
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

Logic Synthesis for Cellular Architecture FPGAs Using BDDs

Gueesang Lee

Dept. of Computer Science

The Chonnam National University

Kwangju, Korea 500-757

Tel: +82-62-520-6895

FAX: +82-62-524-0020

e-mail gslee@chonnam.chonnam.ac.kr

Abstract| In this paper, an e�cient approach to

the synthesis of CA(Cellular Architecture)-type FP-

GAs is presented. To exploit the array structure

of cells in CA-type FPGAs, logic expressions called

Maitra terms, which can be mapped directly to the cell

arrays are generated. In this approach, a BDD is mod-

i�ed so that each node of the BDD has another branch

which is an exclusive-OR of the two branches of a

node. Once the modi�ed BDD is obtained, a traversal

of the BDD is su�cient to generate the Maitra terms

needed. Since a BDD can be traversed in O(n) steps,

where n is the number of nodes in the BDD, Maitra

terms are generated very e�ciently. This also removes

the need for generating minimal SOP or ESOP ex-

pressions which can be costly in some cases. The ex-

periments show that the proposed method generates

better results than existing methods.

I. Introduction

Because of high programmability and short turn around

time, FPGAs have been considered as the most attractive

devices for fast prototyping. Various architectures are

employed to realize such devices. The most popular ones

include Multiplexor based FPGAs and LUT-type FPGAs

for which there have been extensive studies in developing

their synthesis methods. CA(Cellular Architecture)-type

FPGAs are introduced rather recently and this category of

FPGAs are characterized by relatively small logic blocks

and local connectivity between them. Figure 1 shows the

basic structure of two dimensional array of cells in a CA-

type FPGAs[1]. A generic model of the CA-type FPGAs

consists of the array of cells which are connected to their

neighbours and local buses, vertical and horizontal, to

carry the signals to and from the other cells. For sim-

plicity, we assume that the number of inputs to a cell is

limited to two and the number of outputs of a cell is lim-

ited to one. Furthermore, only one input is taken from

0This work was supported by Korean Ministry of Education
through Inter-University Semiconductor Research Center(ISRC 96-
E-2013) in Seoul National University.

Vertical
Buses

Horizontal
Buses

Fig. 1. A generic structure of CA-type FPGAs

the local bus and the logic blocks can realize an inverter,

an AND, OR, EXOR, NAND gate, a wire and their com-

binations. Figure 10 shows one such example. In Atmel

6000 series FPGAs, the architecture limitation is the same

as the above except that the number of inputs to a logic

block is limited to three and outputs to two.

For the synthesis of CA-type FPGAs, several ap-

proaches have been presented. The �rst group of works

utilize various decision diagrams including FDD(Function

Decision Diagram)[2] and KDD(Kronecker Decision

Diagram)[3, 4] and tree structures[5]. However, these ap-

proaches su�er from the drawback that they can waste a

large amount of cells due to its tree like structure. An

algebraic approach presented by Perkowski et al.[1, 6] al-

leviates such de�ciencies and provides a well-de�ned theo-

retical background for the manipulation of Boolean func-

tions applicable to Cellular Architecture two dimensional

arrays. The synthesis model of [1] is composed of two

planes: the complex(input) and collecting (output) plane.

It is similar to the conventional PLA architecture, but

a linear array of cells can implement a broader class of

Boolean functions than a simple product term in PLA.

Since each cell can realize an AND, OR, EXOR or their

combinations, the outputs of the cell arrays constitute

a special class of Boolean functions called Maitra terms

which are named from Maitra Cascade[7].
The problem of interest in this paper is the generation

of the minimal number of Maitra terms particularly when
the BDD of a function is given. After the Maitra terms are
generated, folding techniques[1] can be applied to further
reduce the number of cells needed. We further assume
that the Maitra terms are collected by exclusive-OR oper-
ations as in [1] to compare the results. However we expect
it will not be di�cult to generalize our approach so that
Maitra terms are collected by arbitrary cell functions.

II. Preliminaries

Boolean expressions which can be directly mapped to
linear cell arrays are de�ned and are called Maitra terms.
The following de�nitions are from [1].

Def) A forward Maitra term is de�ned recursively as fol-
lows.

1. a literal is a forward Maitra term.

2. if M is a forward Maitra term and a is a literal
then M � a;M � a;M + a are forward Maitra
terms, where a variable never appears more than
once in the string.

