
A Building Block Placement Tool

Jonathan Dufour
Chung-Kuan Cheng

Dept. of Computer Sci. & Engr.
University of California, San Diego

La Jolla, CA 92093-0114

based approach for placement [2][3]. Onodera describes a
branch and bound based placement approach [4]. Sechen’s
TimberwolfMC placement and global routing tool was one
of the first tools based on simulated annealing [5]. Lastly,
one of the most recent proposals to placement was a
rectangle packing approach described by Kajitani [6]. Each
method has its merits, but so far, no method has emerged as
the ideal solution. It should be noted that this is by no means
a complete list of all approaches. Rather, it is intended to
give a flavor of the various approaches to the problem.

II. M ETHODOLOGY

A. Overview

We extend the method described by Kajitani to work
with general convex rectilinear components. By convex, we
mean that any point within the component can be connected
to any other point within the component via a single
horizontal and vertical line, each of which is also contained
by the component. So, for example, the component in Figure
1.a is convex; the one in Figure1.b is not.

Fig. 1. Convex vs. concave components. a.) convex component. b.)
concave component

The general idea behind Kajitani’s approach is to first
place the components randomly on a grid, and then to use a
longest path algorithm to estimate the area required by the
compacted placement. To determine component placement,
two component sequences calledloci are derived. These
correspond to horizontal and vertical gridlines in the grid.
For a more detailed description, the reader is referred to [6].

Kajitani’s approach is attractive for a number of
reasons. First, the method of changing the configuration is
extremely simple. To change the location of a component,
we merely permute the two loci. This makes the algorithm
very simple to implement using techniques such as
simulated annealing. Second, components are not allowed to
overlap. This means that it is not possible to generate illegal

a.) b.)

Abstract— When designing integrated circuits, sub-
components rarely end up being perfectly rectangular.
However, currently most block-placers only consider
rectangular components, resulting in inefficient area
utilization.  We propose a placement tool that allows arbitrarily
sized and shaped convex components. It extends the rectangle-
packing method proposed by Kajitani. We describe the
methods used to create the placement and give some
performance results.

I. INTRODUCTION

A. Introduction

When designing integrated circuits, sub-components
rarely end up being perfectly rectangular.  However,
currently most block-placers only consider rectangular
components, resulting in inefficient area utilization.  We
propose a placement tool that allows arbitrarily sized and
shaped convex components. It extends the rectangle-packing
method proposed by Kajitani. We describe the methods used
to create the placement and give some performance results.

B. Building Block Placement – Problem Description

The inputs of the problem are:

• a set of blocks which have a fixed geometry and fixed
pin locations

• a netlist specifying the interconnections between the
pins of each block

• constraints on the locations of external pads
• constraints on the size and/or aspect ratio of the chip
• constraints on critical nets.

The problem objective is to determine the location and
orientation of all blocks such that the area of the chip is
minimized and the design is routable. Furthermore, all
design constraints must be satisfied.  The constraints on
critical nets can be expressed in terms of minimum or
maximum path lengths.

C. Previous Approaches to Building Block Layout

Many approaches to building block placement have
been proposed. Constructive and force-directed placement
approaches are described in [1]. Kuh describes a pattern

Jonathan Dufour

Cadence Design Systems
San Jose, CA 95134
Tel: 408-944-7037

email: jdufour@cadence.com

Robert McBride

Hughes Microelectronics Div.
Newport Beach, CA 92658

Tel: 714-759-2009
email:

mcbride@newport.hac.com

Ping Zhang

Dept. of Comp. Sci. & Engr.
University of California,

San Diego
La Jolla, CA 92093-0114

email: zhangp@cs.ucsd.edu

Chung-Kuan Cheng

Dept. of Comp. Sci. & Engr.
University of California,

San Diego
La Jolla, CA 92093-0114
email: kuan@cs.ucsd.edu

ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE



configurations, though unroutable configurations may still
arise.

Our methodology is fairly similar to that of Kajitani.
We first generate an initial topological arrangement of the
components, then derive two constraint graphs for the
arrangement. Finally, like Kajitani, we determine the area
required by the final layout by calculating the longest path in
the constraint graphs.

B. Creating the Initial Layout

Kajitani’s method of using the loci to specify a layout
seems very attractive due to its simplicity. Unfortunately, it
lacks the flexibility necessary to specify all of the
relationships between arbitrary convex rectilinear
components. For any two components, Kajitani’s method
allows us to specify four relationships:left-to, right-to,
bottom-of, and top-of. However, for non-rectangular
components, many more than four relationships can exist, as
illustrated in Figure 2.

