A Transformational Codesign Methodology

Tommy King-Yin Cheung, Graham Hellestrand and Prasert Kanthamanon

VLSI and Systems Technology Laboratory
School of Computer Science and Engineering
University of New South Wales
Kensington 2052 Australia

Abstract —We present a hardware/software codesign method- since each transformation step gge/esthe correctness of
ology using formal transformations. The goal is to refine a the original function, the resulting design is guaranteed to be
given function specification of a task to an operational struc- correct. Intuitively, the transformatiostepscan beviewed

ture involving both hardware and software components. The as the primitive operations of a more general design-synthe-
refinement process is separated into two levelthe algorithmic sis processand hence many design automation techniques
and the structural. Within each level, refinement isaccom- can be applied to automate the transformation steps. In this
plished by applying sequences of transformations that preserve paper, the transformations are appliedwat different levels

the functionality of an initial specification. This allowsvarious within thecodesign processhe development of a high-level
'correct’ design alternatives to be generated and their costs algorithms and theptimization oflow level structural im-
analyzed. Atthe algorithmic level, different algorithm designs plementationg2]. In practice, theséwo levels oftransfor-

are explored, each producing a computational schedule that mation arecoupled togetheandapplied iteratively. The ob-
has a different performance cost. At the structural level, differ- jective is tointegrate theprocess oflgorithm designearly

ent spatial structures with different resources and performance on, withlower levelstructural design. Thiallows a broader
costs are explored. These costs which characterize the designgesign space to be exploréian thetraditional highlevel

are used to assist in the hardware/software partitioning. An synthesis methodologwhich typically assumes a fixed al-

example is used throughout to illustrate this methodology. gorithmic specification of the problefs,4,5].
The specification is written in a singleigh level func-
|. INTRODUCTION tional notation, calledform [6,7,8] which provides for

codesign a unifiedystem specification devic&he notation

The goal of hardware/softwammdesign is to synthesize is aimed at describing various forms of control compositions
efficient implementations consisting of mixdthrdvare/ and synchronisations over a set of functions and foFmsn
software components fromitial function specificdions. A has threéey features. First, ihas a semantimodel[9] that
function specification is a description of an input/output rezaptures the causal ordering of function applications on a
lation, which is 'abstract' in theense of being independentstream of data possibly in a multidimensional strucfare
of any specificimplementation or partitioning. The centralThe notion of continuity in stream$0,11] provides a tem-
idea behind our codesign process idntiorementally refine poral abstraction of data. The resultingpdel specifies a re-
the high-level functiospecificationuntil an implementation active behavior of a systewhich relates outputs to inputs in
is derived which is as a mix of procedusaftware processes time. Second, parametrised function or form can be used as a
andapplicative hardware modules. Thmcess involves the typewhich defines a context to be instantiated by otiec-
exploration of hardware/software tradeoffs suchiresopti- tions[7]. Composite typesan be built using thset of com-
mization of the hardware/software interface or the movemepbsition laws for functionsThe binding ofcomposite func-
of processing functions from one domain to the other. Th®n types is particularly importafior building systemsier-
process is based onteansformational synthesis approacharchically. Third, it supports syntactic transformation and
which constructs the implementation bpeatedly applying verification[1]. The transformation mechanisittemselves
a set of correctness-preserving transformation rules. Theeencodedising the notation. Thisupports a formal vali-
transformation is said to preserve correctnetizifresulting dation of both the desigand its transformationmecha-
implementation is functionally equilent to its initialspeci- nisms, thus supporting the concept of correct-by-construction
fication [1]. This transformational approach has practical aa our approach.
well as theoretical advantages in codesigme practical ad- Another important component in a codesgystem is a
vantage ighatapplying different sequences of corréeins- measure of design cost. Given a basic function specification,
formations can generate alternative designgerformance several transformations which lead to different corhect-
and cost-benefit analysisThe theoretical advantage that ware/software implementatiomsay beapplied. Each of the
verification of the resulting design &hieved bythe appli- resulting implementations usuallgas adifferent design
cation of a sequence of corré@ngormation stepsThat is, cost. A major task is to select an implementatioat best

