
BDD Based Lambda Set Selection in Roth-Karp Decomposition

for LUT Architecture

Jie-Hong Jiang, Jing-Yang Jou, Juinn-Dar Huang and Jung-Shian Wei

Department of Electronics Engineering
National Chiao Tung University

Hsinchu, Taiwan 300, Republic of China
jyjou@bestmap.ee.nctu.edu.tw

Abstract
 Field Programmable Gate Arrays (FPGA’s) are
important devices for rapid system prototyping. Roth-Karp
decomposition is one of the most popular decomposition
techniques for Look-Up Table (LUT)-based FPGA
technology mapping. In this paper, we propose a novel
algorithm based on Binary Decision Diagrams (BDD’s) for
selecting good lambda set variables in Roth-Karp
decomposition to minimize the number of consumed
configurable logic blocks (CLB’s) in FPGA’s. The
experimental results on a set of benchmarks show that our
algorithm can produce much better results than those of the
previous approach [1].

1. Introduction
 The LUT-based architecture is the most popular one
among many different FPGA architectures. It consists of
many configurable LUT’s and each LUT can implement any
k-input functions. For example, in Xilinx XC3000
architecture [2], k is equal to 5.
 Many technology mapping algorithms developed to
minimize the number of LUT’s have been successively
proposed in previous studies [3-9]. Some of them first
decompose the given Boolean network to be k-feasible. A
Boolean network is said to be k-feasible if each node in the
network has the number of its fanins to be no more than k.
Hence, the corresponding circuit can be directly realized by
an one-to-one mapping between nodes and LUT’s. If there
are some nodes that are not k-feasible, these nodes then are
decomposed to be a set of k-feasible nodes. Although,
recently there are many studies [18-21] taking advantage of
BDD [11-13] for FPGA technology mapping, none of them
address the relationship between BDD’s and lambda set
variables in Roth-Karp decomposition. In this paper, we only
focus on Roth-Karp decomposition basing on BDD’s in
order to realize combinational circuits with the minimum
number of CLB’s.
 We introduce some basic terms, Roth-Karp decomposition,
and BDD’s in Section 2. Our new algorithms will be
presented in Section 3. Section 4 shows the comprehensive
experimental results and comparisons with other related
algorithms. The concluding remarks are given in Section 5.

2. Preliminaries

 Section 2.1 introduces basic logic notations, terminology
and definitions used in this paper. The definitions and
principles of the classical Roth-Karp decomposition is given
in Section 2.2. In Section 2.3, the BDD is introduced.
2.1 Basic Definitions and Notations
 Let B = {0,1}. A completely specified single-output
function f with an input set X consisting of n variables x1,
x2, ..., xn, is denoted as f : BX → B where the domain BX is
the Cartesian product spanned by X . A minterm x = [x1 x2 ...
xn] ∈ BX is a vertex in the Boolean n-space. The on-set of f,
Xf

on ⊆ BX, is the set of minterms x such that f(x) = 1, and the

off-set of f, Xf
off ⊆ BX, is the set of minterms x such that

f(x)=0. A cube c which represents a product term (a set of
minterms) p is specified by a row vector c = [c1 c2 ... cn]
where
 ci = 0 if xi appears complemented in p.
 ci = 1 if xi appears not complemented in p. 1 ≤ i ≤ n

 ci = 2 if xi does not appear in p.
 The union of two sets of cubes C and D, denoted as C ∪ D,
is a set of minterms contained by at least one cube in either C
or D. A set of cubes C = {c1, c2, ..., c

k
} is said to be a cover

of f if ci

i

k

=1� contains all vertices of Xf
on and no vertex

of Xf
off. The matrix representation, f = M(C), of a cover is a

matrix simply obtained by stacking the row vectors
representing cubes contained by C. Most of the definitions
can be found in [14] for more details.
2.2 Roth-Karp Decomposition
 Let E be a set of variables, and let X and Y be two
nonempty subsets of E such that X ∪ Y = E and X ∩ Y = ∅1.
Then, given a function F : BE → B, we say that x1, x2 ∈ BX

are equivalent with respect to F, denoted as x1 ∼ x2, if ∀ y ∈
BY, (x1, y) and (x2, y) ∈ BE such that F(x1, y) = F(x2, y);
otherwise, x1 is nonequivalent with x2, denoted as x1 !∼ x2.
Lemma 1: If F is a completely specified function, then the
transitivity of the equivalence holds , i.e., if x1 ∼ x2 and x2 ∼
x3 then x1 ∼ x3. �

