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Abstract - Memory allocation problem has
two independent goals: minimization of
number of memories and minimization of
number of registers in one memory. Our
concern is the ordering of bindings during
memory allocation. We formulate and analyze
three different memory allocation algorithms
by changing their binding order. It is shown
that when we combine these subtasks and
solve them simultaneously by heuristic cost
function significant savings (up to 20%) can
be obtained in the total area of memories.

1 Introduction

Memory allocation can be defined as a task
of mapping scalar or array variables to
memory units (MU), e, single or
multiple-port memories and register files, in
order to satisfy a set of constraints (e.g.,
throughput, number of ports, etc) and
optimize a cost (ie, area) based on abstract
layout model.

The primary focus in this paper, however,
is to optimize memory allocation in terms of
the area occupied by MUSs. Its goals are two
fold: to minimize the number of MUs and
minimize the number of words (ie,
registers) in a MU. This problem has been
dealt with by subsequently performing two
independent subtasks: MU allocation and
register allocation. Variables can be merged
into a MU, if they are not accessed (read or
written) at the same time. The MU allocation
uses such variables access requirements
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(access compatibility). Similarly variables
can share a register, if their lifetimes do not
overlap (lifetime compatibility).

Our concern is the ordering of binding
sequences during memory allocation. That is,
we can decide the ordering which subtask to
be performed first and the other next. We
formulate three different approaches by
changing their binding sequences. The first
method, we called Type-1I, is to minimize the
number of MUs first and then minimize the
number of registers in each MU - being
allocated. The second one, Type-II, maps
variables to registers first. Then these
registers can be grouped into MUs depending
on their read and write times.

These orderings may suffer from the side
effect of interaction between subtasks since
they are tightly inter-related and their
decision made by one subtask affects the
other. Therefore, the third one, Type-III,
combines these subtasks and solve them
simultaneously.

Let us illustrate the effects of their binding
sequences on synthesis results using a
simple example. In Figure.1, the lifetime of a
variable is represented as interval. It has at
least two dots: the dot located at the top of
the interval indicates write operation and the
rest of them read. operation. For example,
since the variables, 1,2,3,4 and 5, have access
conflicts at step 1, they can not be allocated
to a MU. Similarly, the variables, 7 and 10,
can not share a register because they have
overlapping (lifetime) intervals.
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Figure 1 An interval graph representation

These methods mentioned earlier were
applied to the interval graph in Figure 1 and
the allocation results are summarized in
Table 1. With the Type-1I, 7 registers were
allocated after register allocation. However,
none of these registers were merged together
and thus the number of MUs was still 7.
Even though Type-I finds the optimal
number of MUs, it often fails to minimize
the number of words in MUs. Type-llI
provides the best solution based on the
abstract cost measure that will be explained
in Section 3.

Table 1 The allocation results
method | ° ™ |cost iables assi t
MUs [words varliables assignmen
( p ¢
Tye-1| 5| 9 lesoo| 11 BION. (12), 169,12))

(3h.44) (11.13D.45147.14})
(1), {2,141,({3,10h,({4,12})

Type-1I}| 7 7 180.00

U5.13D.467.11D. (189D
- (1), (B10N2,14).46.7.12)
Type-Ill} 5 17 164001 0 o)) (a1 1145.13)

Type-1 approach is most widely used in
recent memory synthesis systems. But, it
ignores variables lifetime requirements that
can be used to reduce the number of words
in MUs. It thus fails to optimize the actual
silicon area occupied by MUs. Contrary to
this, Type-II concentrates on the variables
with non-overlapping lifetimes. It always
discards the variables which are
access-compatible but lifetime-incompatible
as selecting candidates to be grouped.
However, Type-III uses cost functions to
reflect the correlation between  these

requirements.

Before we present more detailed
discussion about these approaches we will
define layout memory model to estimate the
memory area. Then a comparison for
examples generated randomly is drawn
among results achieved by these methods.

2 Previous Works

In <Esc>[9], all variables are first grouped
into register files using edge-coloring
algorithm. Then left-edge algorithm[6] was
used to determine the number of registers in
a register file. It is classified into Type-1.

Balakrishnan [2] and Ahmed (1] formulate
the problem as an 0-1 integer linear
programming (ILP) problem. The approach
proposed by IMEC[3] has dealt with
multi-dimensional signals environment. They
‘also uses ILP approach to allocate memories
for such signals. However, they did not
address the problem of optimizing memory
allocation to minimize total number of words
for the memories being allocated. All of them
are classified into Type-1.

