BDD Based Lambda Set Selection in Roth-Karp Decomposition

for LUT Architecture
Jie-Hong Jiang, Jing-Yang Jou, Juinn-Dar Huang and Jung-Shian Wei

Department of Electronics Engineering
National Chiao Tung University
Hsinchu, Taiwan 300, Republic of China
Jyjou@bestmap.ee.nctu.edu.tw

Abstract Section 2.1 introduces basic logic notations, terminology

Field Programmable Gate Arrays (FPGA’s) are and definitions used in this paper. The definitions and
important devices for rapid system prototyping. Roth-Karpprinciples of the classical Roth-Karp decomposition is given
decomposition is one of the most popular decompositiorin Section 2.2. In Section 2.3, the BDD is introduced.
techniques for Look-Up Table (LUT)-based FPGA 2.1 Basic Definitions and Notations
technology mapping. In this paper, we propose a novel Let B = {0,1}. A completely specified single-output
algorithm based on Binary Decision Diagrams (BDD’s) for function f with an input seX consisting ofn variables x,
selecting good lambda set variables in Roth-Karpx,, ..., %, is denoted ab: B™7_, B where the domaiB™"is

decomposition to minimize the number of consumedhe Cartesian product spannedyA minterm x = [X; X; ...

configurable logic blocks (CLB's) in FPGA's. The | B™s a vertex in the Booleanspace. Then-setof f,
experimental results on a set of benchmarks show that OW on gXo
f

algorithm can produce much better results than those of the ' 18 Tﬁe set;é mmtermssuch thaf(x) =1, and the
previous approach [1]. off-set of f, X™" O B~ is the set of minterms such that

f(x)=0. A cube ¢ which represents a product term (a set of

1. Introduction minterms)p is specified by a row vectar= [¢; G, ... G]
The LUT-based architecture is the most popular ON&, here

among many different FPGA architectures. It consists of : .
many%onfiga/rable LUT’s and each LUT can implement any G=0 !f X appears complementedgn . .
k-input functions. For example, in Xilinx XC3000 G=1 ifxappears not complementechin 1<i<n
architecture [2]k is equal to 5. G=2 ifxdoes notappear m

Many technology mapping algorithms developed to Theunion of two sets of cube&andD, denoted a§ [D,
minimize the number of LUT’s have been successivelyis a set of minterms contained by at least one cube in €ither
proposed in previous studies [3-9]. Some of them firstor D. A set of cube€ = {c*, &, ..., é} is said to be aover
decompose the given Boolean network tokkfeasible. A
Boolean network is said to lixefeasible if each node in the
network has the number of its fanins to be no more khan of Xf°“. Thematrix representation, f = M(C), of a cover is a
Hence, the corresponding circuit can be directly realized bymatrix simply obtained by stacking the row vectors
an one-to-one mapping between nodes and LUT'’s. If thereepresenting cubes contained GiyMost of the definitions
are some nodes that are hefeasible, these nodes then are can be found in [14] for more details.
decomposed to be a set bkffeasible nodes. Although, 2.2 Roth-Karp Decomposition
recently there are many studies [18-21] taking advantage of Let E be a set of variables, and I¥tand Y be two
BDD [11-13] for FPGA technology mapping, none of them nonempty subsets & such tha 0 Y =E andX n Y = 0%
address the relationship between BDD's and lambda sethen, given a functiof : B~" — B, we say thaty, x, 0 B™"
variables in Roth-Karp decompo;i_tion. In t_his paper, WP: Onlyareequivalentwith respect td=, denoted as; xy, if [y [
focus on Ro_th-Karp d_eco_mposnllon_basmg on BI_DI?S in g0 s) and € y) O B such thatF(xy,) = F(Xa, V);
order to realize combinational circuits with the minimum

otherwisex; is nonequivalent witk,, denoted a,; ![Ix..

number of CLB'’s. i) o :
We introduce some basic terms, Roth-Karp decompositiod;eMma 1 If F is a completely specified function, then the

and BDD’s in Section 2. Our new algorithms will be transitivity of the equivalence holds , i.e.xif[1x, andx, [J
presented in Section 3. Section 4 shows the comprehensive thenx; Uxs. u
experimental results and comparisons with other related Thus, all mutually equivalent elements can be grouped
algorithms. The concluding remarks are given in Section 5.