ASP-DAC’'97
0-89791-851-7/$5.00 01997 IEEE

fits thecostrequirements. We have establishesystemper- loop/feedback structurgs4]. There aresomeother primitive
formance model in terms of various design metrics to lfanctions, such as the identity function (et)d selectors ¢
used to estimatthe costand todetermine a feasible solution and® — wherea selectsthe head of a sequenee,selects
that satisfies the requirementSome ofthe design metrics the last element of sequenceand {+i) selectsthe (i+1)th
include software codsize, throughput of processors, memelement of a sequence in a finite multi-dimensional struc-
ory size, accesime, interruptcycle time, costs of function ture). The intuitive meaning of each construct is tfel
units, and computation time etc. Serial composition ff, means that the result of @lp-
This paper is organized dsllows. Section 2 gives a ing f, to a stream is a stream which is passed,tovpere
brief introduction tathe form notation. Section 3 defines theboth functions operate at a rate correlated to the input
two levels oftransformations, algorithmic levelnd struc- stream. Conditional composition 4(f,)?p meansthat for
turallevel, and theicorrectness properties. Section 4 useseach data stream, the predicate pcasnputed first,then
case study to illustrate the transformational codesign procesiher f; or f, is applied depending on theuth value of p.
including specification, algorithm derivation, hardware/softConcurrentcomposiion [f;,f,] means that the input stream
ware partitioning, structural refinemergadstructure map- is passed to both functiorend the apmations are per-

pings. Section 5 concludes the work. formed concurrentlyThe resulting structured streantli®n
passed out at a rate correlated to itimut stream. Thus, it
II. THE FORM NOTATION induces synchronization on concemt activities, even

thoughthey may have vastly diffent execution time. Fi-

Theformis based on a variant of 2], with extensions nally, the delay funtional Zf returns theprevious stream
to support multi-dimensional structured streamfydéunc- element of the result of f applied to the original input
tional andsynchronized concurrent forni,13]. The main stream, where the initial output function is denoted by
advantage of FP is its combinative propéngtallows func- f@][0]. The default value of Zf is(#nundefined function)
tion compositionand construction by means of combiningwhich always returns the undefined objéct
forms. The primary data structure form is the stream Form also supports named streamsd treats them as
which is used to modehe time-orderedlow of continuous first classobjectswhich can beeferenced or passed as ar-
data during function evaluatiohlowever,the data structur- guments to forms. Technically, multiple named streams can
ing of each stream element is operatiorthht is, its data be grouped into one sequence to be passed as a aiggle
structure is represented by tbempositionand decomposi- ment to a form, where the argumenthgndecomposed to
tion operators used to construbem. Function application the streams using theelector functionsThus, there is al-
on a multi-dimensional data structure is distributive and coneadythe possibility ofrepresenting sequences by means of
currentoverthe elements in the defaldast significant di- compositionanddecomposition operators, ftat naming is
mension for example, applying aumoperator to gwo di- simply a convenience ithe notationHowever,associating
mensional structure will sum its columns (the least signifnames with streantoes improve appreciabilie readability
cant dimension) concurrently froduce a one dimensional of the notation.
structure (Fig. 1a). A higher ordeperator could be defined As an example, here is a simple courteat counts the
to alter the default operating dimension of a function, for exumber of clicksbetween astart and astop signal (two
ample, a multidimensional map operator (denotedf’py named input streams) for a mouse-like device.
which hasbeen defined in2] operates on the most signifi- pyse start stop :: (0, (1, ZPulse)?start)?stop.
cant dimension. As an example, the application of a map-s8ickCounter click start stop
quence-sum, *operator to awo dimensional structure is . ((inc-P, P)?click, (P, 0)?stop)?(Pulse start stop)
illustrated in Fig. 1b. where P = ZClickCounter.

