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Abstract— Current design methodologies for em-
bedded systems often force the designer to evalu-
ate early in the design process architectural choices
that will heavily impact the cost and performance
of the final product. Examples of these choices
are hardware/software partitioning, choice of the
micro-controller, and choice of a run-time schedul-
ing method. This paper describes how to help the
designer in this task, by providing a flexible co-
simulation environment in which these alternatives
can be interactively evaluated.

I. INTRODUCTION

One of the major problems facing an embedded system
designer is the multitude of different design options, that
often lead to dramatically different cost/performance re-
sults. In this paper we address the problem of trade-off
evaluation via simulation, rather than via mathematical
analysis. We believe that by providing efficient tools, sup-
porting a variety of target implementation architectures
and flexible mechanisms for evaluating design choices, we
will help the designer in this difficult task more effectively
than by providing relatively inflexible partitioning algo-
rithms.

The problems that we must solve include:

o fast co-simulation of mixed hardware/software imple-
mentations, with accurate synchronization between
the two components.

e evaluation of different processors and processor archi-
tectures, with different speed, memory size and 1/0
characteristics.

e co-simulation of heterogeneous systems, in which
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data processing is performed simultaneously to reac-
tive processing, i.e. in which regular streams of data
can be interrupted by urgent events. Even though
our main focus is on reactive, control-dominated sys-
tems, we would like to allow the designer to freely mix
the representation, validation and synthesis methods
that best fit each particular sub-task.

Since we want to explore trade-offs, we have to use an
implementation independent representation. Among the
available ones, we use a network of CFSMs, which are
Finite State Machines extended to handle integer arith-

metic ([CGH194]). The CFSM model uses a locally syn-
chronous, globally asynchronous paradigm, that

e determines exactly how a module behaves whenever
it performs a transition, but

e poses little restriction on the speed of communication
between modules or on the relative timing of module
executions (the “scheduling policy”).

By using CFSMs we can leverage the work done in soft-
ware synthesis so that if we wish to explore a particular
hardware/software partition, the software part can be au-
tomatically generated optimally. The performance of the
system and its correctness can be assessed by running
a co-simulation. Because of the semantics of CFSMs and
the architecture supported, there is only one resource (mi-
croprocessor) that can run code, but there is no limitation
on the hardware blocks. Hence all concurrent hardware
tasks can be simulated in concurrent mode, while software
tasks have to be scheduled onto the processor.

Simulating this implementation requires to know how
long each of the software tasks takes, and what schedul-
ing policy we are going to use. To solve the first prob-
lem we need an estimation of running times of the tasks.



To solve the second one we need to know the schedul-
ing policy, that can be either given by the user or au-
tomatically generated as well. With this information we
can use any Discrete Event simulator. It is our intention
to leverage maximally what is available and the Ptolemy
system ([BHLMO90]) is appropriate to solve our problem
except for the differentiation among software and hard-
ware tasks, since in the Ptolemy DE simulation each task
is considered “hardware”. In this paper we show an al-
gorithm that allows to co-simulate CFSM tasks with a
given microprocessor architecture and a given scheduling
policy without changing any of the Ptolemy code; but by
simply having all software tasks implement a distributed
scheduler.

Past work in the area of performance prediction and
trade-off evaluation has focused mostly on elaborate cost
models to guide automated partitioning algorithms, or on
co-simulation methods in which a rather detailed model
of the processor may be required.

Specifically, co-simulation requires to satisfy two con-
flicting requirements:

1. accurate modeling of the interaction between soft-
ware and hardware, which requires in the limit to use
cycle-accurate execution of a stream of instructions
on a hardware model (emulator) or on a software one
(simulator).

2. fast execution of application code in a flexible analy-
sis and debugging environment, which would require
in the limit to compile and run the embedded soft-
ware on a host workstation, somehow simulating its
interaction with the hardware and with the environ-
ment.

A first class of co-simulation methods, proposed for ex-
ample by Gupta el al. in [GIM92], relies on a single
custom simulator for hardware and software. This simu-
lator uses a single event queue, and a high-level, bus-cycle
model of the target CPU.