Def) A reverse Maitra term is de�ned recursively as fol-
lows.

1. a literal is a reverse Maitra term.

2. if M is a reverse Maitra term and a is a literal then
a �M;a�M;a+M are reverse Maitra terms, where a
variable never appears more than once in the string.

Def) A bidirectional Maitra term is M1�M2 where � is a
two input function, M1 is a forward Maitra term, M2 is
a reverse Maitra term and a variable never appears more
than once in the string.

Def) A complex term is a forward, reverse or bidirectional
Maitra term.

Note that a speci�c ordering is imposed on input vari-
ables to form Maitra terms. It is not di�cult to see that
a complex term can be implemented in a cell array.

Example 1) A logic expression (a + b)c + d can be im-
plemented in cell arrays as shown in Figure 2. However,
(a + b)(c + d) is not a Maitra term and it needs another
routing wire to be realized in the cellular architecture[6].
Note that the input ordering of a,b,c,d is imposed in this
example.
In this paper, forward Maitra terms are used for sim-

plicity. Therefore Maitra terms(or complex terms) will
refer to forward Maitra terms in the rest of this paper.

ba c d

f

Fig. 2. Maitra term (a+ b)c+ d implemented in a cell array

Given a Boolean function f(V) and a variable v 2 V ,
f(V) can be expressed as:

f(V) = v � f(v = 1) + v0 � f(v = 0)

= v � f(v = 1) + v0 � f(v = 0)

= v � f(v = 1)� (1� v) � f(v = 0)

= v � (f(v = 1)� f(v = 0))� f(v = 0)

and

f(V) = v � f(v = 1) + v0 � f(v = 0)

= (1 � v) � f(v = 1)� v0 � f(v = 0)

= f(v = 1)� v � (f(v = 1)� f(v = 0))

In short, a logic function can be represented as:

f(V) = v � f(v = 1) � v0 � f(v = 0) (1)

= v � g � f(v = 0) (2)

= f(v = 1) � v0 � g (3)

where g = f(v = 1) � f(v = 0). We call these equations
as Davio expansions[3] and particularly equation 2 and
equation 3 are called as positive davio decomposition and
negative davio decomposition respectively.

III. Generation of Maitra terms using modified

BDDs

Our approach is based on the fact that terms derived
by Davio expansions are Maitra terms. Davio expansions
generate product terms summed by exclusive-OR opera-
tions and by de�nition product terms are Maitra terms.
Therefore one of the decompositions of Davio expansions
is selected which results in the smallest number of terms.
Consider a function f and an input variable v, where

the number of minimalMaitra terms needed for f(v = 0),
f(v = 1) and f(v = 0)� f(v = 1) are K,L and M respec-
tively. If M is larger than K or L, using Shannon de-
composition will result in smaller number of terms, while
positive(or negative) Davio decomposition is better if M
is smaller than K or L. More precisely, if smaller two of
K,L and M are M and K, it is better to use positive Davio
decomposition and if smaller two of K,L and M are M and
L, it is better to use negative Davio decomposition. For
example, given a function f in Figure 3,

f(a = 0) = b� c0d0 ! 2 terms

cd 00 01 11 10

00

01

11

10

ab

1

1 1 1

1

1

Fig. 3. Function f in which f(a = 0)� f(a= 1) needs only one
Maitra term

f(a = 1) = cd! 1 term

f(a = 0)� f(a = 1) = b� c� d! 1 term

Therefore if Shannon decomposition is used, it will result
in 3 Maitra terms as shown below.

f = a � f(a = 0) + a0 � f(a = 1)

= ab� ac0d0 � a0cd

However if negative Davio decomposition is used, it needs
only two Maitra terms.

f = a0 � (f(a = 0)� f(a = 1)) � f(a = 1)

= a0(b� c� d)� cd

Furthermore when a cofactor is a constant, two terms
are combined to make one Maitra term. Without loss of
generality, assume that f(v = 1) = 1. Then,

f(V) = v � f(v = 1) + v0 � f(v = 0)

= v + v0 � f(v = 0)

= v + f(v = 0)

Also if f(v = 0) � f(v = 1) = 1, the positive and neg-
ative Davio decompositions are simpli�ed to get reduced
number of Maitra terms as:

f(V) = v � f(v = 0)! 1 term (4)

or

f(V) = f(v = 1)� v0:! 1 term (5)

