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Abstract| In microprocessors, reducing the cache ac-

cess time and the pipeline stall is critical to improve the

system performance. To overcome the pipeline stall caused

by the misaligned multi-words data or multi cycle accesses

of prefetch codes which are placed over two cache lines,

we proposed the Separated Word-line Decoding (SEWD) cache.

SEWD cache makes it possible to access misaligned multi-

ple words as well as aligned words in one clock cycle. This

feature is invaluable in most microprocessors because the

branch target address is usually misaligned, and many of

data accesses are misaligned. 8K-byte SEWD cache chip

consists of 489,000 transistors on a die size of 0.853 � 0.827

cm
2 and is implemented in 0.8 �mDLM CMOS process op-

erating at 60 MHz.

I. Introduction

The advancement of VLSI implementation technology
leads to the high-performance microprocessors that oper-
ate at more than 500 MHz and integrates three million
transistors on a single chip. The performance of cache,
which occupies large silicon area as much as 40%, has
become the bottleneck of microprocessor. Hence, many
researches are now focusing on the performance enhance-
ment of cache in microprocessors[1].
In the state-of-the-art microprocessors, the data bus

size is as much as 64 bits. If the memory operands are
placed over a cache line boundary, the pipeline should
stall until the required full word data are available. For
the example shown in Fig.1, the misaligned data access
needs two extra cycle penalty. At the �rst cycle, lower
line(line[i]) is read out from cache and saved in a read
bu�er temporally, and higher line(line[i+ 1]) is read out
at the second cycle. The lower word of read bu�er is
aligned with higher word using a shift matrix. During
the two extra cycles, the pipeline is stalled, which is called
here cache line boundary problem due to the address mis-
alignment.
In the superscalar microprocessor, the bandwidth of the

instruction prefetch should be large in order that there
is no shortage of instructions to execute in the multiple
pipes. Generally the amount of code prefetch is the same
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Fig. 1. Cache Line Boundary Problem Handling

as the cache line size. In CISC microprocessors, espe-
cially in VAX or X86, the instruction length varies from 1
byte to 15 bytes[2]. Therefore, the branch target positions
are random in the cache line. Moreover, the frequency of
branch instruction is so high, one per four or �ve instruc-
tions[2], that the branch target address is usually mis-
aligned. To minimize the address misalignment penalty,
the high level compilers often �ll the NOP(No Operation)
codes into an original program to align the target branch
to the cache line boundary. According to the benchmark
reports[3], the aligned code improves the performance by
30% over the misaligned code.
We propose a \Separated Word-line Decoding(SEWD)"

architecture which can access the misaligned branch tar-
get code or the misaligned data in one cycle as well as
aligned code/data.

II. SEWD Architecture

To handle the misalignment in a single cycle, two ad-
jacent cache line should be accessed simultaneously. In a
traditional architecture, the decoding patterns are same
for the left and right plane in Fig.1. Therefore, two adja-
cent word-line can not be driven simultaneously.
We modi�ed the decoder to access the adjacent cache

line concurrently. For a misaligned address, line[i] at
the left plane and line[i+ 1] at the right plane should be
driven. That is, at the left plane, line[i] is selected regard-
less of misalignment or not, but at the right plane, line[i]



is selected for the aligned case and line[i + 1] for the mis-

aligned case. To make this mechanism possible, the left

plane uses a normal decoder in Fig.2(a), while the right

plane uses a SEWD decoder in Fig.2(b). If an address is

not aligned, side signal is activated to drive line[i + 1],

otherwise self signal is activated to drive line[i] in a

SEWD decoder.
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Fig. 2. (a) Normal decoder at left plane (b) SEWD decoder at right
plane

Using a SEWD decoder, two adjacent lines in data

RAM can be accessed. But the adjacent lines in cache

are not guaranteed to be successive at main memory. To

know whether the two adjacent cache lines have a same

tag address, the adjacent tag RAM lines should also be

accessed simultaneously. We should read out tag[i] and

tag[i+ 1] and compare them with physical address simul-

taneously to give hit[i] and hit[i+ 1]. This is impossible

in traditional tag RAM architecture as shown in Fig. 3(a).
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Fig. 3. (a) Traditional Architecture, and (b) SEWD Architecture

To handle this problem, we also divide tag RAM into

even and odd parts called as \Even/Odd Alternating Tag

Array" as shown in Fig.3(b). The LSB of line index in

address determines the even/odd array in SEWD archi-

tecture as shown in Fig.3(b). The result of simultaneous

read out can be one of three cases : complete hit(both

line[i] and line[i + 1] is hit), partial hit(one of them is

hit), and complete miss(both are miss). Generally, cache

hit ratio is over 98%[2], therefore, most of the misaligned

data/code can be accessed in one cycle.

III. Chip Implementation

To implement the SEWD architecture, the tag array

is broken into two parts, it needs extra read/write cir-

cuits and comparators. The SEWD tag area increased

by 15.8%, but total cache area overhead is just 2.35% in

our 0.8�m CMOS process. The SEWD reduced the bit-

line length to 1/2, thus improved the hit detection timing

from 7.18ns to 5.59ns. This is another important bene�t

of SEWD architecture.

To perform the complicated micro-level operations

within one clock cycle, and to minimize the power con-

sumption, the self-timed circuit technique is utilized. All

the internal timing signals are generated with timingmod-

eler. We uses a pulsed predecoder and a strobed sense

ampli�er during the minimum required time to minimize

the dynamic current.

For our design of 4-way set associative 8K-byte on-chip

cache. Data RAM consists of 128 lines, with each line

consisting of 16 bytes, where each RAM cell is based on

11.2�m � 18.8�m6 transistor SRAM cell. Fig. 4 shows the

photograph of test chip, This test chip is fabricated in 0.8

�m DLM CMOS process. A total number of transistors

is 489,000 and the chip area is 0.853 � 0.827 cm2. The

chip was proven to work correctly up to 60MHz.

Fig. 4. Photograph of Test Chip

IV. Conclusion

We designed on-chip cache with a proposed separated

word-line decoding architecture to minimize the misalign-

ment penalty for the multiple words data and misaligned

branch target prefetch. In the chip implementation in 0.8

�m DLM CMOS technology, the critical path timing was

reduced from 7.18ns to 5.59ns, at the area increment of

only 2.3%. This is a signi�cant bene�t of SEWD archi-

tecture since the cache is normally belonging to one of

critical paths in high-performance processors.
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