. k i : : on
of f if Ui_lc contains all vertices of ™ and no vertex

2. Preliminaries
we only consider the disjoint Roth-Karp decomposition here.
ASP-DAC'97
0-89791-851-7$5.00 0 1997 |IEEE

together to form arequivalent class and all equivalent nodes Each equivalent class node represents one equivalent

classes are pairwisely disjoint and the union of theBi i class. Therefore, we may conclude that the number of
Theorem 1:Given a symbolic variablé/, and two functions €quivalent classes in Roth-Karp decomposition is the number
a :BP . WandG: W xBY" _ B. such that of nodes pointed to by the edges intersecting with the cutting

line in ROBDD. Another indispensable knowledge about an
holds if and onlv if ROBDD is that the ordering of variables will affect the size
0lds Tand on 3[;' _ _ of the ROBDD significantly. According to the previous
Oxq, X OB™, @(x) = @(x2) O xq Oxe.
172 ' L 2 1-72 observation, we will evolve a novel heuristic algorithm to

Equation (1) is called @ecompositionof F. @ is & gelect good\ set (or good ordering of ROBDD) such that
binary-input symbolic-output functioi. is called thebound less equivalent classes are obtained.

(A) set andY is called thdree (1) set The decomposition is
disjoint if the bound set and the free set are disjointX.a.,
Y = 0. In this paper, only the disjoint decomposition is

0 (x, y) OB xB” F(x,y) =G(a (x), y) @)

3. Our Approach
3.1 Variable Ordering Algorithm
Previous efforts [15, 16] of variable ordering algorithms

considered. e ai P ;
for BDD’s aim at minimizing the number of nodes in an
Lemma 2 The number of elements & must be no less , :
: . ROBDD. These ordering methods do not aim at better Roth-
than the number of equivalent classeX.in a

)) Karp decomposition. In this paper, we develop a novel

From Lemma 2, if there akeequivalent classes K then ordering algorithm of BDD aiming at obtaining goadset
(WU must be no less than Lett 2 [ogkl] then (1) can be \arjapies. The idea is to have a variable ordering with an
rewritten as obvious bottleneck in the ROBDD so that there are fewer
F&, y) = G@(x), az(X), ...,0(x), y) paths intersecting with the cutting line. Let's use the
where @ (X) = (@1(X), Ax(X), ..., (X)), o,(x) is a single-output foIIovying example to shov_v the_ba_sic idea of our proposed
function for X i < t. It is clear that this technique can be algonthm. Assume a f“f.‘c“‘?“ with its cover shown in Figure

. . 1 and its OBDD shown in Figure 2.
used to reduce the number of fanins of the function under the . . .
If we choose variable;yas the first variable ang =as the

condition t < [XLI Besides, the smallet is, the fewer second variable, then we have the binary tree with tlaeck

encoding functions,a;, oz, .. and a, are required. the %' branches of the else-edge of wanished in the
Furthermore, 2 - WO don't care can be used to simplify resyitant ROBDD. In Figure 1, the dotted circle with shading
the functionG. Hence, the minimuriWWis desirable. represents the else-edge of the concerned variaplend
2.3 Binary Decision Diagrams the dotted circle without shading shows the relative function