Therefore terms generated by Davio expansions can be
used to form Maitra terms and by selecting appropriate
decomposition type, the smallest number of Maitra terms
can be generated. Another simple example was given in
equation 4 and equation 5. If two cofactors are comple-
mentary to each other, or f(v = 0) � f(v = 1) = 1, it
is obvious that positive or negative Davio decomposition
is advantageous to Shannon decomposition in generating
smaller number of Maitra terms. Moreover if the number
of Maitra terms need for f(v = 0) is smaller than that for
f(v = 1), it will be better to use equation 4 rather than
equation 5 and vice versa.

cost(d) f /* returns the no. of Maitra terms
needed for a BDD node d */

if (d is visited) return d-> cost;
if (d is the last variable in the path) return 1;
l = cost(d->then);
r = cost(d->else);
x = cost(d->xor);
/* d->xor = d->then � d->else; */
return d->cost = l+r+x-max(l,r,x);

g

Fig. 4. Estimation of the number of Maitra terms

To implement this procedure, the BDD representing the
given function is modi�ed so that each node has another
edge representing the exclusive-OR of two cofactors(f(v =
0) � f(v = 1)) to use Davio expansions. Once a BDD is
modi�ed, the smallest number of Maitra terms which can
be generated from the modi�ed BDD(we call it the cost

of a node) is calculated for each node of the BDD by the
algorithm given in Figure 4.

Since traversing the nodes only once is enough to calcu-
late the costs, it takes O(n) steps, where n is the number
of nodes in the modi�ed BDD. Once the cost of a node is
decided, the set of Maitra terms in the modi�ed BDD can
be generated also in O(n) time by the algorithm shown
in Figure 5.

This approach is very similar to the construction of
KDD which uses one of Davio expansions in each node
of the decision diagram, but the cost function by which
a decomposition type of a node is to be decided is the
number of Maitra terms in our approach while the num-
ber of nodes in the diagram is the most important factor
considered in constructing a KDD[3, 4].

Although our method works very fast for single out-
put functions, in the case of multi-output Boolean func-
tions generating Maitra terms for each output separately
results in quite large number of Maitra terms in total.
In our experiment, for each output of the function the
Maitra terms of other outputs are considered and they
are adopted when helpful(reduce the cost of the subfunc-
tion). This may look time-consumable, but since cost es-
timation can be done very fast, the entire time to generate
the Maitra terms were manageable.

IV. Variable ordering for the modified BDD

Since the performance of our approach depends on the
variable ordering, �nding a good variable ordering is an
important problem. In this paper, we utilized the struc-
ture of cell arrays in which primary outputs can be redi-

gen Maitra(d)
/* generates Maitra terms for a BDD node d*/
f

if (d is the terminal node) f
generate the path from the root to d;
return;

g
l = cost(d->then);
r = cost(d->else);
x = cost(d->xor);
select the smallest two of l,r and x;
if(l and r are selected) f
/* use Shannon decomposition*/

buf = buf + "v� ", gen Maitra(d->then);
/* buf records the path */
buf = buf + "v0� ", gen Maitra(d->else);
/* v is the variable in d*/

g
if(l and x are selected) f
/* use positive Davio decomposition*/

gen Maitra(d->then);
/* nothing to add to the path*/
buf = buf + "v0� ", gen Maitra(d->xor);

g
if(r and x are selected) f

/* use negative Davio decomposition*/
gen Maitra(d->else);
buf = buf + "v� ", gen Maitra(d->xor);

g
return ;

g

Fig. 5. Algorithm for the generation of Maitra terms

main(f) /* generates Maitra terms for f */
f

lst = list of Maitra terms generated;
for ith output fi of f f

if (cost(BDD(fi)) > cost(BDD(l � fi))
fi = fi � l; /* l 2 lst */

gen Maitra(BDD(fi));
g

g

Fig. 6. Generation of Maitra terms for multi-output functions

rected to vertical buses and used as if they were primary
inputs to the Maitra terms. Therefore Maitra terms are
rede�ned so that they contain other outputs as one of its
input variables. To exploit this property, BDD should be
constructed so that the BDD of a subfunction is contained
to that of other functions. Consider two subfunctions fi
and fj of a multi-output function f such that support(fi)
� support(fj), where support(h) is the set of variables
used in function h. In this case, the BDD of fi should be
placed at the bottom of the BDD of fj in the ordering of
their variables as shown in Figure 7. Suppose that

fj

fi

Fig. 7. Construction of BDD so that fj contains the BDD of fi

f0 = ab� a0cd

f1 = e(ab� a0cd)