Fig. 2. The ten possible relationships for components A and B.

Consequently, we use a more concrete approach.

We first place the components randomly on a grid.  The
main purpose of this placement is to allow us to determine
the relationships between the components. Using these
relationships, we will later construct constraint graphs,
which we will use to determine the final layout.

We chose to use the grid primarily because of its
simplicity. The use of a grid facilitates determining
component proximity. Furthermore, the grid makes overlap
detection trivial. When placing a component, we merely
check the grid squares that the component will occupy to see
if they are empty. This can obviously be a fairly costly
procedure if the grid cells are not sized well.  However, we
felt this cost was outweighed by the ease of implementation.

C. Modifying the Placement

The initial placement is improved iteratively through
the use of simulated annealing. Each new configuration is
obtained by changing a single component in the current
configuration. The two types of refinements allowed are
moving a component and changing a component’s
orientation. The choice to move a component is made with
slightly higher probability than the choice to rotate a

A

B

A

B
A

B
AB

A
B

B

A

B

A
B

A
BA

B
A

component.

When moving components, we must consider two
factors: which components to move, and where to move
them. We implemented two methods for selecting which
components to move. The first and simplest method chooses
components at random from the entire list of components in
the design. This method attempts to minimize the
interconnect length and area for all components in the
design. The second method moves only those components
on the critical path for the overall chip width or height. This
method is specifically geared toward reducing the area
required by the chip by moving cells from congested areas to
less congested areas. It is fairly easy to determine which
components lie on the critical path, given our method of cost
estimation and determining the final placement. These will
be discussed in more detail in the following sections.

The component selection method used depends upon
the area and interconnect length weights specified by the
user. These weights are used in the cost function and indicate
which the user values more highly, interconnect length or
area. If the area is given a greater weight, then the second
method will be chosen proportionally more.

The location to which a component is moved is
generated randomly. We then attempt to place the
component at that position. If another component is
encountered, the move is illegal, so another location is
generated. Consequently, if the grid is too small, collisions
will occur frequently, so the algorithm will waste a lot of
time searching for a feasible placement location. If, after
twenty attempts, we have not successfully placed the
component, we return the component to its original location.

Rotation of components is performed analogously to
movement.  Each component has 8 possible orientations.
The program generates a new orientation randomly, and
attempts to place the component in that orientation. If
another component is encountered, a new orientation is
generated and the procedure repeats until the component is
successfully placed.

D. Cost Estimation

The cost estimate for a placement has two components,
a layout area term, and an estimated interconnect length
term. The user is allowed to weight these terms, and the
program will attempt to take into account these weights
when deriving the placement.

The layout area term indicates the total area required
by the layout. It is determined by calculating the final
position of all the components and finding the area of the
layout’s bounding box. The way in which we determine the
component positions is similar to the method presented in
[6], though we must make some adjustments to account for
the general convex rectilinear shape of the components. As
in Kajitani’s approach, we construct two constraint graphs –



one for vertical constraints and one for horizontal
constraints. We then use the longest paths algorithm for
vertex-weighted directed acyclic graphs to independently
determine thex and y locations of the components.
Constructing these constraint graphs will be discussed in
detail in a later section.

The second term for cost estimation is the total
estimated interconnect length.  For each placement, we
evaluate the estimated length of each net.  For simple two-
terminal nets, we estimate the net length as one-half of the
perimeter of the bounding box of the net.  For multi-pin nets,
we attempt to estimate the interconnect length by calculating
the total length of the clique containing the nodes and taking
a fraction of this proportional to the number of nets needed.
Obviously, this will not yield the exact interconnect length
needed, but it works adequately.

E. Determining Component Positions

We determine component positions in much the same
way as [6]. From the gridded layout, we construct two
constraint graphs – one for vertical constraints and one for
horizontal constraints. Using these constraint graphs, we can
independently determine each component’sx andy positions
by calculating the longest path to the component through the
constraint graphs.  We do not leave room for routing
channels but assume each components’ placement outline
can be expanded proportional to the routing area needed.

To construct the constraint graphs, we perform a left-
to-right sweep of the grid. For each component, we extend
probes at a 45 degree angle in the upper- and lower-left
directions. The probes are extended only from exterior
corner points. For example, for the given component we
would extend the following probes.

Fig. 3. Extending probes from components.

If these probes encounter another component, then an
edge is added between the two components in the
appropriate constraint graph. For example, if the probes
encounter a horizontal side of another component, then we
would add constraints between the components in the
vertical constraint graph. If the probes encounter a vertical
side of another component, we would add a horizontal

constraint.