BDD'’s are rooted, directed acyclic graphs with two typesinformation of the next ordered variable, Similarly, the
of nodes :terminal and nonterminal nodes The terminal solid circle with shading represents the then-edge of the
nodes labeled with 0 and 1 represent the Boolean constagpncerned variable, and the solid circle without shading
function 0 and 1 respectively. Each nonterminal node hashows the relative function information of the next ordered
two edges pointing to its children labelgdor then) and0 variable. Because as long as input vectar) has the
(or elsg. A nonterminal nodev represents the Boolean values (0, 0) or (0, 1), all paths from the root are directed to

function : two nodes which have the same Boolean function in the
f (Voo Vi Vietes) = V7 Cotsog)(Vareons Vinyon.) + OBDD as outlined in Figure 2. Therefore_g, will vanish in _
G . the resultant ROBDD and some associated branches will

Vi Hinen() (Va0 Viea,). disappear. Therefore, a good ordering should make more

An ordered BDD (OBDD) is a BDD with its input variables pranches in an OBDD (binary tree) to vanish such that there
ordered and every path from the root to a terminal node iRyjll be fewer equivalent class nodes. For the Boolean
the OBDD visits the input variables in an ascending orderfynction shown in Figure 1, the OBDD’s are significantly
The order is called aindex of the node. Aeduced OBDD gifferent with different orderings shown in Figure 3. We can
(ROBDD) is an OBDD of which each node represents agge that (% Xo, Xa X) iS the best ordering in terms bfset
distinct logic function. Most of the concepts mentioned hereselection, if the desired number ®fset variables is two.

can be found in [11-13] for more details. There is an \ote that we will regard the then-edge of nogénxFigure
important property between Roth-Karp decomposition andg(a). as being deleted, because it points to a terminal node.
ROBDD. Let's draw a cutting line on the ROBDD such that gince there are only two terminal nodes, 0 and 1, the
the nonterminal nodes are partitioned into two disjoint parsarminal nodes can at most add two more equivalent classes.)
The upper part and lower part correspond toMtlset andl | et's yse another Boolean function shown in Figure 4 to

set in Roth-Karp decomposition respectively. Consequentlyjjystrate our ordering algorithm in more detail.
we may observe that the nodes pointed to by the edges

intersecting with the cutting line are calleduivalent class

X1 Xy X3 Xy

00
10

0:2:01

6o 1.0 0O 10 01 0 1 0 0 0 0 O
Figure 1. The cover of a Boolean function. Figure 2. The OBDD of the function.

) Xy /% Xy
% Q X, X,
/
N
(a)

7y
Xq é Xy 6 6 X,
(b). (c).

Figure 3. The OBDD's with different variable orderings.
(Branches pointing to terminal nodes were not shown here.)

e X
eull %
X, X, Xa X, X / X
17273 %% / _ 3
01201 / -
/ X,
10201 / P 2
10012 / ﬁ\ R X,
02112 J ! / / \
0 1 0 0 10 1 0 1 0
Figure 4. The cover of a Boolean function. Figure 5. The partially reduced OBDD.
Step 1 : Determine the first 2 variables. Because pair (x xs) has the maximum benefit, we select

We define the benefit of each ordered pair of variables ashem as the first two variables.
being equal to the number of branches in the binary treétep 2 : Select the next favorite variable.
which can be deleted. For pairy,(%,), branch x coming Given the already selected variables, for each potential
from the then-edge of node i the OBDD can be deleted. candidate of the next variables, evaluate how many branches
This is because that every cube withX the corresponding can be deleted. Choose the one with the maximum benefit. If
X, is always equal to 0. However, the branches,and %’ there are more than one candidate, select one randomly. In
coming from the else-edge of node can not be deleted. this example, after selecting,(xs) as the first two variables,
This is because that all cubes witlx®, their corresponding for x4 X5 in the cover, no branch can be deletedifisx
cubes of x are not equalThere is totally one branch being selected as the next variable; no branch can be deleted if x
deleted. Therefore, the benefit of ordered pair &%) is is selected as the next one; both branchesn® %' can be
equal to 1. Similarly, for pair ¢x x;), the branch of x deleted if % is the next one. Forxs and X, xs in the cover,
coming from the then-edge of nodg can be deleted. The no branch can be deleted ifis selected as the next variable;
branches of xand %’ coming from the else-edge of node x no branch can be deleted ifis the next one; also no branch
can not be deleted. There is totally one branch being deletedan be deleted if ;xis the next one. Therefore, we can
So the benefit of the pair {xx;) is 1. By the same way, we evaluate the benefits for selecting %, or % to be the next