= ef0:

As shown in Figure 10, Maitra terms ab and a0cd are
connected to horizontal lines and they are collected to
form f0. Now f0 is connected to a horizontal line and
again it is redirected to the left vertical line which can be
fed to other cells just as if it was another input line. Note
that f1 is composed of only one Maitra term ef0 instead
of two Maitra terms, abe and a0cde.
To construct a BDD in which subfunctions are shared

by other outputs, the variables are ordered by com-
puting the partial orders for variable subsets as shown
in Figure 8. Suppose that support(f0)=fa,b,c,d,eg and
support(f1)=fc,d,eg. Then a partial ordering between
supports are established as

fa; b; c; d; eg � fc; d; eg:

Note that if support(f0) 6� support(f1) and vice versa,
no such partial ordering exists. After partial orderings
are obtained, a graph G = (V;E) is constructed, where
v 2 V are subsets of input variables and e = (u; v) 2 E

i� u � v. Then a path from the root to a terminal node
represents a total ordering which can be directly used to
generate the variable order of the BDD. For example, if

fa; b; c; d; eg � fc; d; eg � fc; eg;

then variables can be selected from the subsets fa; bg; fdg
and fc; eg. There could be many paths from the root to
a terminal node in graph G. Certain cost functions, for

order(f) /* get variable ordering for f*/
/* fi is the ith output of f*/
f
for i = 1, num POs f

for j = 1, num POs f
if support(fi) � support(fj) f

support(fj) � support(fi);
g

g
/* � is a partial ordering between supports*/
Construct a graph G=(V,E)

v 2 V = supports, e = (u; v) 2 E i� u � v.
Find a path from the root to a leaf with minimal cost
Select variables from the total ordering(the path of G)

g

Fig. 8. Variable ordering by partial orders of the supports

example the number of product terms of the subfunctions,
can be associated with the nodes of G to select a path
which derives the most e�ective variable ordering.
With the variable ordering described above, we adopted

the sifting algorithm[8] so that the ordering minimizes
the cost function of the BDD as shown in Figure 9. In
this algorithm, a variable is selected which guarantees the
minimum cost when it is moved to the top of the BDD
with other nodes remaining in the current position. Each
time a variable is selected, current BDDs are replaced by
new BDDs which are generated by substituting a constant
value to the selected variable. This method resembles the
sifting algorithm in [8], but we used the basic operations
provided by the BDD package instead of exchanging ad-
jacent variables.

V. Experimental Results

Suggested algorithm in this paper was implemented in
C and run on IBM PC (Pentium 133MHz) Unix system for
experimentation. The results were veri�ed by comparing
the BDD constructed by Maitra terms with the original
function for each benchmark circuit. For the construc-
tion of modi�ed BDDs, we employed the BDD package
developed in Carnegie Mellon University. Since the BDD
package uses complementary edges, it is well suited to our
approach in which the cost of a function and its comple-
ment should have the same value. Note that the inputs
to a cell can be inverted if necessary in our circuit model.
Table I show the comparison of Maitra terms(complex

terms in [1]). To compare the results, Table I listed bench-
marks which appear in [1] only. The column "C1" refers to
the result with ordering obtained by considering the con-
tainment of subfunctions as shown in in section III and

modi�ed-sift(f) /* get variable ordering for f*/
/* fi is the ith output of f*/
f
FUNC LIST = all POs initially
for i=1,num PIs f

for j=1,num PIs f
if((vj is selected) continue;
new costj = 0;
for each function in FUNC LIST f

new costj += min23(cost(f(vj=0)),
cost(f(vj=1)), cost(f(vj=0)�f(vj=1)))

/* min23() : sum of the largest two */
g

g
order[i] = Select vj of the smallest new costj
for each function f in FUNC LIST f

delete f from FUNC LIST
Put f(vj=0) and f(vj=1) into FUNC LIST;

g
g

g

Fig. 9. Modi�ed sifting for the variable ordering

"R1" refers to the best result obtained from 20 random
orderings. Also the column "MS" shows the results with
modi�ed sifting. The results show that modi�ed sifting
is more e�cient than the other ordering techniques even
though they need still less number of terms than [1]. Also
the column "C1" shows the best results in many bench-
marks while a lot worse in other circuits.