Fig. 4. Constructing the constraint graphs: a.) probe encountering
horizontal edge indicates a vertical constraint. b.) probe encountering
vertical edge indicates a horizontal constraint.

With each edge, we keep information about the
relevant points, specifically, the point from which the probe
was extended and the most constraining point on the hit
component.  We do not need to keep track of the relationship
between all pairs of points, just a few key pairs. For the
situation in Figure 5, it is sufficient to record that points 3
and 5 of component A are to the left of points 11 and 9 of
component B, respectively and that point 11 of component B
is above point 5 of component A.

Fig. 5. Constructing the constraint graphs: a.) component arrangement. b.)
horizontal constraints. c.) vertical constraints.

For a single probe, we may need to add multiple
constraints.  For example, in Figure 6, the probe from point
5 of component B encounters the horizontal side (4, 5) of
component A, producing a vertical constraint between point
5 of component A and point 5 of component B. However, we
must also add a horizontal constraint between point 3 of
component A and point 5 of component B, and also between
point 7 of component A and point 3 of component B.

Fig. 6. Constructing the constraint graphs: more detail.

To account for this, we always check the exterior
points on either side of where the probe struck the
component.  We add a horizontal constraint between the left
point and the probe point, and a vertical constraint between
the right point and the probe point.  For example, for the
situation in Figure 6, After detecting the vertical constraint
between point 5 of component A and point 5 of component
B, the algorithm would check to see if component A has an
upper-right exterior point to the left of the probe point (point
5 of component B.) In this case, there is (point 3), so a

A

B

A

B

A

B

A B

(a.) (b.)

0 1

2 3
4 5

67
89

1011

0 1

2 3
4 5

67
89

1011
3 5

11 9

A

B

A B

A

B

5
11

(a.) (b.) (c.)

0 1
23

4 5
6 7

8

0 1

23

45

9

3 5
7 3

A B

A

B

5
5

(a.) (b.) (c.)

A
B



horizontal edge is added between point 3 of component A
and point 5 of component B. Next, the algorithm checks the
probe points of component B surrounding the current probe
point. In this case, the only other probe point is point 3 of
component B. We then find the rightmost upper-right point
that is still to the left of point 3. In this case, this would be
point 7 of component A. We then add a horizontal constraint
between these two points.

To simplify determining which points to check, we
maintain a list of traces. These traces are essentially
projections of all the exterior corner points onto the positive
and negative forty-five degree axes. We maintain four sets of
traces, one for upper-left, lower-left, upper-right, and lower-
right exterior points. These traces are created at the time the
components are initialized and remain static throughout the
layout procedure. The main purpose of the traces is to give
an idea of the relative positioning between components’
points. They are only one-dimensional, which makes them
easy to deal with. The example from Figure 6 is given below,
showing component A’s upper-right traces and component
B’s lower-right traces. As mentioned previously, to add the
constraint between point 7 of component A and point 3 of
component B, we find the rightmost upper-right trace of
component A that is to the left of the trace for point 3 of
component B.

Fig. 7. Using traces to help determine the constraints to add.

Figure 9 gives a brief outline of the code.  Section I
handles situations like that of Figure 8.a in which the next
upper left probe of componentB (from point 5) would miss
component A, failing to produce a needed constraint.
Similarly, Section II handles the analogous situation in
which the lower right probe of componentB (from point 3)
would miss componentA, as in Figure 8.b.

Fig. 8. a.) situation handled by section I of pseudocode.  b.) situation
handled by section II of pseudocode.

0 1
23

4 5
6 7

8

0 1

23

45

9 A
B

0 1

23

45

0 1

2 3

4 5
67

0 1

2 3
4 5

67

0 1

23

45

A

B

A
B

(a.) (b.)

Fig. 9. Pseudocode for adding constraints for probes extended left.

It is fairly likely that the probes will not encounter a
component with which the current component should have
constraints, as in Figure 10.

Fig. 10. It is possible for the probes to miss neighboring components.

