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Abstract| This paper examines the issues and

progress in the design of highly integrated micro-

electronic systems. These microsystems rely on an

array of diverse components such as processors, mem-

ory, network interfaces, graphics and DSP `cores.'

In particular, we discuss problems in the combined

design of hardware and software for these systems.

We present a decomposition of the co-design prob-

lem, and identify the needed technologies in speci�-

cation/modeling, synthesis and validation for e�cient

and error-free system designs. Co-design tools along

with domain-speci�c design methodologies provide a

key advantage to the system integrator in building

complex single-chip systems. We illustrate this point

in the speci�c area of architectural evaluation using

co-simulation tools.

I. Introduction

The continuing increases in the capacity and the inte-
gration density of single-chip systems have now made it
possible for the system designer to assemble complex sys-
tems using pre-designed core or mega-cells and glue logic
on a single chip or substrate. Currently available cores
include microcontrollers, DSP processors, PCI/VME net-
work interfaces, encryption and decryption engines, signal
and image processing elements, modem elements, DMA
interfaces and analog interface circuits. The diversity of
core-cells continues to increase with new o�erings from
specialized design houses. This integration capability is
now leading to utilization of intellectual content from di-
verse sources, even from widely di�erent domains such as
digital signal processing, networking, graphics and imag-
ing to be co-located on the same chip to create new prod-
uct categories and applications. These components are
often integrated together with a general-purpose micro-
processor that allows maximum 
exibility in the product
design and evolution through programming and software
updates.
With the increase in system complexity the system ar-

chitects are facing new challenges in system design, in-
tegration and validation. Testability of these microelec-

tronic systems is also a challenging task. As the use of
commodity hardware components increases, the design of
software, especially commodity software such as operating
system components and device drivers, becomes equally
crucial to a good system design. A systematic approach
to design begins with the de�nition of a target architec-
ture. A system architecture addresses a whole host of
design choices in system functionality, components used,
the macro-level organization of system components and
their interconnection. Depending upon the target appli-
cation domain the system architecture can be quite di-
verse. We visit this issue of architectural variation later
in Section III.

Given a system application and a preliminary target ar-
chitecture, co-design tasks can be divided into three major
areas: speci�cation analysis, design/synthesis, and valida-
tion. Typically various subtasks in these areas are carried
out in an iterative fashion since many of these tasks are
inter-related. As described in the following section, while
some of these subtasks can be automated using CAD the-
oretic tools, a good co-design methodology is built in the
context of the application domain and the designer expe-
rience.

II. Co-design Challenges

Figure 1 schematically illustrates the major problem
areas in the design of single-chip hardware/software sys-
tems. The hardware and software components are built
using synthesis and compilation tools. In addition, a de-
sign environment that allows easy integration and testing
of processor with di�erent peripherals is crucial to a suc-
cessful co-design methodology. We brie
y consider the
co-design challenges in each of these areas below.

A. System Speci�cation and Modeling

System speci�cation here refers to a description of the
application that an embedded system is designed to de-
liver. Since embedded systems are dedicated to speci�c
applications a system speci�cation also describes the de-
sired system functionality. A model is an abstraction
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of this functionality as the system implementation goes
through various stages of design and synthesis tasks. Em-
bedded microsystems with hardware and software are a
class of reactive systems [15] that are in continuous in-
teraction with their environment. In contrast to general-
purpose computing systems, the execution of software in
these systems can be considered as `open' to system in-
teractions. Because of the multiplicity of system inter-
actions, not only with a user but also physical processes
and other systems which constitute its environment, it is
generally di�cult to establish a complete chain of causal
relations from input events at the system interface to sys-
tem responses. It is, therefore, common to specify a de-
sired system behavior using timing constraints between
events and actions. These timing constraints are an im-
portant part of system functionality in building embedded
micro-systems. Speci�cation methods for embedded sys-
tems must �nd ways to express not only system function-
ality but also the timing constraints. The same require-
ment also holds for system models which must capture
functionality along with the constraints.