A second class, described by Rowson in [Row94], loosely
links a hardware simulator with a software process. Syn-
chronization is achieved by using the standard interpro-
cess communication mechanisms offered by the host Op-
erating System. One of the problems with this approach
is that the relative clocks of software and hardware sim-
ulation are not synchronized, thus requiring the use of
handshaking protocols. This may impose an undue bur-
den on the implementation, e.g. if hardware and software
do not need such handshaking since the hardware part in
reality runs much faster than in the simulation.

A third class, described in [tHM93], keeps track of time
in software and hardware independently, using various
mechanisms to synchronize them periodically. If the soft-
ware is master, then it decides when to send a message,
tagged with the current software clock cycle, to the hard-
ware simulator. If the hardware time is already ahead, the
simulator may need to back up, which is a capability that

few hardware simulators currently have. If the hardware
is master, then the hardware simulator calls communica-
tion procedures which in turn call user software code.

Our approach is different from those listed above, be-
cause:

1. it allows different components of the system to be
scheduled independently, without requiring to write
a custom environment,

2. software and hardware are simulated together in a
unified environment, with the same debugging inter-
face,

3. a bus-cycle model of the target processor is not re-
quired, yet a satisfactory level of accuracy is achieved.

The main emphasis of our work is on speed, both during
simulation (a speed exceeding 1 million clock cycles per
second can be achieved on a general-purpose workstation)
and when the user changes some architectural parameters
(changing the target processor or the hardware/software
partition takes about 1 second). This is possible because
software is compiled directly on the host workstation mi-
croprocessor, and the actual running time on the target
microprocessor is determined via estimation, before start-
ing the simulation.

The paper is organized as follows. Section II describes
our co-simulation methodology in detail. Section III
shows with an example how co-simulation can be used
to interactively evaluate the performance of various par-
titions of a system under various operating conditions.
Section IV concludes the paper and outlines opportuni-
ties for future research.

II. Co-SIMULATION METHODOLOGY

A. The co-simulation environment

Our co-simulation and trade-off evaluation method uses
an existing co-design environment for reactive embedded
systems, described in [CGHT94], for synthesizing software
and hardware, and for analyzing their performance. The
POLIS system is centered around a single Finite State
Machine-like representation, which is well suited to our
target class of control-dominated systems. A Co-design
Finite State Machine (CFSM), like a classical Finite State
Machine, transforms a set of inputs into a set of outputs
with only a finite amount of internal state. The difference
between the two models is that the synchronous communi-
cation model of concurrent FSMs is replaced in the CFSM
model by a finite, non-zero, a priori unbounded reaction
time. Fach element of a network of CFSMs describes a
component of the system to be modeled. One of the pur-
poses of co-simulation is exactly to attach timing infor-
mation to this originally untimed specification, by means
of partitioning and profiling.



One of the major strength of POLIS is the ability to
synthesize both hardware and software components start-
ing from the common model of CFSMs.

e Hardware blocks are mapped into an abstract hard-
ware description format, namely BLIF ([SSL*t92]).

e Software blocks are mapped into a software structure
that includes a procedure for each CFSM, together
with a simple Real-time Operating System. A timing
estimator quickly analyzes the program and reports
code size and speed characteristics. The algorithm
is similar to that used by [PS91], but requires no
user input. The estimator is a key component of
our co-simulation methodology, because it allows us
to obtain accurate estimates of program execution
times on any characterized target processor.

Ptolemy ([BHLM90]) is a complete design environment
for simulation and synthesis of mixed hardware/software
data-dominated embedded systems. Here we will concen-
trate on its simulation aspects. Ptolemy treats the sys-
tem to be designed as a hierarchical collection of objects,
described at different levels of abstraction and using dif-
ferent semantic models to communicate with each other:

e Each abstraction level, with 1ts own semantic model,
is called a “domain” (e.g., data flow, logic, ...).

e Atomic objects (called “stars”) are the primitives of
the domain (e.g., data flow operators, logic gates,

).

e “Galaxies” are collections of instances of stars or
other galaxies. Instantiated galaxies can possibly be-
long to domains different than the instantiating do-
main.

Each domain includes a scheduler, which decides in which
order stars are executed (both in simulation and in syn-
thesis). In particular, we used the Discrete Event (DE)
domain of Ptolemy to implement the event-driven com-
munication mechanism among CFSMs. It has a no-
tion of global time, and the scheduler mantains a global
event queue where events are ordered based on their time
stamps; at any given instant the event with the small-
est time stamp 1s taken from the queue, and the simula-
tion code of the stars which have that event as input is
executed (the stars are “fired”). This domain is event-
driven, rather than data-driven as most other domains in
Ptolemy, and hence seems the most appropriate for our
purposes.