The functionPulse produces a period of ones between the
start and thefollowing stop signals and théunction Click-

. o, Counter which makes use of an incrementec) counts the
+: + : - i
number ofclicks during that period.
[ll. M ULTI-LEVEL TRANSFORMATIONSAND CORRECTNESS
= [l l l] = [v] Form describes systems as a set of continsbisam proc-
(a) (b) essing functions which are ggibly recursiveThe output of
Fig. 1. The applications of treumandmap-sequence-suaperators to a two the system for a given input stream is determined by the least
dimersional data structure. fixpoint of the functiong10,15]. This input-output relation

The set of primitive combinators include segamposi- defines the functionality of the system. Generally, for a given
tion (denoted by f,), conditional corpostion (denoted by specification functionf, there exists manypossible imple-
(f1,f2)?p), concurrent composition (denoted by, f§]) and mentation functions that have the same functionality bet
delay funtional (denoted by Zf) which is used to construdhey differ bytheir ways ofstructuring the input-output data

stream[1]. Each implementation functiozould be obtained ——
from f through a series of correct transformatidinat pre-
serve the functionality df If g is a correct transformation of

f, then the following equation holds: Algorithm Derivation
q)o'f = g '¢| Function

where the function§, and are structuring functionthat Specification
map the structures of abjects inthe domain of into their ¥
corresponding object structures in the domaig. of

Despitethe generality of thiproperty, it is only suitable
for the refinement of functions at the algorithmic level where
the structuring of the input-output data is fized yet. At Solume) et e
the structuralevel, spatial refinement is generally needed to Specification | """ +~| Specification
explore thevariety of spatial structures appropriate to realize) I
a given implementation function. Each realizatamuld be [Structural Transformation]
obtained from the implementation functitmrough aseries
of spatial transformations thg@reserve nobnly the func- Software Interface __Hardware
tionality of the function, but also the structuring of its input- SEZEEJQZTM 7| MODAL HOL s,fsgﬁitc'zgon —
output data. As an example, a pipelined realization is struc- I i
turally different to a non-pipeline one, but they both exhibit [Structural Synthesis ‘
the same input-output structuring of datedhave the same & Mapping
functionality. Somespatial transformations include grouping l
common conditional expressions, pipelining, serializing High-level MR H?L
components in a concurrent forand many of the simple tanguage (17 nterface " Cr
algebraic law$1]. By integrating both functionaind spatial [ieroprocesse?
refinements during the desigmocess, derivation of input- Fig. 2: The transformational codesign process

output behaviorand optimization of structure yielding the

best design under some constraints, become possible. (1) a processor core fawterpretingsoftware processes, (2) a

coprocessor whichontains many parallel function units for
processing the partitioned data ath@h speedand (3) a
buffered interfacaunit for synchronizinghe interaction be-
tween the software processes and the hardware coprocessor.

shown in Figure 2. It starts with farm specification of a The structureand effect ofthe three components is de-

task andconstructs an algorithrthat computesthe desired scribed below:

function. The construction of algorithms requires analysis firocessor Core: There ardwo software processesnning
the structure of the specificatitinat matches a desired classOn theprocessor core, one ftite partitioning of input data
of computational strategy, such as divide-and-conquer or §2d arranging it irsequence intéhe datebuffer, and the
namic programming et@nd todirect appropriate transfor- other forthe loading of appropriate instructions into the
mation mechanisms to derive an algorithm usingctirepu- control buffer, wherghe instructions in thbuffer are ready
tational strategy16]. The resulting implementation function to be executed by the coprocessor.

is to be partitioned into hardware asdftwareparts which Buffered Interface Unit: It contains three FIFQuffers, a
satisfythe costconstraints. During the partitioningrocess, control buffer,and an input and asutput datebuffer. When
structural exploration of the hardwaaed software compo- the controlbuffer has been loaded, istarts acoprocessor
nents is carried out iteratively to obtain optimistic an@xecution cycle by sending it an instruction. Whembuffer
achievable cost estimatestbke overallsystem. A perform- becomes empty, gignals an interrupt to therocessor core
ance model of theystemwhich assumes a fixed architecturewhich will thensuspend its currergrocessand invoke an-
is used to evaluatihis cost. The final structural forms are other one that fills up the buffer.

then mapped into the target implementation technologies @oprocessor: The coprocessor begirits instructionexecu-
producehigh level pseudo-code fdhe software components iqn \when theprocessor corbasfilled up both the input and
andapplicative descriptions fahe digital hardwareompo- the controlbuffers. It stops whethe buffer becomes empty
nents. The rest of thisection illustrateshis codesign proc- 4,4 resumes when thbuffer has been refilled.When the
ess with an example. coprocessor completés computation, it sends the data to
the output buffer which will be periodically read by fivec-
€ssor core.