get the benefit of each pair as following: variable as 0, 0, and 2 respectively. We thus seleas the
X %) 1 (o X):1l (eX):0 (XX):0 (% X%):0 next one.
(X X) 10 (% %) :0 (% %) :0 (X X):0 (% %):0 Step 3 : Iterate Step 2 until all variables are selected.
(X1, X):0 (e, X):0 (6 X):0 (% X3):2 (% X3):0 Consequently, we have the variable ordering ag:xx Xs,

(X, %) 10 (%, %) 10 (& Xs):0 (% Xs):3 (% Xa): 1. X2, X3). The resultant OBDD is shown in Figure 5. The

overall ordering algorithm is shown in Figure 6. [*count the number of bits needed to encode all
equivalent classes*/

Our_Heuristic_Ordering(node) }
{ if((#bit[4] < 4) or ¢bit[5] < 5) or (¢hit[6] < 6))
/* select the first two variables */ [* to insure the reduction of the number of fanins of the
for(all pairs of two different variables) function */
var_list — the pair which can result in deleting the most return the size of set variables with the minimum cost;
branches in the OBDD; [*else -- size 4, 5 and 6 all failure*/
/* sort the rest variables */ A_set_size— 6;
while(there are variables unselected){ dof
for(all variables unselected) A_set_size— _set_size + 1;
for(all input vectors whose elements are the variables #hit — Count_Equivalent_Class(node,set_size,
having been selected) order);
Record how many branches can be deleted if((#bit <A_set_size)
accumulatively; returnA_set_size;
var_list— the variable with the maximum benefit; twhile(1);
} }
return var_list; Figure 7. The\ set selection of our heuristic ordering algorithm.
}

3.3 ExactA Set Selection Algorithm
In order to obtain the best possible result, we find the

After we have good ordering on the BDD’s, the next thing iSpptlmum)\ set exhaustively for the nodes whose number of

to decide the number afset variables. We will discuss it in Input vanable's Is less than or equal to ten. That is, we find
the next section. the A set variables from alh out of n, C(n, m), possible

3.2\ Set Selection Algorithm combinations, where is the number of input variables and

In the following discussion, let's assume that the targetS the number ofA set variables. We apply our heuristic
CLB can implement any 5-input functions. However, we try ordering algorithm and set selection algorithm discussed in
to decide either four, five or six variables to be the best size€ction 3.1 and 3.2 only on the nodes of Boolean networks
of A set. The reason why we have three choice: four, five, ofVhere the number of input variables is greater than ten.
six, instead of only one choice, five, is because in some cases Given the number of input variables and the number of
five A set variables will cause much more equivalent classeS€t variables chosen, we can compute the number of
than four or six. Given an ROBDD and the numbek skt equivalent classes based on the Boolean functions. Thus, in
variables temporarily selected, we can calculate the numbe?tl €xact ordering algonthr,n, we define the cost as the
of equivalent classes, the number of consumed CLB's anfumber of consumed CLB's. (If the number bf set
the number of remaining input variables. The costs Ofvr?lrlables is equal to six, we have to decompose it again and
choosing the number of set variables are computed by the Will consume two times as many CLB's as the bit-num,

Figure 6. The ordering algorithm.