 Thus, all mutually equivalent elements can be grouped

1 We only consider the disjoint Roth-Karp decomposition here.

ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

together to form an equivalent class, and all equivalent
classes are pairwisely disjoint and the union of them is BX.
Theorem 1:Given a symbolic variable W, and two functions
*α : BX → W and G : W × BY → B, such that

 ∀ (x, y) ∈ BX × BY, F(x, y) = G(
*α (x), y) (1)

holds if and only if
 ∀ x1, x2 ∈ BX,

*α (x1) =
*α (x2) ⇒ x1 ∼ x2. �

 Equation (1) is called a decomposition of F.
*α is a

binary-input symbolic-output function. X is called the bound
(λλ) set, and Y is called the free (µµ) set. The decomposition is
disjoint if the bound set and the free set are disjoint, i.e., X ∩
Y = ∅. In this paper, only the disjoint decomposition is
considered.
Lemma 2: The number of elements of W must be no less
than the number of equivalent classes in X. �

 From Lemma 2, if there are k equivalent classes in X, then
W must be no less than k. Let t ≥ log2k, then (1) can be
rewritten as

 F(x, y) = G(α1(x), α2(x), ..., αt(x), y)

where
*α (x) = (α1(x), α2(x), ..., αt(x)), αi(x) is a single-output

function for 1≤ i ≤ t. It is clear that this technique can be
used to reduce the number of fanins of the function under the
condition t < X. Besides, the smaller t is, the fewer
encoding functions, α1, α2, ... and αt, are required.

Furthermore, 2
t - W don’t care can be used to simplify

the function G. Hence, the minimum W is desirable.
2.3 Binary Decision Diagrams
 BDD’s are rooted, directed acyclic graphs with two types
of nodes : terminal and nonterminal nodes. The terminal
nodes labeled with 0 and 1 represent the Boolean constant
function 0 and 1 respectively. Each nonterminal node has
two edges pointing to its children labeled 1 (or then) and 0
(or else). A nonterminal node v represents the Boolean
function :

 fv(v1,…, vi, vi+1,…) = vi’ ⋅ felse(v)(v1,…, vi+1,…) +

vi ⋅ fthen(v)(v1,…, vi+1,…).
An ordered BDD (OBDD) is a BDD with its input variables
ordered and every path from the root to a terminal node in
the OBDD visits the input variables in an ascending order.
The order is called an index of the node. A reduced OBDD
(ROBDD) is an OBDD of which each node represents a
distinct logic function. Most of the concepts mentioned here
can be found in [11-13] for more details. There is an
important property between Roth-Karp decomposition and
ROBDD. Let’s draw a cutting line on the ROBDD such that
the nonterminal nodes are partitioned into two disjoint parts.
The upper part and lower part correspond to the λ set and µ
set in Roth-Karp decomposition respectively. Consequently,
we may observe that the nodes pointed to by the edges
intersecting with the cutting line are called equivalent class

nodes. Each equivalent class node represents one equivalent
class. Therefore, we may conclude that the number of
equivalent classes in Roth-Karp decomposition is the number
of nodes pointed to by the edges intersecting with the cutting
line in ROBDD. Another indispensable knowledge about an
ROBDD is that the ordering of variables will affect the size
of the ROBDD significantly. According to the previous
observation, we will evolve a novel heuristic algorithm to
select good λ set (or good ordering of ROBDD) such that
less equivalent classes are obtained.