In this case studythe objective is to codesign system The overall systerstructure is shown in Fig 3. Details of
for computingthe two dimensional fourier transform opera-the design stephatlead to an implementation of tFT
tion 2DFT). The target system has three components: operation are described next.

IV. TRANSFORMATIONAL CODESIGN

The codesignprocess proceeds froime top-down as

A. An Example of the Codesign Process

Thread B

Coprocessor
Data Address
Generation Data buffer
Thread A Ctrl buffer
ﬁ Dedicated function com bl ne
program code Interface Unit u:::CT:i;‘r:g; Zz::d
: W(G (divideg x,?))
where (o w,@)
Fig. 3: The embedded system structure for computingDRd operation divide = identity
Now the specification, algorithm derivation, partitioning, (a)

transformation and synthesis activities are delineated.
Specification: The2DFT operation of an input matrix x{n m ;Qr
n,) is expressed in thlerm notation as shown below. bwg—
I
N-1 N-1 |

= nK, n,k
ke = 2 2% W

n=0n,=0

combine

mathematical formulation &DFT)\ L
AURVe (1 9 (divi @) 3
X, 1+ (5 X @ W, @) Fbw (R, (dividey xy@) w,®)
Wher = [(D 0 mN(mlz)kzv mN(m/2>klv mN(mlz)k2+(m/2)k1]

where the 2D input sequencg,x O 0< n;,n,< (N-1), is exressed ag: W, = o e
X@=[[Xoor-+ s Xom-n]e e Koneagor - Xneynen] 1 dIVIdeQ [OL ®]
.

and the cc():)afficient gnatrix zsl:)k o s anda,, ©, are quadrant selectors that select all
W@ = [[W,P Wk, Wk, W (WDl (k]] elements of the first and last quadrants respectively
in a 2D-sequence.

Theformdescription o2DFT

(b)
Theaboveform descrlptlon of th@DFT operation Is formu- Fig. 4. Two possible implementation functions of @RFT specification

lated in terms of a multidimensional map operator which istained by partitioning the 2D input sequence into (a) rows and (b) quadrants.
defined in the box below.

n(z) divide (3)

AR ; 5 Fh %2 w,@ .
Multidimensional Map operatdr : % (7 X, P W, (2)) fofn ¢ #fnfn fn

n >

A MpB M .y ° m (m) ° (m) (m) >
fATB™ [aA™ aB™), ., (- 0A™ ©B,™)] ;m>1 n‘"’ denotes a n-D sequence and the fonct, : n® _ nis defined

fPAPB®:[f° AP oB,®, 7 (0+1..0)AP (o+1..m)B. Y] ,m<1 only if the functionf : nxn - n is an associative operat with an
o " " " " identity element. The functiodivide is a structuring functiol

whereA,™, B,™ denote a m-dimensional block with n elements in gach which partitions a 2D sequengeo many sut2D-sequences and

dimension. The factionf ° is defined recursively by applying itself to eafh composethem back to fom a 3D qaence. This commuting

. N X R K dlagramsatlsﬂes the equian in Section lll, that is, th&nction
element in the most significant dimensionot®l that the elements (in fufof, is & correct transforamtion of the functifyf,”.