High-level programming languages are increasingly be-
ing used to describe application functionality, for instance
as a C program or using Verilog/VHDL hardware descrip-
tion languages which adhere closely to semantic conven-
tions of popular programming languages [9]. Designer ex-
perience with problem solving using programming is pro-
viding the momentumto this proliferation even though of-
ten these languages are severely inadequate for constraint
modeling. Constraints are often expressed as language
annotations and/or derived using constraint models. A
notable language based on the notion of reactivity, as de-
scribed earlier, is the synchronous language Esterel [2].
The concept of reactivity appears in Verilog and VHDL
as signals and events (a change in a signal's value) as well

as the ability to recognize and respond to events.
There are two important challenges in system speci-

�cation methods: �rst how to capture the designer in-
tent in the description language in a manner that makes
a productive use of the designer time, and its use in a
co-simulation environment that enables the designer to
build a system prototype capable of running actual ap-
plications. To address the �rst issue, several researchers
have taken the approach of building visual aids that allow
the designer to use graphical formalisms and entry sys-
tems to aid in system conceptualization and design (see
for instance, [11, 7]). In [1, 17] the authors have pro-
posed, with mixed success, embedded system prototyping
using several languages such as a type language, an ex-
ecution language, an architecture language et cetra. So
far the visual formalisms appear to be the most promising
candidate for adoption in micro-system design.

B. System Validation

System validation refers to task of verifying that the
requisite functionality is delivered by an implementation
while maintaining certain desired properties. Among
these, a high-speed system-level simulation is a necessary
prerequisite for correct and e�cient design of these highly
integrated systems. Since these systems use general-
purpose computing elements, correct system functionality
can often be tested by running existing target software
applications. In order to test these applications, however,
the system designer must be able retarget the application
to the new machine's architecture, and execute it along
with the application-speci�c hardware assists and cores.
This requires an integrated simulation environment where
detailed architectural models consisting of hardware and
software components can be built and simulated for per-
formance on new and existing applications. Currently,

large scale system design at the highest level of abstrac-
tion is done using the programming language C or C++
on simulators such as Tango [8] and MINT [22]. To ob-
tain a meaningful evaluation of system designs, simula-
tion speed is of utmost importance. To improve simula-
tion speed, tradeo�s against simulation accuracy, hard-
ware and language assists have been tried [19, 4].
In general, almost any simulation framework that sup-

ports the notion of events and provides mechanisms to
process these events, can be used to build simulatable
system prototypes. This is even more true of modeling
reactive hardware systems. Indeed, most existing HDLs
can be classi�ed as source languages for a correspond-
ing event-driven simulator [12]. An event-driven model
is powerful enough to describe most hardware systems
at any level of abstraction: from algorithms to gate-level
circuits [21]. However, this generality also imposes a sig-
ni�cant burden on the simulation e�ciency due to the
extra work (or overhead) needed in event maintenance
and processing. Event processing often requires interpre-

tation of event generation, propagation and disposition



by the simulation model. \Interpretation" of an object
in a simulation model refers to the evaluation of the ob-
ject by a separate procedure that provides semantic in-
terpretation of the object in the context of the simulation
model. Mixed hardware/software simulations are slowed
down due to their interface with an event-driven hard-
ware simulator. Recent e�orts in this direction (e.g., [6])
have demonstrated the utility of simulation backplanes in
integrating various simulators. Though the achieved sim-
ulation speeds are not mentioned it is unlikely that hybrid
machine simulations can be used to run moderately large
application benchmarks which require simulation e�cien-
cies upwards of 100,000 simulated cycles per second.
A critical bottleneck in achieving higher simulation

speeds stems from the integration of hardware descrip-
tion language (HDL) models. The HDL simulations often
require operation-level interpretation, that is, each oper-
ation (statement) requires a call to the interpreter. This
is because, each signal assignment statement, in a lan-
guage such as VHDL, can potentially generate an event,
therefore, the system simulations are signi�cantly slowed
by frequent calls to the interpreter (or the event man-
ager). An alternative is to build models that work with a
cycle-based simulation. A cycle-based simulation, though
not necessarily e�cient in terms of work required, is of-
ten able to use native execution (against software inter-
pretation) to achieve signi�cant reductions in simulation
time. Cycle-based simulation using conditional control

ow in high-level programming languages has been used
to demonstrate speedup in gate-level hardware simula-
tions [23]. Simulation frameworks such at Ptolemy [3]
present a promising approach to co-simulation in speci�c
application domains by allowing integrated simulation of
heterogenous components through hierarchical encapsula-
tion of model components and extensive library support.