B. CFSM co-simulation in Ptolemy

The Ptolemy scheduler in the DE domain fires stars
as if they were executed concurrently. Thus it does not
directly provide a way to simulate CFSMs implemented

in software and running on a limited amount of compu-
tational resources (in this paper we assume that a sin-
gle CPU is available). Our goal was to modify the DE
scheduler behavior without changing its code, to maintain
compatibility with the original version. Thus we let the
scheduler fire stars in its own preferred order, but every
star may or may not actually execute the main part of
its code, based on global information which characterizes
the shared resources. All this is accomplished in a trans-
parent way so that the Ptolemy scheduler sees a world of
concurrent stars, while the software stars see the POLIS
scheduling policy.

Having met this goal, it is now possible to simulate
in Ptolemy a system designed using POLIS: this is ac-
complished by generating a proper description of every
CFSM and loading it into Ptolemy together with the net-
work of interconnections. It is then possible, through the
nice graphical interface provided by Ptolemy, to evaluate
trade-offs between hardware and software solutions, and
to visualize the overall system behavior.

The detailed design flow for the co-simulation and
trade-off analysis phases is as follows:

1. The control/data flow graph of every CFSM in the
system specification is built, and the corresponding
C code is generated (as described in [CGH195]). The
C code also includes run time estimations for each C
code statement, based on information derived from
benchmark analysis of the target processor ([SSV96]).

2. The Ptolemy language source code for every CFSM
is generated. This in turn includes the C code gen-
erated by the previous step.

3. All CFSMs are loaded into Ptolemy. Each of them is
a single star, with input and output portholes corre-
sponding to CFSM inputs and outputs.

4. The network of interconnections between stars (CF-
SMs) is created in the Ptolemy environment.

5. Each star is assigned (by interactively modifying one
of its properties or one of the properties of a galaxy
above it in the hierarchy):

e an implementation, either software of hardware,
and

e a priority, used by the software scheduler.

Hardware stars run concurrently and terminate in a
single clock cycle. Software stars are mutually ex-
clusive, and use the run time estimation to deter-
mine how long it takes to emit outputs and complete
firing of a single transition of the CFSM. Since the
underlying model for both hardware and software is
the same, changing the implementation can be done
at run-time by just accumulating or not the timing
information.



6. A single system-wide parameter (also modifiable in-
teractively) describes which one of the pre-chara-
cterized processors must be used for cycle counting.
This provides a mechanism to easily change the tar-
get processor for a given set of simulation stimuli,
without the need to re-analyze or re-compile the spec-
ification. In the same way it is possible to specify
the scheduling policy best suited for the given appli-
cation. If the scheduler is priority-based, then 1t can
use the priority level assigned to each star.

7. The simulation is started with appropriate stimuli
generators and output monitors, to check the be-
havior of the system. Multiple simulations can be
compared to evaluate timing constraint satisfaction,
run time, processor occupation, and other interesting
pieces of information.

For example, in Section III we will describe how the
CPU utilization can be monitored, to detect and an-
alyze potential overload conditions.

C. Scheduling policy implementation

The solution that we have chosen does not require to
modify the DE scheduler. From now on, we will call soft-
ware scheduler our own scheduling policy, implemented
by an automatically generated procedure on top of the
Ptolemy DE scheduler. Each simulation cycle (identified
by an integer number, and directly corresponding to a
simulated system clock cycle) is divided into three phases:

1. Request phase, in which all stars receive events,
and request from the software scheduler access to
the processor, re-scheduling themselves at the grant
phase.

2. Grant phase,; in which only one star is granted ac-
cess to the processor and executes its user code, while
all other enabled stars re-schedule themselves at the
update phase. The identifier of the star which cur-
rently runs on the processor is kept in a shared vari-
able called star_ack. This star also computes the time
at which the processor will become available again, in
a shared variable called nezt, by accumulating esti-
mated clock cycles during the execution of user code

and RT-OS calls.