[0A,™, ... 0A,™] have one smaller dimension thay™, so that this ® ®
X . . i 4 (>< ([og @] X) ([0tgyes@] Wi))
recursive definition termates. The base case (second line) stated b3

. . oo : @ simple algebraic laws, e.g. associative/distributivity
applied to each element in a dexgimensional sequence. @ expands the definition ofmafpnctlon

. . i . i i -t @ w,),..., . " qu‘z’
Algorithm Derivation: Our method of algorithm derivation . ([[(:N;mif;,mffxm)N((mm)klf(z;‘N(mmki()m; +0 X) oa WD)

is by successive modifications tioe initial form specifica-
tion using a set of transformation rulimat satisfythe com-
muting property. The application of transformation rules is
directional, that is, anutput scheme is provided in the deri-
vation as part of the design strategy. For instance;itbeen
straegy for designingthe 2DFT operation isdivide-and-
combinescheme which can be expressed in a general form
F :: combine - G” - divide
where the functiomlivide partitions the input data intgub- seletion is dependent on the finabst metrics defined as
setsthat areprocessed independently the functionG, and part of theperformance analysis of the implementations.
the results are thecombined usinghe combine function. Figure 4 illustrateswo possiblederivations from th&DFT
There are manpossible derivations dghe functiongivide, specificationandFigure 5 details theequence of derivation
combine and G, for aninitial function specification. The steps for the implementation functidf, in Fig. 4b.

—

recursive dénition of Fy

s

.. o
e ([Fy (0 %) (0 Wi®) 1onesFyp (@4 %0 @) (01 W) 1)
[@0, 0™, @, M2k g kHm2k |

definition of map function

o o
X" (Fy ([0ges®] @) ([0guei0g] W)
[@0, @ ™%, g, M g (kxmk |

Fig. 5: Derivation steps of the functiby) from the2DFT specification

Hardware/Software Partitioning: Given a divide-and- This takes intaaccount the sizes of dasad control buffers
combine implementation function, varioldsgardvare/soft- at the interfaceinit which is critical to theverall perform-
ware partitions can be created by unfolding the function inemce of the implementation function. To enable ¢bproc-
an evaluation treavhose leaf nodegepresent théeasttask essor to consume itsput datacontinuously(i.e. data isal-
size supported by the hardware module. A depth-first-trarayspresent in théuffer forthe coprocessoryhe total time
versal of this treproduces a&equential schedulef software needed to producal the datdrom theprocessor core must
instructions forthe hardware module. The size of eaelnd- be lesghan thetotal time taken fothe coprocessor to con-
ware/softwarepartition is governed by the granularity of thesumeit. With this requirement, aimequality forthe size of
hardware module. The larger theainsize, the smallewill the input buffer is established (proof omitted):

be thelevel of interactionbetweenhardware andsoftware, . codesize
and the greater theoncurrency, thdigher theperformance S >__[(tC - tp) N? — (— - Jx min(t;, ,teomp) —t idleJ
the resultingsystem willhave. However, a larggrain size t,

also means aigher hardwarecost. Figure 6 shows the

evaluation trees fothe two derived iplementation func- If S is belowthe lower bound determined tifie inequality,
tions,F, andF,, (Fig. 4) of the2DFT specificationand their the potential parallelisrbetweenthe processor corand the
possiblegrain sizes. By varying theyrain sizes, different coprocessor will be reduced #e coprocessohas tostop
hardware/software partitions are generafegbFig. 6). To andwait for the processor core to fill ughe buffers. Thus,
assist in the performance evaluation of each partitramy thebest choice for S igs lower bound value plus one. Simi-

design metrics were considered. The set of metrics includelgrly, the best choice for the control buffer size, ¢hiscode
size. If Q< codesize, amterrupt will be raised to thproc-

essor core whethe buffer becomes emptythe processor
P coretheninvokes a proces&n interrupt routine) téll up
teomp™ | the COProcessor processing time. the control bufferThus, the interruptycletime t,, which is
tiye = | the time period in which the coprocessor is comput- the time needed tservice aninterrupt isdirectly propor-
ing, but not taking any data stored in the input buffer. tional to the control buffer size Q.