C. System Partitioning and Synthesis Subtasks

Partitioning de�nes a subtask of system implementa-
tion, the other being synthesis subtasks such as opera-
tion/task scheduling, hardware resource allocation and
binding; and instruction selection, code generation in case
of software. The goal of partitioning may be one of follow-
ing: application-speedup on a given target architecture,
greater resource utilization, size and performance con-
straint satisfaction. In contrast to traditional approaches
to system engineering where the hardware and software
partitions are relatively rigid, system co-design is charac-
terized by 
exible partitions that may be shifted to meet
the changing performance criteria, sometimes as a part of
the product evolution. Indeed, one of the goals of CAD for
embedded systems is to delay this determination of hard-
ware and software to as late in the design process as possi-
ble, thus allowing the system designer 
exibility in evalu-
ating design tradeo�s while reducing total cost. However,
this attempt at delayed determination of hardware and
software must be considered against the ability of the de-

signer to use the partitioning results for improved system
design and/or synthesis tasks. A late determination of
hardware and software reduces its e�ectiveness in the de-
sign of the individual hardware and software components,
whereas an early determination is limited by the model-
ing capabilities. Further, accurate performance character-
ization and constraint analysis are essential for e�ective
system partitioning. In absence of requisite modeling ca-
pability, the system partitioning simply can not be carried
out using computer-aided design tools. Thus, there exists
a strong relationship between the models used for cap-
turing system functionality and the abstraction level at
which the partitioning is carried out.

A partitioning problem typically has two inputs: a de-
scription and/or model of the application and a target ar-
chitecture. While the description methods often rely on
popular programming languages, there exists a great di-
versity in the models used as input to hardware/software
partitioning formulations. For a speci�c architecture, par-
titioning of an algorithmic description results in a parti-
tion of operations (or tasks) into hardware and software
portions. An exact solution to such a partitioning prob-
lem even in the simplest cases requires solution to known
intractable problems. This provides motivation for heuris-
tic solutions (see for instance [13]). Hardware synthesis
for application-speci�c blocks may use traditional archi-
tectural and logic synthesis techniques. Software for em-
bedded systems builds upon techniques for compilation
and retargetable code generation. However, there are im-
portant di�erences. The notion of machine description is
no longer limited to a speci�c instruction set architecture.
Instead, often detailed machine organization is needed to
make the right design tradeo�s. This may include infor-
mation about the major building blocks, their intercon-
nection or even RT-level behavior of the machine [18].
This makes the problem of generation of good compiler
tools especially hard. On the other hand, the relatively
�xed nature and the tight memory footprints of the em-
bedded software also a�ord the possibility of using expen-
sive algorithms to search of optimal solutions by incurring
higher one-time compilation costs.

III. Rapid Evaluation of Architectural

Alternatives

Design of high performance single-chip systems re-
quires rapid evaluation of possible architectural alterna-
tives both in conventional machine organizations as well
as novel architectures for embedded systems. Architec-
tural choices may dictate the hardware and software re-
sources used and the hardware interconnection. For the
architectural choices made, parametric determination of-
ten requires extensive simulations in the target applica-
tion environment.

Since embedded systems use combination of hardware
and software elements to physically divide the implemen-
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tation task, the most common architecture in these sys-
tems can be characterized as one of co-processing, i.e., a
processor working in conjunction with dedicated hardware
to deliver a speci�c application. The speci�c implemen-
tations of the co-processing architecture vary in the de-
gree of parallelism supported between hardware and soft-
ware components. For instance, the co-processing hard-
ware may be operated under direct control of the proces-
sor which stalls while the dedicated hardware is opera-
tional [5], or the co-processing may be done concurrently
with software [10]. The instruction and data paths to the
processing and co-processing hardware may or may not be
shared depending upon application characteristics. The
hardware/software interface de�nes another architectural
variable that strongly a�ects the partitioning problem for-
mulation.