THEDALIS] allocates a set of register files
for variables using a branch and bound
search technique during constructive binding
phase. They use cost functions to predict the
impact of interaction among subtasks.
However, they take only lifetime compatibility
into account in the cost function for storage
allocation.

To our knowledge, we have not found the
literature related to Type-II1.

3 Memory Allocation Approaches

We assume that all variables have fixed
bit-width %, except some variables may
have an integer multiple of w. So our
memory model has a fixed bit-width w. The
cost function is based on the on-chip

memory model similar to [3]:

A= T,gwi' (1+aP) - (N'+8) -

{1+(P'+P,,—2)/4})
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where, M - the number of memory units,
N - the number of words,
F - total number of ports,

P ,m - the number of r/w ports,

T - technology scaling factor,
d.ﬁ - technology dependent parameters.

Let us assume that the number of ports is
1 and it has read-/write-capability. Then A

is proportional to N'. Thus, the main goal
=

number of MUs and
minimize the number of words in MUs
simultaneously such that the resulting
memory configuration would result in the
least area. Now the f{ollowing subsections
will describe each type of the approaches in
a concrete level.

is to minimize the

3.1 Type-1 approach

This method takes variables access
requirements into account first to minimize
the number of MUs. Then lifetimes of
variables are to be considered to reduce the
number of registers in a MU. The first
problem is modeled as graph-coloring
problem and solved using sequential
vertex-coloring method. The last one is
solved by clique-partitioning method[10]. This
approach is somewhat similar to [9], even
though he used edge-coloring algorithms to
group variables into register files. Algorithm
1 describes the approach in more detail.

Data flow analysis is used to calculate two

sets mainly for each control step s, The
READ_ACCESS_CONFLICT (s,)
returns the set V,,, of variables that are
All  the
Vyeaa 4re access-incompatible.
Similarly, the function WRITE_
ACCESS_CONFLICT (s,) returns the set

Vurie Of that

simultaneously in s,

function

read at the same time in s,

variables in

variables are  written

Then we create an
access-incomp_atible graph G.. In the graph
G,, a variable is represented by a vertex

and an edge connects two vertices whose
corresponding variables cannot be allocated to
a MU.

Incompatibility

The COLOR_INCOMPATIBLE
_GRAPH LL MU of

colors and a colored graph. The vertices with
the same color correspond to the variables
which will be merged into a MU.

Then a lifetime incompatible graph is built
for each MU. The procedure
CLIQUE_PARTITIONING performs register
allocation for the wvariables in a MU to
allocate the minimum number of registers.
arises from  overlapping
lifetimes of variables in a MU. The function

LIFETIME_COMPATIBLE (v}, v;)

if two variables v;

function
returns the number

returns

true and v; have
disjoint lifetimes. Then a lifetime compatible
subgraph G.(V ,E’) is built, where V is
the set of variables that have been grouped
into MU and E the set of edges. Each edge

e}_kEE' links two different vertices v}E |4

and v},E V whose lifetimes do not overlap.

Algorithm 1 : Type-1 Method
* create an access-incompatible graph  */
« GAV,E) o/
V=¢:. E=¢;
for each control step s,ES do
V veaa = READ_ACCESS_CONFLICT ( §,);
V=VU Vew
for V. p € Vi 71¥72 do
E-F U € iy
endfor
Vwrite = WRITE_ACCESS_CONFLICT ( s,);
V- V U an’te;
for Vyjup € Virite wlFul do
E- EU e,

dfor
endfor

LL 4,=COLOR_INCOMPATIBLE_GRAPH
GAV,E);
fndex = 1;
for index < LL 1, do
* create a lifetime-incompatible graph  */
"‘GC(V,E)f()r MU iex */
V=¢:. E=9¢;
V =tvil v; € MU jgers
for each v;, v, € V.,7#k do
if (LIFETIME_COMPATIBLE ( v}, v4)) then
E - E U €
endif
endfor . . .
CLIQUE_PARTITIONING ( GV , E )%

index = index + 1,
endfor




3.2 Type-1II Approach

This method takes variables lifetime
requirements into account first to solve the
r ('t
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vaniables, ListOfVariables. The function
LEFT_EDGE_ALGORITHM returns a set
SetOfRegisters of registers, where each of

them is allocated to the variables whose
lifetime do not overlap.