Consequently, we must also check all of the
components to the left of the current component to verify
that some relationship is defined between the components in
the constraint graph. We do not need to add constraints
between every pair of components, but some type of

AddConstraints(curComponent, hitComponent,hitCompTraceType,
       curCompTrace, curPoint)

{
// Get points on either side of where the trace hit the component
hitComponent.GetSurroundingPoints(hitCompTraceType,

curCompTrace, &leftPoint, &rightPoint)
if (leftPoint)
{

/* There is a trace on the hit component that bounds the
 * probe we extended out.  Since it is to the left of
 * the probe we extended, that point must be to the left of
 * this one. So add that constraint.                        */
hitComponent.MakeHorizontalSuccessor(curComponent,

 curPoint,leftPoint)

/* SECTION I: Check for vertical overhang to the left of
 * current trace to see whether we must add a vertical
 * constraints as well. First, get the next trace on the
 * current component above and to the left of current trace*/
curComponent.GetNextTrace(tracetype, LEFT, &nextTrace,

&tracePoint)
if (nextTrace)
{

/* Get point that immediately under/above the nextTrace. */
hitComponent.GetSurroundingPoints(hitCompTraceType,

nextTrace, &unused, &rightPoint2)
if (rightPoint2)
{

if (tracetype == LOWER_LEFT || tracetype == LOWER_RIGHT)
hitComponent.MakeVerticalSuccessor(curComponent,

tracePoint,rightPoint2)
else

curComponent.MakeVerticalSuccessor(hitComponent,
rightPoint2,tracePoint)

}
}

}

if (rightPoint)
{

/* There is a trace on the hit component that bounds the
 * probe we extended out.  Since it is to the right of the
 * probe we extended, that point must be above this one, if
 * the trace type was lower_left or below otherwise.       */
if (tracetype == LOWER_LEFT)

hitComponent.MakeVerticalSuccessor(curComponent,curPoint,
 rightPoint)

else
curComponent.MakeVerticalSuccessor(hitComponent,

  rightPoint, curPoint)

/* Section II: Check to see whether we must add other
 * horizontal constraints as well.  GetNextTrace returns trace
 * below and to the right of current trace.           */
curComponent.GetNextTrace(tracetype, RIGHT, &nextTrace,

&tracePoint);
if (nextTrace)
{

hitComponent.GetSurroundingPoints(hitCompTraceType,
nextTrace, &leftPoint, &unused);

if (leftPoint)
hitComponent.MakeHorizontalSuccessor(curComponent,

tracePoint, leftPoint)
}

} /* if rightpoint */
}

A B



relationship should exist. For example, we can take
advantage of transitivity. If component A is strictly to the left
of component B, and component C is strictly to the right of
component B, then component C must also be to the right of
component A, so no further constraints need to be added to
the constraint graph. However, if component A was partially
or totally above component B, and component C is to the
right of component B, we do not necessarily know any
relation between component C and component A, as shown
in figure 9.b and 9.c.

Fig. 11. Adding constraints. a.) transitivity applies; no constraints need to
be added. b.) must add constraints. c.) B is to the right of part of A, but we
must still add constraints. d.) placement that could occur if we didn’t add
constraints of c.).

F. Performance Improvements

We can take advantage of the fact that the changes
caused by a component’s move or rotation are local. Only
the area where the component had been located and the
component’s new area will be affected and must be updated.
For large designs, most of the edges in the constraint graph
will remain unchanged through a single move. We can take
advantage of this fact to improve the performance of the
algorithm. Rather than recreating the constraint graphs for
each move, we can simply update the appropriate edges.

When repairing the constraint graphs after a move, we
must update two areas: the area in which the component was
originally located and the area where the component was
placed. When updating the area in which the component was
originally located, we must update all of the components that
had an edge to or from the moved component. We rebuild the
constraint graph locally for all of these components. It is not
possible for components other than those with edges to the
moved component to get corrupted because all other
components remain stationary.

To update the constraint graphs, we perform a
procedure analogous to that used to create the constraint
graphs. We traverse the list of affected nodes from left to
right, adding the appropriate constraints between these
nodes. As before, for each node, we extend probes in the
upper and lower left directions until we hit a component.
These constraints are then added to the constraint graph.
Again, we must also check the other affected components to
ensure that some sort of relationship is defined between
them.

We must also update the components in the area to
which the component was moved. To do this, we extend
probes in all four directions from the moved component to

A B C
A

B

C
A

B
C

a.) b.) c.)

A
B

C

d.)

determine its relationship with other components. Again,
this is analogous to building the constraint graphs, except
that we also extend the probes in the upper and lower right
directions. We must also check all the neighboring
components to see if we must add a constraint between them.

III. EXPERIMENTAL RESULTS

A. Introduction

We tested the layout tool on several industrial MCM
designs. The designs are typically fairly small – each
contained about 50 components to be placed. We compare
the results produced by the tool against the hand-placed
designs.

We placed each design using various weights for
interconnect and area, and also using several different values
for the inner loop factor.  This factor roughly determines
how long the annealing process will run and consequently,
the quality of the placement.  We ran the layout tool 5 times
on each design, and average the results for each set of
weights. The following table shows the performance results
we obtained.