3. Our Approach
3.1 Variable Ordering Algorithm
 Previous efforts [15, 16] of variable ordering algorithms
for BDD’s aim at minimizing the number of nodes in an
ROBDD. These ordering methods do not aim at better Roth-
Karp decomposition. In this paper, we develop a novel
ordering algorithm of BDD aiming at obtaining good λ set
variables. The idea is to have a variable ordering with an
obvious bottleneck in the ROBDD so that there are fewer
paths intersecting with the cutting line. Let’s use the
following example to show the basic idea of our proposed
algorithm. Assume a function with its cover shown in Figure
1 and its OBDD shown in Figure 2.
 If we choose variable x1 as the first variable and x2 as the
second variable, then we have the binary tree with the x2 and
the x2’ branches of the else-edge of x1 vanished in the
resultant ROBDD. In Figure 1, the dotted circle with shading
represents the else-edge of the concerned variable, x1, and
the dotted circle without shading shows the relative function
information of the next ordered variable, x2. Similarly, the
solid circle with shading represents the then-edge of the
concerned variable, and the solid circle without shading
shows the relative function information of the next ordered
variable. Because as long as input vector (x1, x2) has the
values (0, 0) or (0, 1), all paths from the root are directed to
two nodes which have the same Boolean function in the
OBDD as outlined in Figure 2. Therefore, x2 will vanish in
the resultant ROBDD and some associated branches will
disappear. Therefore, a good ordering should make more
branches in an OBDD (binary tree) to vanish such that there
will be fewer equivalent class nodes. For the Boolean
function shown in Figure 1, the OBDD’s are significantly
different with different orderings shown in Figure 3. We can
see that (x1, x2, x4, x3) is the best ordering in terms of λ set
selection, if the desired number of λ set variables is two.
(Note that we will regard the then-edge of node x2 in Figure
3(a). as being deleted, because it points to a terminal node.
Since there are only two terminal nodes, 0 and 1, the
terminal nodes can at most add two more equivalent classes.)
Let’s use another Boolean function shown in Figure 4 to
illustrate our ordering algorithm in more detail.

x 1 x2 x3 x4

1 0 0 0
1 0 1 0
0 2 0 1

0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0

x 1

x 2

x 3

x 4

F igure 1 . The cover o f a Boolean funct ion. F igure 2 . The OBDD of the funct ion.

 F igure 3. The OBDD's wi th d i f ferent var iab le order ings.
(Branches po in t ing to termina l nodes were not shown here.)

(c) .

x 1

x 3

x 4

x 2

(b) .

x 1

x 4

x 2

x 3

(a) .

x 1

x 2

x 4

x 3

F igure 4. The cover o f a Boolean funct ion. F igure 5 . The par t ia l l y reduced OBDD.

x 4

x 5

x 3

x 2

x 1

0 1 0 0 1 0 1 0 1 0

x 1 x2 x3 x4 x 5

0 1 2 0 1
1 0 2 0 1
1 0 0 1 2
0 2 1 1 2

Step 1 : Determine the first 2 variables.
 We define the benefit of each ordered pair of variables as
being equal to the number of branches in the binary tree
which can be deleted. For pair (x1, x2), branch x2 coming
from the then-edge of node x1 in the OBDD can be deleted.
This is because that every cube with x1=1, the corresponding
x2 is always equal to 0. However, the branches of x2 and x2’
coming from the else-edge of node x1 can not be deleted.
This is because that all cubes with x1=0, their corresponding
cubes of x2 are not equal. There is totally one branch being
deleted. Therefore, the benefit of ordered pair (x1, x2) is
equal to 1. Similarly, for pair (x2, x1), the branch of x1
coming from the then-edge of node x2 can be deleted. The
branches of x1 and x1’ coming from the else-edge of node x2

can not be deleted. There is totally one branch being deleted.
So the benefit of the pair (x2, x1) is 1. By the same way, we
get the benefit of each pair as following:
 (x1, x2) : 1 (x2, x1) : 1 (x3, x1) : 0 (x4, x1) : 0 (x5, x1) : 0
 (x1, x3) : 0 (x2, x3) : 0 (x3, x2) : 0 (x4, x2) : 0 (x5, x2) : 0
 (x1, x4) : 0 (x2, x4) : 0 (x3, x4) : 0 (x4, x3) : 2 (x5, x3) : 0
 (x1, x5) : 0 (x2, x5) : 0 (x3, x5) : 0 (x4, x5) : 3 (x5, x4) : 1.