t,= | processor data production rate (cycles/data)
t.= | co-processor data consumption rate (cycles/data)

t.. = | interrupt cycle time (interrupt latency + service time . I
int ko) , (P y T Sen) The calculation of the overall execution timgtfollows:
t, = | memory transfer time (cycles/data) for writing an] o
instruction into the control buffer (FIFO). t.ec= the time needed to initialize the control and data
=| input data buffer (FIFO) size buffers, {,;; + total coprocessor execution timg,,t
=| control buffer size + total interrupt service time,dh
= | the coprocessor grain size. where it =txQ+ tp xS
= | square root of the total data size tcop = codesizex tcomp
code | the number of software instructions sent from the to, =t X (number of interrupts)
er n

size =| processor core to the coprocessor

possible leaf node sizes to be possible leaf node sizes to be
implemented on the hardware implemented on the hardware
i

/A ‘ “‘ ‘777‘ ‘

[N)

The divide-and-combine functiofr, of Fig 4a can be expanded into The recursive divide-and-combine functiéf, of Fig 4b can be
a two or three level tree where the leaf nodes represents the sizexgfanded into a four waypeoted balanced tree with the recursipn
the hardware modules. The above diagram shows a three level tdEpth indicating théeast task size supported by the hardware
The bottom two levels represent the processing ofoekbbf (N/r) module. Each level represents the processing of a quadrant which
rows with each row containing N elemeriEsach row is further sub- is obtained by sub-dividing the quadrant at the level above. [That
divided into r sections of size (N/r) each. The first level represenits if the root node processes anx(ly input sequeres, then
the processing of a column which is subdivided ingeations with each of its child nodes at the first level will process an (N/2
each one containing (N/r) rows of elements. Differeizes of xN/2) input sequence and so on. Generally, each node at the rth
hardware/software partitions can be generated by varying r alevel processes an (N/R N/2) input sequence, and by varyingr,
number of levels in the tree. different sizes of hardware/software partitions are generated.

Fig. 6. Two possible expansions of the evaluation trees for the two divide-and-combine implementation functions in Fig. 4.

To determine a suitable hardware/software partitiorgtructural Transformation: Different structural forms
given the performance constraint, the execution tige. t usually have different performance costhie process of
must be calculated for each possipéetitioning sizeand is structural transformation refines a given structural form into
defined in terms of the granularity of the hardware modulene that haslower costand higheperformance. This re-
As for the example implementation functioRg and F,, finement process is coupled witthe hardware/software
each of their relationshipsetweenthe execution time (in partitioning, because system performance generally varies
cycles)and the graisizes of thecoprocessor is shown in with the sizeandstructure of the hardware module. For each
Figure 7a. The calculatiomssumes thbest choices for both hardware/software partition, there are mamossible struc-

S and Q, thus ignoring interrupts. The graire is a func- tural implementations of the hardwaredulethat have the
tion of the data partition size, r, which is defined in Figure 8ame functionalityand input-output structuring of data, but
As the grainsize increases, more functions are migratedifferent performance costs. Thegn be generated kyc-
from software tchardware and thexecution time decreasescessivespatial transformations of a given implementation
as expected. Nothat the implementatiofunctionF, has a function. The resulting function is guaranteed by the trans-
lower timecostthan that off,, but it uses anuch larger formations to preserve its structuring of the input-output data
buffer size (see Figure 7H)anF, does, in order to sustain and the originafunctionality. Details of the transformation
its continuous consumption of data without interruptiormechanisms can be found in [1].

However, if Q isset lesshan thecodesize (Q< codesize), As an example, consider a hardware/software partition of
the effect ofnterrupts must be taken into account in the pethe function,F, that has themallestgrain size,that is, the
formance calculation. Figure 8 shows effect ofincurring hardware module computes four complex multiplications
various numbers of interrupts on the execution tomeve. followed by a complex add-accumulation for each instruction
Initially, when thegrain size is small, the interruptycle cycle. The structure of the hardware module is shown in Fig-
time is largerthan thecoprocessor computatidime. This ure 9a, and iaccepts foupairs of inputsequenceand pro-
causeshe coprocessor to stagndwait for the buffers to be duces one output sequendéis structure has theame in-
refilled, and hence increases the overall execution time. Agut-output structuring of data as the structure shown in Fig-
the grainsize increases, theoprocessor computation timeure 9b, where théour complex multipliersare connected to
dominates the interrugtycletime. This means that tteon- a sharedusand data ised tothe accumulator sequentially.
trol buffer has been filled up longbefore the coprocessor Although the latter structure requires a smadlecumulator
completes itsurrent instruction (the onthat causeshe in- unit, it takes more clockycles to completéhe whole com-
terrupt), allowing thecoprocessor to continués next in- putation. By applying different spatial transformations to a
struction without stopping. Thus, the interrupts have no elerm, many different structures could be explored, allowing
fect onthe execution timeThis type ofanalysis permits the design tradeoffs and selections.

