
A Functional Memory Type Parallel Processor for Vector Quantization

K. Kobayashi, M. Kinoshita, M. Takeuchi, H. Onodera and K. Tamaru

Department of Electronics and Communication, Graduate School of Engineering,
Kyoto University, Kyoto, JAPAN

kobayasi@kuee.kyoto-u.ac.jp

Abstract--- We propose a memory-based parallel processor for
vector quantization called a functional memory type parallel pro-
cessor for vector quantization (FMPP-VQ). It accelerates nearest
neighbor search of vector quantization. All distances between an
input vector and reference vectors in a codebook are computed
simultaneously in all PEs. The minimum value of all distances is
searched in parallel. The nearest vector is obtained in O(k), where
k stands for the dimension of vectors. An LSI including four PEs
has been implemented. It operates at 25MHz clock frequency.

I. Introduction

Vector quantization[1] is one of promising candidates for
low bit rate image compression. It requires much less hardware
for decompression. For compression, however, a large amount
of computation is required. The most time-consuming factor on
compression is ‘‘nearest neighbor search’’ to find the vector
nearest to an input one among a large number of reference
vectors. A set of reference vectors is referred to a codebook.

We have developed a memory-based parallel processor
called a functional memory type parallel processor for vector
quantization: FMPP-VQ, which is used to accelerate the nearest
neighbor search. It has as many PEs as reference vectors. A
shared bus connects all PEs. The nearest vector is searched
exhaustively in parallel. Each PE has conventional memories
to store reference vectors and a logic unit to compute the
distance between an input vector and reference vectors. The
nearest vector is obtained using CAM-based parallel search.
These procedures are done in O(k), where k stands for the
dimension of vectors. The number of reference vectors does
not affect computation time. On the nearest neighbor search,
only input vectors are given from a shared data bus. Distance
computation is done locally in each PE. Thus, memory-based
SIMD processors perform effective computation through a
shared bus. Reference vectors can be easily updated, since they
are stored into conventional memories. All PEs can be laid out
into memory-like regular-array structure, which minimizes the
hardware cost.

II. Functional Memory Type Parallel

Processor for Vector Quantization

In the nearest neighbor search, we should find the nearest
vector ~q among reference vectors ~y in a codebook Y for every
input vector ~x according to (1).

~q = min
~y2Y

d(~x; ~y) (1)

The distance measure of d(~x;~y) determines hardware cost.
The FMPP-VQ uses the absolute error

P
j~x� ~yj as d(~x; ~y) to

minimize the hardware cost. The AE has enough quality for
image processing compared with the squared error, since input
vectors from images spread out sparsely in Euclidean space.

Figure 1 shows a block diagram of the FMPP-VQ. A pro-
cessing element (PE) of the FMPP-VQ is called a ‘‘block.’’
All blocks are laid out in a two-dimensional regular array and
connected through a global data bus like a conventional mem-
ory. Figure 2 shows a simplified schematic diagram of a block.
A block consists of memories and a simple logic unit(LU).
Codebook words wi are conventional 6 transistor SRAMs to
store all elements y0; y1; :::; yk�1 of a reference vector ~y. For
vector quantization of images, the dimension of vectors k is
usually 16. Thus, the FMPP-VQ has 16 codebook words. The
LU computes d(~x; ~y). The result word R stores d(~x; ~y). The
operand word B stores an operand for addition, subtraction and
comparison. There is no conventional adder in the LU. Instead
of that, the operand word, the carry chain and other logic gates
work together for addition or subtraction according to (2, 3).

A +B = P + C; Ci = Gi + Pi � Ci�1 (2)

P = A �B; G = A � B (3)

block

Memory

M
R

R
, A

ddress E
ncoder

ER

gl
ob

al
 d

at
a

bu
s

M
R

R
, A

ddress E
ncoder

M
R

R
, A

ddress E
ncoder

MRR, Address Encoder Address

LU LU

LU

X

Figure 1: Block Diagram of the FMPP-VQ

The operand word is designed based on conventional SRAM-
based CAM[2]. Logical operations (P;G) required for addition
are obtained using four pass transistors in the operand word.

ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

result
word

operand
word

temporary
word

codebook
words

P

C

16words

12bit8bit

control logic
and flags

global data bus

LU

w0

w15

voverflow
flag

ssearch
flag

carry
chain

sum

P

G

CAM-based cell

R

B

T

Figure 2: Schematic diagram of a block

The carry chain produces carries from P and G. The XOR
gate at the bottom of the carry chain finally produces the sum.
The temporary word T stores the sum. Note that operations
including carry generation are done in bit parallel. Thus, we
can get the sum in a single step. A codebook word is 8bit, while
logic unit is 12bit, since absolute distances may become 12bit
values. Two flags, an overflow and a search flag are located
at the left of the codebook words. The overflow flag v stores
overflow from addition or subtraction. The search flag s stores
a search result. Some control logics at the left of the codebook
words prohibit operations according to the state of these flags.
Output signals of all search flags are sent to a wired-OR logic
connected to the signal ER, which becomes low when there
is no true search flag. It accelerates the minimum search like
conventional CAMs. The MRR resolve the place of the block
whose search flag is true. The address encoder generates the
address of the block.

Codebook words in each PEs store a reference vector.
An input vector is broadcast to all PEs element by element.
Thus the distance between the input vector and all reference
vectors are computed element by element, but in all processors
in parallel. The FMPP-VQ computes the distance in 165
clock cycles. Computation time is constant at any number of
reference vectors.

III. Experimental Results

We have implemented an LSI including four PEs and some
test circuits using a 0.7 �m CMOS process. Four PEs and
sense amplifiers occupy 2.43mm2. They are shown in the chip
microphotograph Fig. 3. All components are designed with full

TABLE I : LSI Specifications

Process 0.7�m CMOS
Die size 26.3mm2

Area of Fig. 3 2.43mm2

IOs 116
Frequency 25MHz
Power dissipation 3.8mW @25MHz (Whole LSI)

0.87mW @25MHz (4PEs)

custom methodology. All elements in a PE such as codebook
words, an LU and flags are implemented into a rectangular
area of 706�m�389�m. Table 1 shows several specifications
of the LSI. All functionalities for computing the nearest vector
work properly at 25MHz clock frequency.

Figure 3: Chip microphotograph of the four block FMPP-VQ.
IV. Conclusion

The FMPP-VQ accelerates the nearest vector search on
vector quantization. It achieve both high performance and
small silicon area. The nearest vector search is done in O(k),
where k stands for the dimension of vectors. Computation
time does not depend on the number of reference vectors.
An LSI including four PEs has been implemented. It works
at 25MHz clock frequency. Now we just finished designing
an FMPP-VQ LSI including 64 PEs. One of our goals is to
develop a video compression system using the FMPP-VQ to
transmit videophone images through a low-bit line.

References

[1] A. Gersho and V. Cuperman. Vector quantization. IEEE Commun.
Mag., 21(9):15--21, 1983.

[2] T. Ogura, S. Yamada, and T. Nikaido. A 4kb Associative Memory
LSI. IEEE J. Solid-State Circuits, SC-20(6):1277--1282, 1985.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