following rule: which is the number of bits needed to encode all the
cost = (# of consumed CLB's) + (# of remaining input equivalent classes.) If there are more than one candidate, we
variables) n will choose the one with the fewest equivalent classes. The

wheren is the number of input variables. Since we like to exact ordering and set selection algorithm is illustrated in
have the number of remaining input variables decreased t6'9ure 8-

be less than or equal to five such that we do not have to] .
decompose it further, we give it less cost. We would like toExact_Ordering_and_Set_Selection(node)

choose the number &fset variables with the minimum cost { o

among four, five ,or six. If there are more than one candidate, ~OT(A_set_size=4,50r6) , o

the priority of the choices is five followed by four and for(C(#fanin(node)A_set_size) possible combinations of
followed by six. The\ set selection of our heuristic ordering A set variables){

algorithm is illustrated in Figure 7. Record the minimurtibit needed,
#min_bit]A_set_size],

and the relativa set variables;

A_Set_Selection_for_Our_Heuristic_Ordering(node, order)

{ Calculate the best coat[set_size];
for(A_set_size =4, 5 or 6){ . }. . L S
costp._set_size] (# of consumed CLB's) + if((#min_bit[4] < 4) or ¢min_bit[5] < 5) or ¢min_bit[6] <
(# of remaining input variables) - n; 6))

/* to insure the reduction of the number of fanins of the

#bit[_set_size]- Count_Equivalent_Class(node, .
function */

A_set_size,order);

return the\ set size with the minimum cost and the CKT sis |lindextabld HEU HEU HEU+ | HEU+
/*els;e-liti:);ts_estizvj r:Iadtf),leSL?vand 6 all failure */) EXACT EXA(_:T
A_set_size_ 6: RK _deq RK dec || RK_dec|CPU timgl RK_dec|CPU timg
do{ name (| nodes nodes nodes se nodes SgC
A_set_size— A_set_size + 1, 5xpl 21 19 26 1.6 19 2.3
for(Cérr,A)_set_size) possible combinations\afet 9sym 7 6 9 5.2 6 22 2
variables
Record the minimunbit needed, #min_bit, and the alu2 122 " 102 251 70 98.8
relative) set variables: alu4 381 239 221 8.0 216 36.6
if(#min_bit <A_set_size) apex4 | 984 426 439 26.1 354 214.8
/* to insure the reduction of the number of fanins of the | apex6 || 229 232 211 4.9 209 52.5
function */ apex7 | 63 65 62 2.7 63 3.1
. return_set_size andl set variables; b9 38 37 36 1.8 36 16
} ywhile(L); cip | 41 32 30 | 275| 23| 429
Figure 8. The exact ordering ahcset selection algorithm. count || 31 31 31 11 31 10
des 1919 1211 1019 73.1 991 379.¥
3.4 Proposed Roth-Karp Decomposition Algorithm duke2 || 177 125 125 8.0 117 26.5
The overall decomposition algorithm is shown in Figure 9. g4 80 80 80 292 80 292
B f51m || 23 16 22 2.4 15 3.7
BDD_Based_RK_Decomposition(node))
{ misex1 || 17 16 16 1.0 17 1.6
if(#fanin(node) <= 5) misex2 || 32 32 32 11 32 3.2
return: misex3 || 223 165 166 13.9 154 28.8
if(#fanin(node) <= 10) rd73 8 8 8 2.4 8 14.9
(order,A_set_size)- ds4 | 13 13 16 6.9 13 40.4
e|seixact_Ordering_anc‘k_Set_SeIection(node); ot 295 195 188 31.7 191 252
order — Our_Heuristic_Ordering(node); sao2 52 37 46 6.1 21 364
A set size. vg2 || 28 23 24 0.8 23 4.0
)\:Set__SeIection_for_Our_Heuristic_Ordering(node); z4ml 5 5 5 0.5 5 0.9
} c499 | 70 70 70 4.6 70 8.8
I*random encoding*/ csso || 170 | 106 89 14.4 87 17.7
(G, a functions) — Equivalent_Class_Encoding(set_size,]
order): Total || 4959 3266 3073| 273.1 285 10698
for(eacha function) Normalizel| 1 0.659 0.620 0.576
BDD_Based_RK_Decompositiam); Normalize2{ 1.518 1 0.941 0.875
} BDD_Based_RK_Decomposition(G); Table | : The experimental results of benchmark circuits.
Figure 9. The overall decomposition algorithm. results shown here are thus not intended for benchmarking
purpose for the complete technology mapping process.
4. Experimental Results Among multi-level logic synthesis techniques, the