examination of various hardware/software partitiang en- o0 B
. . . 00N
ables a suitable selection to be made witbkerves some xDNO:E
. . k.
desired cost constraint. ngkj o [
01
L0t Py c;)(Nk:E oy || F ZrT
@ ['\/ﬁ 1 ® Nkziil X, Ok
c T 2 implementation function F T X1 :E
implementation function f 4t 1 -
55 8 38 |_|
2 36
5 § 344 parallel bus
implementation function F 32 inaiencpiicnlincion iy 1 Fig. 9a : A parallel bus implementation of a product-accumulator, where data is
8 238 r 1 fed to the accumulator in parallel.
0 : . . . a .
g grain s;e of the cosmcessor * ® 2 grain :lze of the ceopmcesso% © XDDCON” XoolOn® Xoglp® Xootd°

@ (b)
Fig. 7. (a) The totabxecution time, t .and (b) the buffer size, S of the two
implementation functions, andF as a function of the hardware grain size.

L Xou0nk2 Xou0nk2 Xy 02

4| L XNk Xyotke

A L €1 ORI N
projectio|

x10 ® x10°
+

t t t t t t
execution time curve df, execution time curve d¢f, |

I
Xoon® Xo100pK2 Xy000p K1 Xg; Q<2 ke
shared bu:

Figure 9b: A shared bus implementation of a product-accumuldteredata
is fed to the accumulator sequentially.

number of interrupts = 9
number of interrupts = 9

execution time
execution time

number of interrupts = 0

nurée:)f interrupts = 0

Structural Synthesis and Mapping: This step maps the
T e T e & partitioned structural forms into physical components de-

Figure 8: The relationshipetween the number of interrupts and the executioFﬁrm|_ned bysome givenimplementation teChno'pQY- The B
time of the two implementation functiofig andF . physical components could be software codes in a specific

executable language, drardware library modules which
may include typical logicand arithmetidunctions. The
mapping from a structural form to tiseftware code is es- [3]
sentially syntax-directed, for example, a concurmerhbi-
nator [f4,f,] is translated into a set of sequential staté?!
ments which invokahe functions one by one. lkear re-
cursive form or amap operator is translated into a forall®
loop. However,the mapping from a structural form to a
hardware component exact that is, there is direct corre-
spondence betweehe elements in formsnd the hardware [6]
elements. For instance, combinators in foans treated as
interconnections, and arguments are treated as ports. -
V. CONCLUSION
(8]

This paper presents a formal transformatioradesign
methodology which supportthe concepts of "design-by-
transformation” andcorrect-by-construction”. It is based on
a functional notationform which allows a unified specifica-
tion of system componentndjoint design transformations.
By applying different sequences of "correct" transformationso]
to a form, various implementatiorend component struc-
tures can be explored using both qualitatinel quantitative
analysis. The results of the analyze permit desigactions [11]
to be made duringhardware/software partitioning and
structural optimization. Although the example presented,
here targets only one class of problem solution strategies, the
methodology does providemeans of encoding rules and
transformation mechanisms $olve problems imthercom- [13)
putational strategy classes, thereby liftthg level of tradi-
tional hardware synthesis (behavioral level) teeel that [14]
allows earlyintegration of algorithm desigand hardware
and software synthesis. [15]

ACKNOWLEDGEMENTS [16]

The first author is supported by &PRA and an AEA
grant. The authoraould like tothank Dr.Ricky Chan for [17]
his significant contribution in thdevelopment othe form
notation. Thiswork hasbeen materially assisted by Austra-
lian Government GIRD contracts 16044 and 17028. 18]

REFERENCES [19]

[1] Cheung T.K.Y. & Hellestrand G.R., "Multi-level Equivalence in
Design Transformation,'Computer Hardware Description Lan- [20]
guages Confereng€hiba, Japan. Aug. 1995.

