware

possible leaf node sizes to be
implemented on the hardware

N/r N/rN/r

N

r

N N N

N/r

N/r N/r N/r

r

The recursive divide-and-combine function, Fb of Fig 4b can be
expanded into a four way rooted balanced tree with the recursion
depth indicating the least task size supported by the hardware
module. Each level represents the processing of a quadrant which
is obtained by sub-dividing the quadrant at the level above. That
is, if the root node processes an (N´N) input sequences, then
each of its child nodes at the first level will process an (N/2
´N/2) input sequence and so on. Generally, each node at the rth
level processes an (N/2r ´ N/2r) input sequence, and by varying r,
different sizes of hardware/software partitions are generated.

The divide-and-combine function, Fa of Fig 4a can be expanded into
a two or three level tree where the leaf nodes represents the size of
the hardware modules. The above diagram shows a three level tree.
The bottom two levels represent the processing of a block of (N/r)
rows with each row containing N elements. Each row is further sub-
divided into r sections of size (N/r) each. The first level represents
the processing of a column which is subdivided into r sections with
each one containing (N/r) rows of elements. Different sizes of
hardware/software partitions can be generated by varying r and
number of levels in the tree.

Fig. 6. Two possible expansions of the evaluation trees for the two divide-and-combine implementation functions in Fig. 4.

To determine a suitable hardware/software partition,
given the performance constraint, the execution time texec
must be calculated for each possible partitioning size, and is
defined in terms of the granularity of the hardware module.
As for the example implementation functions Fa and Fb,
each of their relationships between the execution time (in
cycles) and the grain sizes of the coprocessor is shown in
Figure 7a. The calculation assumes the best choices for both
S and Q, thus ignoring interrupts. The grain size is a func-
tion of the data partition size, r, which is defined in Figure 6.
As the grain size increases, more functions are migrated
from software to hardware and the execution time decreases
as expected. Note that the implementation function Fa has a
lower time cost than that of Fb, but it uses a much larger
buffer size (see Figure 7b) than Fb does, in order to sustain
its continuous consumption of data without interruption.
However, if Q is set less than the code size (Q < codesize),
the effect of interrupts must be taken into account in the per-
formance calculation. Figure 8 shows the effect of incurring
various numbers of interrupts on the execution time curve.
Initially, when the grain size is small, the interrupt cycle
time is larger than the coprocessor computation time. This
causes the coprocessor to stop and wait for the buffers to be
refilled, and hence increases the overall execution time. As
the grain size increases, the coprocessor computation time
dominates the interrupt cycle time. This means that the con-
trol buffer has been filled up long before the coprocessor
completes its current instruction (the one that causes the in-
terrupt), allowing the coprocessor to continue its next in-
struction without stopping. Thus, the interrupts have no ef-
fect on the execution time. This type of analysis permits the
examination of various hardware/software partitions and en-
ables a suitable selection to be made which observes some
desired cost constraint.

Structural Transformation: Different structural forms
usually have different performance costs. The process of
structural transformation refines a given structural form into
one that has lower cost and higher performance. This re-
finement process is coupled with the hardware/software
partitioning, because system performance generally varies
with the size and structure of the hardware module. For each
hardware/software partition, there are many possible struc-
tural implementations of the hardware module that have the
same functionality and input-output structuring of data, but
different performance costs. They can be generated by suc-
cessive spatial transformations of a given implementation
function. The resulting function is guaranteed by the trans-
formations to preserve its structuring of the input-output data
and the original functionality. Details of the transformation
mechanisms can be found in [1].

As an example, consider a hardware/software partition of
the function, Fb that has the smallest grain size, that is, the
hardware module computes four complex multiplications
followed by a complex add-accumulation for each instruction
cycle. The structure of the hardware module is shown in Fig-
ure 9a, and it accepts four pairs of input sequences and pro-
duces one output sequence. This structure has the same in-
put-output structuring of data as the structure shown in Fig-
ure 9b, where the four complex multipliers are connected to
a shared bus and data is fed to the accumulator sequentially.
Although the latter structure requires a smaller accumulator
unit, it takes more clock cycles to complete the whole com-
putation. By applying different spatial transformations to a
form, many different structures could be explored, allowing
design tradeoffs and selections.