The algorithm described above has been integrated intgg||apse operation, which collapses a multi-level network
SIS environment, which is developed by UC Berkeley.nig a two-level network, can have dramatic impacts on the

Experiments are conducted over a set of MCNC and ISCASyajity of outputs. However, applying the collapse operation
benchmark circuits to compare the results with another tWqy, some circuits can take forever and consume a lot of

implementations of Roth-Karp decomposition : one has N0 memory space without producing the final outputs. In this

set selection strategy in mis-pga [4] as shown on column 2 ofyperiment, we adopt the strategy from mis-pga to prepare
Table 1, the other chooses set by establishing th@- two scripts.

orthogonal input index table [1] as shown on column 3 ofgscript C contains the following SIS commands

Table I. Since the structures of the initial circuits and the collapse

companioning optimization script of Roth-Karp
decomposition can affect the results significantly, for the fair
comparisons in these experiments, we use the most commanuuiti-level network could not finish. We only report the time
scriptsavailablein SIS to prepareour initial circuits. The consumed in the two-level circuit.

simplify -d. Gate Arrays,” Proceedings 27th Design Automation Conf.,
Script S is the SIS standard optimization script. pp.613-619, June 1990.
To prepare the initial circuits, we apply both scripts on the[6] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf : Fast
circuits with at most 10 primary inputs and report the best Technology Mapping for Lookup Table-Based FPGA's,”
results. For circuits with more than 10 primary inputs, we Proceedings 28th Design Automation Conf., June 1991.
only apply script S. After obtaining the initial networks, the [7] K. Karplus, “Xmap : A Technology Mapper for Table-Lookup

same mapping script Field Programmable Gate Arrays,” Proceedings 28th Design
xI_k _decomp -n 5 /*Three Roth-Karp decomposition Automation Conf., pp.240-243, June 1991.
algorithms are applied here*/ [8] N. Woo, “A Heuristic Method for FPGA Technology Mapping
x|_partition -n 5 -tm Based on the Edge Visibility,” Proceedings 28th Design
xl_cover Automation Conf., pp.248-251, June 1991.

is used in all experiments to obtain final networks. Thus,[9] D. Filo, J. C. Yang, F. Mailhot, and G. D. Micheli, “Technology
each node in these networks may be one-to-one mapped into Mapping for a Two- Output RAM-based Field-Programmable
a 5-input CLB. The results are shown in Table I. Gate Arrays,” Proceedings European Design Automation Conf.,
On columns 4 and 5 of Table I, we also report the results pp.534-538, Feb. 1991.

on only using the heuristic ordering algorithm. We can seg10] J. P. Roth, and R. M. Karp, “Minimization Over Boolean
that the heuristics alone does not do as good as our heuristics Graphs,” IBM Journal of Research and Development, pp.227-
plus exact algorithm (columns 6 and 7) even though the CPU 238, April 1962.

time consumption is less. This is the reason why we use th|1] C. Y. Lee, “ Representation of Switching Circuits by Binary-
number of fanins of nodes as the criteria to switch between Decision Programs,” Bell System Technical J., vol. 38, pp.985-
the heuristic and the exact algorithm. On average, our 999, July 1959.