Because pair (x4, x5) has the maximum benefit, we select
them as the first two variables.
Step 2 : Select the next favorite variable.
 Given the already selected variables, for each potential
candidate of the next variables, evaluate how many branches
can be deleted. Choose the one with the maximum benefit. If
there are more than one candidate, select one randomly. In
this example, after selecting (x4, x5) as the first two variables,
for x4’ x5 in the cover, no branch can be deleted if x1 is
selected as the next variable; no branch can be deleted if x2

is selected as the next one; both branches x3 and x3’ can be
deleted if x3 is the next one. For x4 x5’ and x4 x5 in the cover,
no branch can be deleted if x1 is selected as the next variable;
no branch can be deleted if x2 is the next one; also no branch
can be deleted if x3 is the next one. Therefore, we can
evaluate the benefits for selecting x1, x2, or x3 to be the next
variable as 0, 0, and 2 respectively. We thus select x3 as the
next one.
Step 3 : Iterate Step 2 until all variables are selected.
Consequently, we have the variable ordering as: (x4, x5, x3,
x2, x1). The resultant OBDD is shown in Figure 5. The

overall ordering algorithm is shown in Figure 6.

Our_Heuristic_Ordering(node)
{
 /* select the first two variables */

for(all pairs of two different variables)
var_list ← the pair which can result in deleting the most

branches in the OBDD;
 /* sort the rest variables */
 while(there are variables unselected){
 for(all variables unselected)

for(all input vectors whose elements are the variables
having been selected)

Record how many branches can be deleted
accumulatively;

 var_list ← the variable with the maximum benefit;
 }
 return var_list;
}

Figure 6. The ordering algorithm.

After we have good ordering on the BDD’s, the next thing is
to decide the number of λ set variables. We will discuss it in
the next section.
3.2 λλ Set Selection Algorithm
 In the following discussion, let’s assume that the target
CLB can implement any 5-input functions. However, we try
to decide either four, five or six variables to be the best size
of λ set. The reason why we have three choice: four, five, or
six, instead of only one choice, five, is because in some cases
five λ set variables will cause much more equivalent classes
than four or six. Given an ROBDD and the number of λ set
variables temporarily selected, we can calculate the number
of equivalent classes, the number of consumed CLB’s and
the number of remaining input variables. The costs of
choosing the number of λ set variables are computed by the
following rule:
 cost = (# of consumed CLB’s) + (# of remaining input
variables) - n,
where n is the number of input variables. Since we like to
have the number of remaining input variables decreased to
be less than or equal to five such that we do not have to
decompose it further, we give it less cost. We would like to
choose the number of λ set variables with the minimum cost
among four, five ,or six. If there are more than one candidate,
the priority of the choices is five followed by four and
followed by six. The λ set selection of our heuristic ordering
algorithm is illustrated in Figure 7.

λ_Set_Selection_for_Our_Heuristic_Ordering(node, order)
{

for(λ_set_size = 4, 5 or 6){
cost[λ_set_size] ← (# of consumed CLB’s) +

(# of remaining input variables) - n;
#bit[λ_set_size] ← Count_Equivalent_Class(node,

λ_set_size,order);

/*count the number of bits needed to encode all
equivalent classes*/

}
if((#bit[4] < 4) or (#bit[5] < 5) or (#bit[6] < 6))
/* to insure the reduction of the number of fanins of the
function */
return the size of λ set variables with the minimum cost;
/*else -- size 4, 5 and 6 all failure*/
λ_set_size ← 6;
do{

λ_set_size ← λ_set_size + 1;
#bit ← Count_Equivalent_Class(node, λ_set_size,

order);
if((#bit < λ_set_size)

return λ_set_size;
}while(1);

}
Figure 7. The λ set selection of our heuristic ordering algorithm.