*

*
*
*

x00

wN
0

x01

wN
k2

x10

wN
k1

x11

wN
k2+k1

x00wN
0

x01wN
k2

x10wN
k1

x11wN
k2+k1

+ Z

parallel bus

0 2 4 6 8 10
4

4.5

5

5.5

6

6.5
x 10 6

grain size of the coprocessor

implementation function Fb

implementation function Fa

0 2 4 6 8 10
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
x 105

da
ta

 b
uf

fe
r

si
ze

grain size of the coprocessor

implementation function Fb

implementation function Fa

Fig. 9a : A parallel bus implementation of a product-accumulator, where data is
fed to the accumulator in parallel.

Z+

Z

*
*
*
*

ZZ
projection

x11

wN
k2+k1

x10

wN
k1

x01

wN
k2

x00

wN
0

x00wN
0 x00wN

0 x00wN
0

x00wN
0

x00wN
0

x01wN
k2

x01wN
k2

x01wN
k2 x01wN

k2

x10wN
k1

x11wN
k2+k1

x10wN
k1

x10wN
k1 x11wN

k2+k1

shared bus

Figure 9b: A shared bus implementation of a product-accumulator, where data
is fed to the accumulator sequentially.

 (a) (b)
Fig. 7. (a) The total execution time, texec and (b) the buffer size, S of the two
implementation functions Fa and Fb as a function of the hardware grain size.

0 2 4 6 8 10
4

4.5

5

5.5

6

6.5

7
x 10 6

ex
ec

ut
io

n
tim

e

grain size of the coprocessor

execution time curve of Fa

number of interrupts = 9

number of interrupts = 0

0 2 4 6 8 10
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5
x 10 6

grain size of the coprocessor

execution time curve of Fb

number of interrupts = 9

number of interrupts = 0

ex
ec

ut
io

n
tim

e

Structural Synthesis and Mapping: This step maps the
partitioned structural forms into physical components de-
termined by some given implementation technology. The
physical components could be software codes in a specific

Figure 8: The relationship between the number of interrupts and the execution
time of the two implementation functions Fa and Fb.

executable language, or hardware library modules which
may include typical logic and arithmetic functions. The
mapping from a structural form to the software code is es-
sentially syntax-directed, for example, a concurrent combi-
nator [ƒ1, …,ƒk] is translated into a set of sequential state-
ments which invoke the functions one by one. A linear re-
cursive form or a map operator is translated into a forall-
loop. However, the mapping from a structural form to a
hardware component is exact, that is, there is a direct corre-
spondence between the elements in forms and the hardware
elements. For instance, combinators in forms are treated as
interconnections, and arguments are treated as ports.

the 4th International Workshop on Hardware/Software Codesign,
Pittsburgh, Mar. 1996.

[3] Amellal S. & Kaminska B., "Functional Synthesis of Digital Systems
with TASS," IEEE Transactions on CAD, Vol 13, No 5., May 1994.

[4] Gajski D.D. & Ramachandran L., "Introduction to High-Level Syn-
thesis," IEEE Design & Test of Computers, p44-54, Winter 1994.

[5] Bergamaschi R.A., O'Connor R.A., Stok L., Moricz M.Z., Prakash S.,
Kuehlmann A., Rao D.S., "High-Level synthesis in an industrial envi-
ronment," IBM Journal of Research & Development, Vol 39, No. 1/2
Jan/Mar. 1995.

[6] Chan R. & Hellestrand G.R., "VLSI Realisation from Recursive
Expressions," 9th Australian Microelectronics Conf., Adelaide, Aus-
tralia. 1990.

[7] Hellestrand G.R. "MODAL: A System for Digital Hardware Descrip-
tion and Simulation," CHDL'79, 1979.