algorithm produces 424 fewer nodes than that of SIS [12] S. B. Akers, “ Binary Decision Diagrams,” IEEE Trans. on

while the Index-Table algorithm [1] produces 34.fewer Computers, vol. C-27, pp.509- 516, June 1978.
nodes than that of SIS. As we compare our approach with thi3] Randal E. Bryant, “Graph-Based Algorithms for Boolean
Index-Table algorithm, it produces 125ewer nodes than Function Manipulation,” IEEE Trans. on Computers, vol. C-35,

that of the Index-Table algorithm. Indeed, our algorithm pp.677-691, August 1986.
produces the best results for all the benchmarking circuit$14] R. K. Brayton, C. McMullen, G. D. Hachtel, and A.
except misexl. Since the CPU time available from other two Sangiovanni-Vincentelli, “Logic Minimization Algorithms for
approaches are based on SUN SPARC 2, and the CPU time VLSI Synthesis,” Kluwer Academic Publishers, 1984.
reported by all three algorithms are reasonably small and i§l5] Steven J. Friedman and Kenneth J. Supowit, “Finding the
of no concerned, therefore, in the table, we only report the Optimal Variable Ordering for Binary Decision Diagrams,”
CPU time of our algorithm running on SUN SPARC 20 IEEE Trans. on Computers, vol. 39, pp.710-713, May 1990.
workstation. [16] Masahiro Fujita, Hisanori Fujisawa, and Yusuke Matsunaga,
5. Conclusions “Variable Ordering Algorithms for Ordered Binary Decision
In this paper, we propose a novel heuristic algorithm to Diagrams and Their Evaluation,” IEEE Trans. on Computer-
select\ set variables in the Roth-Karp decomposition for ~ Aided Design of Integrated Circuits and Systems, vol. 12,
better LUT utilization. The result shows that our algorithm pp.6-12, January 1993.

performs much better than the existing methods. [17] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS : A Multi-Level Logic Optimization System,”
References IEEE Trans. on Computer-Aided Design, Nov. 1987.

[1] Wen-Zen Shen, Juinn-Dar Huang, and Shin-Min Chao[,18]
“Lambda Set Selection in Roth-Karp Decomposition for LUT-
Based FPGA Technology Mapping,” Proceedings 32nd Design
Automation Conf., pp.65-69, June 1995.

[2] Xilinx Inc., 2100, Logic Drive, San Jose, CA-95124, The[lg]

Programmable ngig Dgta Book. Multiple-Output Decomposition: Theory and an Implicit
(81 R 'V'Wga" Y .N'Shlza'.("“N' Shenoy, R', K. Brayton, and A. Algorithm,” Proceedings 32th Design Automation Conf.,
Sangiovanni-Vincentelli, “Logic Synthesis for Programmable pp.54-59, June 1995.

Gate Arrays,” Proceedings 27th Design Automation Conf[zo]

pp.620-62.5, June 1990. .) Synthesis for Look-Up Table based FPGAs using Functional
[4] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni- Decomposition and Support Minimization,” Proceedings Int.

Vincentelli, “Improved Logic Synthesis Algorithms for Table Conf. Computer-Aided Design, pp. 353-358, Nov. 1995
Look Up Architectures,” Proceedings Int. Conf. Computer[21] ' '

Aided Design, pp.564-567, Nov. 1991.
[5] R. J. Francis, J. Rose, and K. Chung, “Chortle : A Technology
Mapping Program for Lookup Table-Based Field Programmable

Yung-Te Lai, Massound Pedram and Sarma B.K. Vrudhula,
“BDD Based Decomposition of Logic Functions with
Application to FPGA Synthesis,” Proceedings 30th Design
Automation Conf., pp.642-647, June 1993.

Bernd Wurth, Klaus Eckl, and Kurt Antreich, “Functional

Hiroshi Sawada, Takayuki Suyama and Akira Nagoya, “Logic

Christoph Scholl and Paul Molitor, “Communication Based
FPGA Synthesis for Multi-Output Boolean Functions,”
Proceedings Asia and South Pacific Design Automation Conf.,
pp.279-287, 1995.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