VI. Conclusions and future research

This paper suggested a synthesis method for Cellular
Architecture-type FPGAs using modi�ed BDDs. For the
decomposition of a node in the BDD of the given function,

a b c d e

ab

a'cd

f0

f1

f0

Fig. 10. An example of a Maitra term implemented in a cell array

TABLE I
Comparison of the number of Maitra terms

name [1] C1 time R1 time MS time

5xp1 33 23 0.14 23 1.18 24 0.58

card4 30 20 0.15 20 1.98 20 0.74

clip 57 86 0.91 58 3.95 52 1.93

clog8 84 98 0.95 98 5.53 76 2.35

cmlp4 54 68 0.46 65 4.51 70 2.49

cnrm 52 55 0.65 68 6.25 55 2.18

cu 15 19 0.11 17 0.82 18 0.86

f51m 30 21 0.11 21 1.25 21 0.59

inc 26 30 0.25 30 1.87 31 0.86

mlp3 17 17 0.08 17 0.74 17 1.40

rd53 13 9 0.05 9 0.54 9 0.16

rd73 36 19 0.20 19 2.66 19 0.54

sao2 26 31 0.28 30 2.37 32 1.62

t481 18 8 0.88 10 18.33 10 2.13

vg2 179 138 1.09 89 4.83 90 15.10

Total 670 642 6.31 574 56.14 544 32.53

Davio expansions are employed to select minimal number
of Maitra terms derivable from the BDD. To apply Davio
expansions, a BDD is modi�ed so that each node of the
BDD has another edge pointing to the exclusive-OR of
two cofactors of the node. Once the BDD is modi�ed,
the cost function which is the number of Maitra terms
derivable from the Davio expansions are calculated for
each node. Since traversing a BDD needs onlyO(n) steps,
where n is the number of nodes in the BDD, computing
cost functions in the nodes and the generation of Maitra
terms in the modi�ed BDD are performed very e�ciently.
The contribution of this paper is the presentation of a

method which is simple and e�cient to generate Maitra
terms directly from a BDD and it does not require min-
imization tools for SOP or ESOP expressions which can
be costly in some cases. Since BDD is widely used as an
e�ective tool for the manipulation of Boolean functions,
our approach is expected to be applicable to a large area
of design tools.
For future research, collection of Maitra terms with var-

ious operations should be studied. Since the cells in CA-
type FPGA provides virtually any two input functions,
our approach will be generalized to use arbitrary opera-
tions including inclusive and exclusive-OR to collect the
Maitra terms.

References

[1] A. Sarabi, N. Song, M. Chrzanowska-Jeske, and M. A.
Perkowski. A comprehensive approach to logic syn-
thesis and physical design for two-dimensional logic

arrays. In Design Automation Conference, pages 321{
326, June 1994.

[2] U. Kebschull, E. Schubert, and W. Rosenstiel. Multi-
level logic synthesis based on functional decision dia-
gram. In EDAC, pages 43{47, 1992.

[3] I. Schafer, M.A. Perkowski, and H. Wu. Multilevel
logic synthesis for cellular fpgas based on orthogo-
nal expansions. In Proc. IFIP WG 105 Workshop on

Applcations of the Reed-Muller Expansion in Circuit

Design, Hamburg,Germany, pages 42{51, September
1993.

[4] R. Drechsler, A. Sarabi, M.Theobald, B.Becker, and
M.A.Perkowski. E�cient representation and manip-
ulation of switching functions based on ordered kro-
necker functional decision diagrams. In Design Au-

tomation Conference, pages 415{419, 1994.

[5] L. F. Wu and M. A. Perkowski. Minimization of
permuted reed-muller trees for cellular logic pro-
grammable gate arrays. H. Gruenbacher and R,

Hartenstein (eds.),LNCS, pages 78{87, 1993.

[6] N. Song and M. A. Perkowski. A new design method-
ology for two-dimensional logic arrays. In Proc. of

IWLS, Tahoe City, CA, May 1993.

[7] K. K. Maitra. Cascaded switching networks of two-
input exible cells. IRE Trans. Electron. Comput.,
pages 136{143, 1962.

[8] R. Rudell. Dynamic variable ordering for ordered bi-
nary decision diagrams. In ICCAD, pages 42{47, 1993.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