[2] Cheung T.K.Y., Hellestrand G.R. and Kanthamanon P., "A Multi-
level Transformation Approach to HW/SW Codesign: A Case Study,"

the 4th International Workshop on Hardware/Software Codesign
Pittsburgh, Mar. 1996.

Amellal S. & Kaminska B., "Functional Synthesis@ifjital Systems
with TASS,"IEEE Transactions on CADol 13, No 5., May 1994.

Gajski D.D. & Ramachandran L., "Introduction ligh-Level Syn-
thesis,"IEEE Design & Test of Computerst4-54, Winter 1994.

Bergamaschi R.A., O'Connor R.A., Stok L., Moricz M.Z., Prakash S.,
Kuehlmann A.Rao D.S., "High-Levedynthesis in aidustrialenvi-
ronment,"IBM Journal of Research & Developme¥Xgl 39, No. 1/2
Jan/Mar. 1995.

Chan R. & Hellestrand G.R., "VLSI Realisatidrom Recursive
Expressions,9th Australian Microelectronics ConfAdelaide, Aus-
tralia. 1990.

Hellestrand G.R. "MODAL: ASystem foDigital HardwareDescrip-
tion and Simulation,CHDL'79, 1979.

Hellestrand G.R., Chan R., Kam M.C., Cheung T.K.Y, Kanthamanon
P. "Software-Hardware Engineering: Functional Specification
StructuralSynthesis and SimulationiZzhd Int. Workshop orHW/SW
Codesign1993

Cheung T.K.Y. & Hellestrand G.R., "Synchronisation Greg¢man-
tics and Applications,Asia Pacific Conference on Computéard-
ware Description Languageidia. Jan 1996.

Kahn G., "The semantics of a simpdmguagefor parallel program-
ming," Information Processing 7#&roc. IFIP Congress,J.L. Rosen-
feld (ed.) Amsterdam: p471-475, 1974.

Johnson S.D. "Circuits and Systems: Implementing Communication
with streams,"Parallel and Large scale computers: performance,
architecture and application&d. by M. Ruschizka et al. 1983

Backus J., "Can Programming be liberdtech vonNeumann style?
A functional style and its algebra of progran8¢dmm ofACM, Vol
211978

Chan R., "VLSIsynthesis from Abstract Recursive ExpressioRbD
thesis School of EE & CS, University of New South Wales, 1990.

Sheeran M., iFP an algebraic VLSI desigdanguage,'Proc. ACM
symp. on LISP and functional programmipd04-112. 1984

Chen M., "Space-time Algorithms: Semantics and Methodol&Hhp'
dissertation California Institute of Technology, may 1983.

Smith D.R. "Automating the Design of AlgorithmEgrmal Pragram
DevelopmentMoller B., Partsch H., & Schuman S. (Eds) Lecture
Notes in Computer Science 1993.

Hellestrand G.R., Kanthamanon P., Chan R., Kam M.C., Cheung
T.K.Y., "Functional Specification of Concurrency and Sequencing:
Synthesisable Codesign SpecificatioAsia Pacific Conf. on HDL
1993.

Hellestrand G.R., "Thé&nified Specification of Mixed Technology
Systems," Invited papeBASIMI'95 Japan, 1995.

Darlington, P.(1982) "Program Transformation,Functional pro-
gramming andts application: anadvanced courseEd. by J. Dar-
lington, P. Henderson and D.A. Turner, Cambridge University Press.

Luk W., Wu T., &Page ., "Hardware-Software Codesign of Multi-
dimensional ProgramsProc. IEEE Workshop oRPGAfor Custom
Computing Machine®D.A. Buell & K.L.Pocek (eds). 1994.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