3.3 Exact λλ Set Selection Algorithm
 In order to obtain the best possible result, we find the
optimum λ set exhaustively for the nodes whose number of
input variables is less than or equal to ten. That is, we find
the λ set variables from all m out of n, C(n, m), possible
combinations, where n is the number of input variables and m
is the number of λ set variables. We apply our heuristic
ordering algorithm and λ set selection algorithm discussed in
Section 3.1 and 3.2 only on the nodes of Boolean networks
where the number of input variables is greater than ten.
 Given the number of input variables and the number of λ
set variables chosen, we can compute the number of
equivalent classes based on the Boolean functions. Thus, in
our exact ordering algorithm, we define the cost as the
number of consumed CLB’s. (If the number of λ set
variables is equal to six, we have to decompose it again and
will consume two times as many CLB’s as the bit-num,
which is the number of bits needed to encode all the
equivalent classes.) If there are more than one candidate, we
will choose the one with the fewest equivalent classes. The
exact ordering and λ set selection algorithm is illustrated in
Figure 8.

Exact_Ordering_and_λ_Set_Selection(node)
{

for(λ_set_size = 4, 5 or 6)
for(C(#fanin(node), λ_set_size) possible combinations of
λ set variables){

Record the minimum #bit needed,
#min_bit[λ_set_size],
and the relative λ set variables;
Calculate the best cost[λ_set_size];

}
if((#min_bit[4] < 4) or (#min_bit[5] < 5) or (#min_bit[6] <
6))
/* to insure the reduction of the number of fanins of the
function */

return the λ set size with the minimum cost and the
related λ set variables;

/*else -- λ_set_size = 4, 5, and 6 all failure */
λ_set_size ← 6;
do{

λ_set_size ← λ_set_size + 1;
for(C(n, λ_set_size) possible combinations of λ set
variables)

Record the minimum #bit needed, #min_bit, and the
relative λ set variables;

if(#min_bit < λ_set_size)
/* to insure the reduction of the number of fanins of the
function */

return λ_set_size and λ set variables;
}while(1);

}
Figure 8. The exact ordering and λ set selection algorithm.

3.4 Proposed Roth-Karp Decomposition Algorithm
 The overall decomposition algorithm is shown in Figure 9.

BDD_Based_RK_Decomposition(node)
{

if(#fanin(node) <= 5)
return;

if(#fanin(node) <= 10)
(order, λ_set_size) ←
Exact_Ordering_and_λ_Set_Selection(node);

else{
order ← Our_Heuristic_Ordering(node);
λ_set_size ←
λ_Set_Selection_for_Our_Heuristic_Ordering(node);

}
/*random encoding*/
(G, α functions) ← Equivalent_Class_Encoding(λ_set_size,
order);
for(each α function)

BDD_Based_RK_Decomposition(α);
BDD_Based_RK_Decomposition(G);

}
Figure 9. The overall decomposition algorithm.

4. Experimental Results
 The algorithm described above has been integrated into
SIS environment, which is developed by UC Berkeley.
Experiments are conducted over a set of MCNC and ISCAS
benchmark circuits to compare the results with another two
implementations of Roth-Karp decomposition : one has no λ
set selection strategy in mis-pga [4] as shown on column 2 of
Table I, the other chooses λ set by establishing the µ-
orthogonal input index table [1] as shown on column 3 of
Table I. Since the structures of the initial circuits and the
companioning optimization script of Roth-Karp
decomposition can affect the results significantly, for the fair
comparisons in these experiments, we use the most common
scripts available in SIS to prepare our initial circuits. The