3. Update phase, in which all enabled stars re-sche-
dule themselves at the next time the processor is
available.

The request phase is characterized by an integer simula-
tion time, while the grant and update phases are char-
acterized by fractional simulation times. All events are
received and emitted at integer times.

Scheduling is thus performed in the following way.
Whenever a software star receives an event:

e If the current time is greater than or equal to nezt,
then the processor is available:

— If the current time identifies a request phase,
then the star sends the request to the software
scheduler, and re-schedules itself at the next
grant phase.

— If the current time identifies a grant phase, then
the star must check the variable star_ack to
know if it has been chosen by the software sched-
uler. In this case, it executes the user-specified
part of its own code, accumulating estimated
clock cycles depending on the sequence of in-
structions that is executed, and sets the vari-
able next according to the clock cycle estimate.
Otherwise it must re-schedule itself again at the
next update phase (to make sure that the se-
lected star has had time to execute its code and
update the variable next).

— If the current time identifies a grant phase, then
the star reads the variable next and re-schedule
itself to try to get the processor at that time.

e If the processor is not available, but the priority of
the star is greater than that of the currently exe-
cuting star, and the chosen scheduling policy allows
interrupts (i.e. it is pre-emptive), then an interrupt
occurs. The variable nest is incremented by the es-
timated execution time of the interrupting star, and
the interrupted one is prevented from emitting out-
put events until the end of the interrupt. Interrupts
may be arbitrarily nested, and can only cause delays
in the interrupted stars, without changing their be-
haviour (input variables to stars are buffered in our
software implementation scheme, to improve the pre-
dictability of the system behavior).

e If the processor is not available and the priority of
the star is less than or equal to that of the currently
executing star, or if the software scheduling policy is
non-pre-emptive, then the star must re-schedule itself
at time next. Hence, stars with the same priority level
do not interrupt each other.

The communication queues among stars are forced to
hold at most one event, to match the CFSM communi-
cation model using one-place buffers. This means that
events may be overwritten, if they are emitted twice with-
out being detected. This is legal in the CFSM model
of computation, but can optionally be logged to a file,
because often losing events means violating timing con-
straints and is interesting for the designer.

The implementation (hardware or software) of each star
can be dynamically and independently changed during a
Ptolemy session, by just updating a parameter of the star
or of a galaxy enclosing it in the hierarchy. Thus it is
possible to experiment with different solutions in a very



straightforward manner and in a short period of time. In
fact, it is not necessary to rebuild the system simulation
model, but it is sufficient to execute a new simulation of
the same model.

III. AN APPLICATION EXAMPLE

We consider an application from the automotive do-
main: a dashboard controller. It takes as inputs pulses
coming from the sensors on the wheels and on the engine,
and data about fuel level and water temperature. It pro-
cesses the inputs and drives, using pulse-width modulated
signals; a set of dials.

We evaluated different implementation choices, under
various possible operating conditions. The timing con-
straints, which in this case are relatively soft, derive
mainly from the need not to miss any incoming pulse.
For the engine this means up to 5000 pulses per second,
while for the wheel this means up to 16 pulses per sec-
ond. Qutputs must be produced at a frequency of at least
100 Hz and with a maximum jitter of 100 microseconds
to drive the gauge coils. In this case, we first assumed
to use a Motorola 68HC11, because the timing estimate
available from synthesis (379 clock cycles at most for the
most time critical task, the engine pulse recorder) showed
that we could hope to satisfy the requirements with a 1
MHz processor.

The system was modeled using 13 CFSMs, each speci-
fied in ESTEREL, for a total of 2500 lines of source code
and 10 KBytes of compiled object code for the final imple-
mentation. Their interconnection was described graphi-
cally with the Ptolemy user interface, as illustrated in
Fig. 1. One CFSM is devoted to input conversion from
level to pulse, three CFSMs derive timing events from
the base time reference, four CFSMs filter and normalize
the data, one CFSM converts potentiometer readings to
fuel level (taking into account the shape of the tank), and
the remaining four CFSMs perform the PWM conversion.
Scheduling was performed by hand, due to the simplicity
of the system, resulting in an assignment of two priority
levels to CFSMs. The highest level was assigned to the
CFSMs that had to handle input events, and corresponds,
in practical terms, to interrupt-driven I/O without inter-
rupt nesting.