As can be seen from the table, the layouts produced by
our tool were consistently inferior to those of the human
designers. This is not surprising, since the initial hand-

TABLE 1
EXPERIMENTAL RESULTS

Area
Weight

Inter-
connect
 Weight

Inner
Loop
Factor

Percent
Diff.
Area

Percent
Diff.
Inter

connect

Execution
Time

1 1 2 10.89% 12.32% 414 sec.

1 5 2 14.75% 12.81% 304 sec.

1 10 2 18.24% 16.41% 449 sec.

5 1 2 18.45% 15.32% 325 sec

10 1 2 16.74% 11.91% 409 sec

1 1 4 14.28% 13.13% 870 sec

1 5 4 15.55% 11.91% 807 sec

1 10 4 5.85% 10.81% 939 sec

5 1 4 13.12% 6.97% 493 sec

10 1 4 6.35% 13.15% 1032 sec

1 1 6 6.76% 10.05% 1117 sec

1 5 6 18.03% 13.12% 1310 sec

1 10 6 13.11% 15.23% 1563 sec

5 1 6 10.42 15.06 1367 sec

10 1 6 7.28 9.45 1514 sec



placed design left little room for improvement. Furthermore,
due to the small size of the layouts, a small increase in area
would appear more significant than it would for a larger
design. Consequently, we would expect that for larger
designs, the margin would narrow significantly, since
human designers would be overwhelmed by the many design
possibilities. Unfortunately, we were unable to find any
larger test cases.

The results produced by the algorithm were not
entirely consistent, suggesting that more tuning of the
simulated annealing algorithm would be useful.

Figure 10 shows a sample placement produced by our
tool.

Fig. 12. Sample placement of design 1051703 using an area weight of 1, an
interconnect weight of 1, and 6 inner loop iterations.

As can be seen in the figure, our layout tool does
achieve a reasonably compact layout.

IV. CONCLUSIONS

A. Overview

We have demonstrated the feasibility of extending
Kajitani’s approach to general convex rectilinear
components. We use a simulated annealing approach to
place components on a grid, and determine the final
placement using the longest paths algorithm. This approach
produces decent results in fairly reasonable execution times.

B. Future Work

Although the layout tools works adequately, there are
a number of improvements that could be made that would
improve performance and the solution quality.

The use of the grid greatly simplifies some aspects of
the design. Checking for overlap becomes trivial, and
determining components proximity is simplified. However,
checking each grid cell can be very costly and time
consuming.  Consequently, it would be interesting to derive
an implementation without using the grid as a basis. This
implementation would necessarily be more abstract, but it

might be able to achieve better performance than our grid-
based approach.

Currently, our approach considers all nets equally.
Typically, in designs only a few nets are critical.
Consequently, future versions may want to place more
emphasis on the critical nets rather than considering all nets
equally.

We have not yet tried the tool in conjunction with any
router to test routability.

C. Final Comments

The layout tool looks promising. In most cases, it was
able to find fairly high-quality solutions in a reasonable
amount of time. However, more work would need to be
performed on it before it could be used in an industrial
setting. One of the greatest concerns involves incorporating
more performance information from the designs so that the
placement will ensure that all the timing constraints are met.
Furthermore, some areas of the design could be speeded up,
possibly by the elimination of the grid or some other method.

ACKNOWLEDGEMENTS

This work was supported in part by grants from the
NSF MIP-9529077as well as UC MICRO program.

REFERENCES

[1] N. Sherwani,Algorithms for VLSI Physical Design Automation,
Kluwer Academic Publishers, 1993.

[2] W. Dai,  E. Kuh, “Simultaneous Floor Planning and Global Routing
for Hierarchical Building-Block Layout,”IEEE Trans. on CAD, Vol.
CAD-6 no. 5, pp. 828-837, 1987.

[3] W. Dai, M. Sato, E. Kuh, “A Dynamic and Efficient Representation of
Building-Block Layout,”Proc. 24th ACM/IEEE Design Automation
Conf., pp. 376-384, 1987.

[4] H. Onodera, Y. Taniguchi, K. Tamaru, “Branch-and-Bound
Placement for Building Block Layout,” inProc. 28th ACM/IEEE
Design Automation Conf., pp. 433-439, 1991.

[5] C. Sechen, “Placement and global routing of integrated circuits using
simulated annealing,” Ph.D. Thesis, UC Berkeley, 1987.

[6] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,”Proc. IEEE Inteernational
Conference on Computer Aided Design, pp. 472-479, Nov. 1995.


	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