As mentioned earlier, fast system simulation is key to
architectural evaluation. In the following we describe our
approach to system simulation that uses a combination
of interpretation and native code execution such that the
native codes are encapsulated into non-event producing
blocks and interpretation is done at a coarse-level. This
is done by separating the two very di�erent time-scales of
concern related to system simulation and hardware ver-
i�cation. Cycle-based system-level simulation is uses a
modi�ed program-driven simulator MINT that performs
the system simulation as the application executes. The
simulator front end represents interface to the applica-
tion program, whereas its back end models the underly-
ing micro-architecture. The front end handles the appli-
cation program execution. When the program execution
leads to generation of event (either through reference to
modeled blocks in MINT or through directives embedded
in the source program), the front ends sends the event to
the back end. The underlying simulation library provides
event processing and disposition. As an example, consider
interconnection to a processor core with a peripheral on
an on-chip system bus. A read event generated by the pro-

cessor will be processed by executing a corresponding pro-
cedure call. The back end de�nes this function, and can
do almost anything inside this function representing its
handling by the corresponding dedicated hardware block.
For instance it can call new functions, create new events,
et cetra. This allows us to conveniently customize sys-
tem simulations for speci�c hardware blocks. Due to the
high-level synchronous nature of the system level simula-
tions, the hardware blocks are modeled at the behavioral
level while detailed implementations are only considered
in hardware validation.

The compiled simulator (based on MINT) can interpret
almost any program that runs natively, and can gener-
ate a events speci�c to any hardware block. The origi-
nal design of MINT was used to generate events repre-
senting references to (cache) memory blocks. However,
with appropriate de�nition of an event, the system simu-
lator can be used to address references to any hardware
block. This way the simulation environment allows us
to associate events and reduce runtime interpretation to
those only on the blocks that are under design. The
back end is customized to re
ect the underlying system
micro-architecture. For architectural blocks that can be
identi�ed in the compiled simulator, the applications do
not need to be preprocessed or recompiled. (The origi-
nal MINT simulator interprets the applications that are
compiled and linked on a MIPS-based machine. Variants
of MINT for other Intel and HP architectures are also
commonly available.)

Hardware validation is done using traditional event-
driven simulation on hardware blocks. The input to these
simulations is derived from translation of C models of
hardware into HardwareC [14] blocks. These blocks are
subject to presynthesis optimizations based on Timed De-
cision Tables [16]. (Currently this translation is done
manually.) The hardware validation does not require on-
line application executions. Instead, the results from ap-
plication executions are used to create a test-bench for
the event-driven hardware validation. This reduces the
redundancy in detailed hardware simulations (for the pur-
poses of hardware validation), while modeling its e�ect on
application-level simulation statistics.

To test the usefulness the simulation environment, we
have implemented a micro-architecture in the simulator
back end that uses application-speci�c hardware assists
to improve system performance. In particular, hardware
is used to improve the performance of memory hierarchy.
The memory hierarchy consists of a L1 data cache, a L2
data cache, and the main memory. The L2 cache can be
con�gured as either shared or private among on-chip func-
tional blocks. Four application kernels (Jacobi, SAXPY,
Gather-scatter array references and large-scale irregular
vector stride) and two complete application benchmarks
(MP3D and sparse matrix manipulation package) [20]
were compiled using standard C compiler for simulation
on this new architecture. Results indicated system sim-



ulation speeds from 300,000 to over a million instruction
per second for machine models in high-level C programs.
Since these simulations use only an abstract view of the
hardware blocks and thus are limited in comparing de-
tailed designs of these blocks. However, these simulations
are useful in making application-driven design decisions.

IV. Conclusions

E�cient and correct design of a `system-on-a-chip' re-
quires selection of a suitable system architecture that
matches to application needs followed by detailed im-
plementation subtasks. Hardware/software co-design at-
tempts assist this process by providing tools and method-
ology to describe desired application, carry out perfor-
mance and constraint analysis followed by compilation
and synthesis tasks where both hardware and software are
optimized under speci�c cost criteria. Research e�orts
currently in progress are focussed on various aspects of
modeling and (constraint) analysis, software analysis and
synthesis problems. At this time, tool support is limited
to only a few co-design tasks such as system speci�cation
and timing analysis. However, continued progress in co-
design is expected to lead to tools for interactive design
partitioning and exploration, a library of (multithreaded)
application and operating system code that can be used
to build specialized embedded kernels, library of hard-
ware modules that can be easily combined with a given
network/bus interface module, static analysis and com-
pilation tools that can help user tightly couple special-
purpose hardware units to the code generation process.
The special-purpose hardware can be a predesigned li-
brary component or synthesized from algorithmic descrip-
tions using high-level/architectural synthesis tools.
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