V. CONCLUSION
[8] Hellestrand G.R., Chan R., Kam M.C., Cheung T.K.Y, Kanthamanon

P. "Software-Hardware Engineering: Functional Specification →
Structural Synthesis and Simulation," 2nd Int. Workshop on HW/SW
Codesign. 1993

This paper presents a formal transformational codesign
methodology which supports the concepts of "design-by-
transformation" and "correct-by-construction". It is based on
a functional notation, form which allows a unified specifica-
tion of system components and joint design transformations.
By applying different sequences of "correct" transformations
to a form, various implementations and component struc-
tures can be explored using both qualitative and quantitative
analysis. The results of the analyze permit design selections
to be made during hardware/software partitioning and
structural optimization. Although the example presented
here targets only one class of problem solution strategies, the
methodology does provide means of encoding rules and
transformation mechanisms to solve problems in other com-
putational strategy classes, thereby lifting the level of tradi-
tional hardware synthesis (behavioral level) to a level that
allows early integration of algorithm design and hardware
and software synthesis.

[9] Cheung T.K.Y. & Hellestrand G.R., "Synchronisation Graph: Seman-
tics and Applications," Asia Pacific Conference on Computer Hard-
ware Description Languages, India. Jan 1996.

[10] Kahn G., "The semantics of a simple language for parallel program-
ming," Information Processing 74, Proc. IFIP Congress, J.L. Rosen-
feld (ed.) Amsterdam: p471-475, 1974.

[11] Johnson S.D. "Circuits and Systems: Implementing Communication
with streams," Parallel and Large scale computers: performance,
architecture and applications, Ed. by M. Ruschizka et al. 1983

[12] Backus J., "Can Programming be liberated from von Neumann style?
A functional style and its algebra of programs," Comm of ACM, Vol
21 1978

[13] Chan R., "VLSI synthesis from Abstract Recursive Expressions," PhD
thesis, School of EE & CS, University of New South Wales, 1990.

[14] Sheeran M., "mFP an algebraic VLSI design language," Proc. ACM
symp. on LISP and functional programming, p104-112. 1984

[15] Chen M., "Space-time Algorithms: Semantics and Methodology," PhD
dissertation, California Institute of Technology, may 1983.

ACKNOWLEDGEMENTS [16] Smith D.R. "Automating the Design of Algorithms," Formal Program
Development, Moller B., Partsch H., & Schuman S. (Eds) Lecture
Notes in Computer Science 1993.The first author is supported by an APRA and an AEA

grant. The authors would like to thank Dr. Ricky Chan for
his significant contribution in the development of the form
notation. This work has been materially assisted by Austra-
lian Government GIRD contracts 16044 and 17028.

[17] Hellestrand G.R., Kanthamanon P., Chan R., Kam M.C., Cheung
T.K.Y., "Functional Specification of Concurrency and Sequencing:
Synthesisable Codesign Specification," Asia Pacific Conf. on HDL
1993.

[18] Hellestrand G.R., "The Unified Specification of Mixed Technology
Systems," Invited paper, SASIMI'95, Japan, 1995.

REFERENCES [19] Darlington, P. (1982) "Program Transformation," Functional pro-
gramming and its application: an advanced course, Ed. by J. Dar-
lington, P. Henderson and D.A. Turner, Cambridge University Press.[1] Cheung T.K.Y. & Hellestrand G.R., "Multi-level Equivalence in

Design Transformation," Computer Hardware Description Lan-
guages Conference, Chiba, Japan. Aug. 1995.

[20] Luk W., Wu T., & Page I., "Hardware-Software Codesign of Multi-
dimensional Programs," Proc. IEEE Workshop on FPGA for Custom
Computing Machines. D.A. Buell & K.L.Pocek (eds). 1994.[2] Cheung T.K.Y., Hellestrand G.R. and Kanthamanon P., "A Multi-

level Transformation Approach to HW/SW Codesign: A Case Study,"

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