CKT SIS

RK_dec

IndexTable

RK_dec

HEU

RK_dec

HEU

CPU time

HEU+

EXACT

RK_dec

HEU+

EXACT

CPU time

name nodes nodes nodes sec nodes sec

5xp1 21 19 26 1.6 19 2.3

9sym 7 6 9 5.2 6 22.2

alu2 122 77 102 25.1 70 98.8

alu4 381 239 221 8.0 216 36.6

apex42 984 426 439 26.1 354 214.8

apex6 229 232 211 4.9 209 52.5

apex7 63 65 62 2.7 63 3.1

b9 38 37 36 1.8 36 1.6

clip 41 32 30 27.5 23 42.9

count 31 31 31 1.1 31 1.0

des 1919 1211 1019 73.1 991 379.7

duke2 177 125 125 8.0 117 26.5

e64 80 80 80 2.2 80 2.2

f51m 23 16 22 2.4 15 3.7

misex1 17 16 16 1.0 17 1.6

misex2 32 32 32 1.1 32 3.2

misex3 223 165 166 13.9 154 28.8

rd73 8 8 8 2.4 8 14.9

rd84 13 13 16 6.9 13 40.4

rot 225 195 188 31.7 191 25.2

sao2 52 37 46 6.1 27 36.4

vg2 28 23 24 0.8 23 4.0

z4ml 5 5 5 0.5 5 0.9

C499 70 70 70 4.6 70 8.8

C880 170 106 89 14.4 87 17.7

Total 4959 3266 3073 273.1 2857 1069.8

Normalize1 1 0.659 0.620 0.576

Normalize2 1.518 1 0.941 0.875

Table I : The experimental results of benchmark circuits.

results shown here are thus not intended for benchmarking
purpose for the complete technology mapping process.
 Among multi-level logic synthesis techniques, the
collapse operation, which collapses a multi-level network
into a two-level network, can have dramatic impacts on the
quality of outputs. However, applying the collapse operation
on some circuits can take forever and consume a lot of
memory space without producing the final outputs. In this
experiment, we adopt the strategy from mis-pga to prepare
two scripts.
Script C contains the following SIS commands

collapse

2 Multi-level network could not finish. We only report the time
consumed in the two-level circuit.

simplify -d.
Script S is the SIS standard optimization script.
To prepare the initial circuits, we apply both scripts on the
circuits with at most 10 primary inputs and report the best
results. For circuits with more than 10 primary inputs, we
only apply script S. After obtaining the initial networks, the
same mapping script
 xl_k_decomp -n 5 /*Three Roth-Karp decomposition

algorithms are applied here*/
 xl_partition -n 5 -tm
 xl_cover
is used in all experiments to obtain final networks. Thus,
each node in these networks may be one-to-one mapped into
a 5-input CLB. The results are shown in Table I.
 On columns 4 and 5 of Table I, we also report the results
on only using the heuristic ordering algorithm. We can see
that the heuristics alone does not do as good as our heuristics
plus exact algorithm (columns 6 and 7) even though the CPU
time consumption is less. This is the reason why we use the
number of fanins of nodes as the criteria to switch between
the heuristic and the exact algorithm. On average, our
algorithm produces 42.4% fewer nodes than that of SIS
while the Index-Table algorithm [1] produces 34.1% fewer
nodes than that of SIS. As we compare our approach with the
Index-Table algorithm, it produces 12.5% fewer nodes than
that of the Index-Table algorithm. Indeed, our algorithm
produces the best results for all the benchmarking circuits
except misex1. Since the CPU time available from other two
approaches are based on SUN SPARC 2, and the CPU time
reported by all three algorithms are reasonably small and is
of no concerned, therefore, in the table, we only report the
CPU time of our algorithm running on SUN SPARC 20
workstation.

5. Conclusions
 In this paper, we propose a novel heuristic algorithm to
select λ set variables in the Roth-Karp decomposition for
better LUT utilization. The result shows that our algorithm
performs much better than the existing methods.

References
[1] Wen-Zen Shen, Juinn-Dar Huang, and Shin-Min Chao,

“Lambda Set Selection in Roth-Karp Decomposition for LUT-
Based FPGA Technology Mapping,” Proceedings 32nd Design
Automation Conf., pp.65-69, June 1995.