Then a weighted graph G = (V, E) is
built to group the registers to MUs using
variables requirements. Each vertex v; € V

is a register in SetOftegisters that can
- contain a set of variables. Note that all the
variables allocated to a register are always

access—compatible. There exists an edge
e;; € E between two vertices, v, and v,
if two variables n,€v, and n,€v, are

access—compatible. A weight w; is imposed

on its edge e, to indicate degree of
compatibility between v, and v, It can be
defined as:

w;; =

> X ACCESS— COMPA TIBLE(n,,, ng)

ACCESS~ COMPATIBLE(n,, n)) =

{1, if n,and n, are access— compatible
0, otherwise

where,

Then we can apply a greedy algorithm to
find the minimum number of MUSs. It finds

the vertices v, and v, in V such that they
the
are

edge and all
and v,

are connected by an
variables of v
access—-compatible.
This situation is expressed as a quantity
by computing a simple formula. Let N, and

N, be the number of variables allocated to

v, and v, , respectively. The merge-force

associated with v, and v, is given by

w; j
N;x N;

If merge—force(v;,v;) equals to 1, the
two vertices can be grouped into a single
super vertex without causing any
access-conflict. We call this bounding force.
v, and vy,having bounding force are merged

merge— force(v;, v;)) =

which
The

registers R, and R, corresponding to those

into a single super vertex U,

contains all the variables v, and v,

vertices can share a MU.

Algorithm 2 . Type-II method
Set()f‘{egislers= LEFT_EDGE_ALGORI'THM(ListOfVar

* create a weighted graph G(V, E) »/
V = SetOfiRegisters; E= /N

* Set(fRegisters is an orderer set of registers */
for. R ,_E b;el()flt’egislers do

=i+ 1
Jfor ‘R & SetOfitegisters do

E- EU ey

for n,€R, and n,€R, p+q do

if (ACCESS_COMPATIBLE ( 1), n,)) then
Wyh= Wy I;

cﬂdlf

=5+ 1
endfor

enéf(;r i+l

MERGE_REGISTERS_INTOMU G( V., E):

3.3 Type-111 Approach

Having introduced the basic concept by
presenting a walkthrough example and
terminology we proceed to describe Type-III
algorithm. Let Nf,,,, be the

variables whose lifetimes overlap with that of

number of

variable v, Similarly, let N'%. be the
number of variables which have
access-conflict with v, N.,, and Ny

reflects the degree of access compatibility

and the degree of lifetime compatibility
among the rest of variables for v,
respectively. Nf,,,, is the degree of

corresponding vertex of v, in a lifetime



incompatible graph. Similarly, Ni,»,,( is the

degree of - v, in an access-incompatible

means they can be merged into M, with
single register(word). Note none of them can

graph be merged into M.
Table 2(a)
'!Pvr(p’) (3] ,’_c)_‘{,!) a b C d e f
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Nylolzlt1]o N, olojo]o
Figure 2. An ill tF m ; -
'aure 2. An lustrative example Nylopz2|i1fo Ny,lojofoto
The access-incompatible graph and the h,{ol4]2]2]0 h,[oJo]ojo

lifetime incompatible graph for an example in
Figure 2(a) is depicted in Figure 2(b) and
Figure 2(c), respectively. Thus, we compute
N,and N,  as shown in Table 2(a) for
the variables in Figure 2(a).

Let us define the degree of hardness #, of

v, as the binding difficulty.
hi = wXNhy + wyx N, 1)
where, w, and wy are weighting factors.
Let v, be the variable with the highest

degree of hardness. By eliminating v, at
earlier step, we can increase the possibility
that merging will occur among the rest of
variables. Variables with higher degree of
hardness have less chance to be grouped
than variables with lower degree at earlier
step. Eventually when they can be merged
with those variables, their lifetimes must be
overlapped and it increases the number of
registers required. So v, will be allocated
to a MU first.
In Table 2(a),

8, when w, =

b with the highest degree,
wy = 1, is selected and
allocated to a memory unit M,. Table 2(b)
shows the results by deleting & from the
Table 2(a). At next, c is chosen. But, ¢ will
not be allocated to new M, since & and ¢
can share M;. Then there are four variables

(a,d,e,y) with sum ‘0’ in Table 2(c). It

"while

Before we map vg., to a new MU, we do
check M, that is either

access- or lifetime-compatible with v, If

if there exists

there are more than one M, a heuristic cost
function will be used to determine in which
M, the variable vy, should be merged.