We first tried to implement everything in software, then
moved part of the components to a hardware implemen-
tation in order to satisfy the timing constraints. The
PWM converters were an obvious choice for hardware im-
plementation, because their low jitter constraints made a
software implementation on a 68HC11 infeasible. Fig. 2
shows the priority level of the star currently executed on
the processor as a function of time!. The processor uti-
lization is still fairly high, especially considering that the
simulated car speed was about 50 Km/h. Hence we moved

1A value of -1 means that the processor is idle, 1 is the highest
level, each vertical bar represents a context switch.

also the timing event generators to hardware (a typical
choice in embedded systems, in which timing functions
are often performed by special-purpose timers which are
part of standard micro-controllers). Fig. 3 shows the pri-
ority level in this second case. The user interface uses
the standard constant specification mechanism provided
by Ptolemy, and allows the designer to change all the ar-
chitectural parameters without re-compilation. Currently
supported parameters are:

e CPU type, clock speed, scheduler type for the whole
system,

e implementation (hardware or software) and priority
(used only for software stars) for each star or hierar-
chical star group (galaxy).

The performance of the simulator is very high, espe-
cially if there is no component which is active at every
clock cycle, because in that case we can exploit the inac-
tivity of the system. The dashboard example is ideal in
this respect, because the highest frequency input events
occur about once every 100 clock cycles (assuming a 1
MHz clock). The results for the dashboard simulation,
using various types of architectural choices, are reported
in Table I. In this case, we used estimated execution
times for a Motorola 68HC11 micro-controller with 1 MHz
clock speed, and a MIPS R3000, with 1 MHz and 10 MHz
clock speed. The partitions shown in the column labeled
“Part.” are respectively:

e SW: all modules are in software,

e HW/SW: the PWM drivers and timing generators
are in hardware, and the rest is in software,

o HW: all modules are in hardware.

The column labeled “Graph.” shows when the graphical
priority display (useful for debugging the software sched-
uler) is used. All CPU and User times are in seconds, and
were obtained on a SPARCSTATION 10 with 16 Mbytes
of RAM, simulating 20 million clock cycles (except for
the 10 MHz MIPS, for which 200 million cycles were sim-
ulated). The user time required to restart a simulation
when the partition or the target processor are changed is
about 1-2 seconds.

The execution time for the all-software partition on the
68HC11 is very high because the processor does not meet
the timing constraints, and hence the simulation is in-
terrupted very often to log the information about missed
deadlines on a file.

The simulation performance (without graphics output,
that significantly slows down the system) is around 1 mil-
lion clock cycles per second. This speed, which can be
achieved thanks to the extremely low overhead imposed
by our cycle counting technique, is sufficient in many cases
to run simulations almost at the same speed as the real
target system (virtual prototyping).
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TABLE 1
SIMULATION SPEED FOR VARIOUS TYPES OF SYSTEM PARTITIONS

Target | MHz Part. Graph. Time

Proc. CPU User
HC11 1 SW No > 1000 | > 1000
HC11 1 | HW/SW No 30 38
HC11 1 HwW No 25 27
MIPS 1 SW No 161 162
MIPS 1 | HW/SW No 23 25
MIPS 1 HW No 25 26
MIPS 10 | HW/SW No 23 23
HC11 1 | HW/SW Yes 202 205
MIPS 1 | HW/SW Yes 258 270

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that fast co-simulation can
be done at the early stages of a design, for partition eval-
uation and functional verification purposes. The method-
ology relies on the use of constrained software synthesis,
that permits easy run time estimation for a target pro-
cessor, and of a powerful co-simulation environment built
in the Ptolemy system.

We noticed, by profiling the simulator code, that over
90% of the time (when the graphic output is not used)
is spent executing the DE scheduler code. This means
that a faster simulator could be obtained by re-writing the
Ptolemy DE Scheduler to take into account the required
behavior of CFSM stars, and eliminate the overhead in-
troduced by the re-firing method. On the other hand, this
option may not be desirable for reasons of compatibility,
both with future versions of Ptolemy, and with other sim-
ulation domains within Ptolemy.

In the future, we would like to allow the designer to cre-
ate more than one software partition, thus simulating mul-
tiprocessor environments, and to specify hand-estimated
execution times for software modules that were not syn-
thesized using POLIS (e.g., data-intensive modules de-
signed using Ptolemy).
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