[2] Xilinx Inc., 2100, Logic Drive, San Jose, CA-95124, The
Programmable Logic Data Book.

[3] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Logic Synthesis for Programmable
Gate Arrays,” Proceedings 27th Design Automation Conf.,
pp.620-625, June 1990.

[4] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Improved Logic Synthesis Algorithms for Table
Look Up Architectures,” Proceedings Int. Conf. Computer-
Aided Design, pp.564-567, Nov. 1991.

[5] R. J. Francis, J. Rose, and K. Chung, “Chortle : A Technology
Mapping Program for Lookup Table-Based Field Programmable

Gate Arrays,” Proceedings 27th Design Automation Conf.,
pp.613-619, June 1990.

[6] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf : Fast
Technology Mapping for Lookup Table-Based FPGA’s,”
Proceedings 28th Design Automation Conf., June 1991.

[7] K. Karplus, “Xmap : A Technology Mapper for Table-Lookup
Field Programmable Gate Arrays,” Proceedings 28th Design
Automation Conf., pp.240-243, June 1991.

[8] N. Woo, “A Heuristic Method for FPGA Technology Mapping
Based on the Edge Visibility,” Proceedings 28th Design
Automation Conf., pp.248-251, June 1991.

[9] D. Filo, J. C. Yang, F. Mailhot, and G. D. Micheli, “Technology
Mapping for a Two- Output RAM-based Field-Programmable
Gate Arrays,” Proceedings European Design Automation Conf.,
pp.534-538, Feb. 1991.

[10] J. P. Roth, and R. M. Karp, “Minimization Over Boolean
Graphs,” IBM Journal of Research and Development, pp.227-
238, April 1962.

[11] C. Y. Lee, “ Representation of Switching Circuits by Binary-
Decision Programs,” Bell System Technical J., vol. 38, pp.985-
999, July 1959.

[12] S. B. Akers, “ Binary Decision Diagrams,” IEEE Trans. on
Computers, vol. C-27, pp.509- 516, June 1978.

[13] Randal E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Trans. on Computers, vol. C-35,
pp.677-691, August 1986.

[14] R. K. Brayton, C. McMullen, G. D. Hachtel, and A.
Sangiovanni-Vincentelli, “Logic Minimization Algorithms for
VLSI Synthesis,” Kluwer Academic Publishers, 1984.

[15] Steven J. Friedman and Kenneth J. Supowit, “Finding the
Optimal Variable Ordering for Binary Decision Diagrams,”
IEEE Trans. on Computers, vol. 39, pp.710-713, May 1990.

[16] Masahiro Fujita, Hisanori Fujisawa, and Yusuke Matsunaga,
“Variable Ordering Algorithms for Ordered Binary Decision
Diagrams and Their Evaluation,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 12,
pp.6-12, January 1993.

[17] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS : A Multi-Level Logic Optimization System,”
IEEE Trans. on Computer-Aided Design, Nov. 1987.

[18] Yung-Te Lai, Massound Pedram and Sarma B.K. Vrudhula,
“BDD Based Decomposition of Logic Functions with
Application to FPGA Synthesis,” Proceedings 30th Design
Automation Conf., pp.642-647, June 1993.

[19] Bernd Wurth, Klaus Eckl, and Kurt Antreich, “Functional
Multiple-Output Decomposition: Theory and an Implicit
Algorithm,” Proceedings 32th Design Automation Conf.,
pp.54-59, June 1995.

[20] Hiroshi Sawada, Takayuki Suyama and Akira Nagoya, “Logic
Synthesis for Look-Up Table based FPGAs using Functional
Decomposition and Support Minimization,” Proceedings Int.
Conf. Computer-Aided Design, pp. 353-358, Nov. 1995.

[21] Christoph Scholl and Paul Molitor, “Communication Based
FPGA Synthesis for Multi-Output Boolean Functions,”
Proceedings Asia and South Pacific Design Automation Conf.,
pp.279-287, 1995.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