This reduces the number of MUs needed,
it tends to increase the number of

registers in a MU. The merging cost C} of
assigning a variable v, to a memory unit
M, is calculated according to:
Ci = axDy + BXE; —
where, D,-, -

7% S, 2)
Increments in the lifetime density of
resulting from assigning v, to M,

E,-, - 'The number of access-incompatible variables
with ¥, to be excluded resulting from assigning v, to
M,

S,-, - The number; of common variables of v, and M ,
They are either access or lifetime compatible with both
v,and M 7

a,B,r - weighting factors.

Algorithm 3 shows the overall steps in
more detail. This algorithm groups variables
into clusters such that each cluster can be
realized using a single MU. The all
information about access- and lifetime
compatibility for given a set of variables are



transformed in a table ATTRIBUTE_TABLE.
The algorithm will first try to find the v,
with the highest degree of hardness. The
function COMPUTE_degree_of_hardness ( v,)
returns the degree of hardness of v, by (1).

Then we map vee to Mg with the
lowest merging cost. The merge is only legal
if Vseea and Mindex

are cither access or

illegal, say,
then new

lifetime compatible. If merge is
the merging cost is infinite,
My, is built. In this case, the set of
which non-overlapping
lifetimes with vg,, are collected into the set

variables have

LL to share the samec M+, The variable
in LL with the highest degree of hardness
is chosen. The variables sclected so far are

deleted from the set V of variables and
ATTRIBUTE_TABLE is updated. The above

steps are repeated until there are no
variables left in the set V.
Algorithm 3 : Type-lll Method
* V ! a set of variables */
: kl I‘El'?ﬁliﬁ%'izli_w‘x?iLE : men;{ry allocation table */
M= ¢;

while V# ¢ do
binding_difficulty = (); )
for each variable v, V do

h, = COMPUTE_degree_of_hardness ( v,
if ( A, > binding_difficulty) then
binding_difficulty = h,: seed = i
endif
MergeCost*s,.- min ;< i<
MERGE_COST ( Ve, M,);
if MergeCostel, < o then
M inter = M jniex U {Vgeq) -
V=V - { Uspoah

else
M|M|+1 = ALLOCATE_MEMORY (M);

Group vy into the set LT
if(LIFETIME_COMPATTIBLE( Vg, Ugpy)).
where, v, € V, k *+ seea.

Select v, € LT with the maximum
degree of hardness, A P

if h, € o then

Mpg+1 - Mg U {v,):
endif
endif

UP] le ATTRIBUTE_VALUE;:
endw N - E.-VALL

4 Experimental Results

First we have tested Type-III approach
with varying selection strategies. These
strategies limit the search space efficiently, i.
e., the number of variables that can be
grouped into a MU M, to reduce running

time extensively.

longest length of -lifetime first
(LF) The variable with the longest length of
lifetime is selected first. By eliminating them
it Increases lifetime compatibility among the
rest of variables.

shortest length of lifetime first
(SF) Variables with lifetime compatibility
are always access compatible. So the variable
with the shortest length of lifetime has the
least cost even though by doing it dost not
guarantee a global optimum solution.

most access-compatible first (AF)
This uses the cost function in Eq.(2) without
any acceleration technique.

Table 3 summarizes some experimental
results for randomly generated examples to
compare their performance and execution
time. In all cases, the number of MUs are
equal for all of these techniques. However,
both the number of words needed for the
MUs allocated and the CPU time (seconds)
elapsed varies with the strategies. As we

expected, the AF strategy is most
time-consuming.
For the rest of two methods, the LF

technique produces less number of words by
32% to 18% than the SF. Besides, the former
is three times faster than the latter. Since
the SF technique only emphasizes lifetime
compatibility among variables, it tends to
cluster as many variables as possible into a
MU, as long as they still preserve lifetime
compatibility relations. However, this prevents
variables with longer lifetime but most
access-compatible with other variables from
being selected as candidates. This is the
reason why its performance is not good as
LF. This is almost true for the rest of data.
Therefore, Type-Ill employs LF. selection
strategy to accelerate its running time.

Now we present the results of running
the three approaches on a number of
randomly generated examples. The Figure 3



shows the costs of memory area for the
these approaches.

Table 3 Experimental results for
the Type-lll method

data AF strategy
control 1o of vars no of no of CPU time
steps MUs words
24 70 24 37 971
27 - (i) 24 42 17.09
31 80 24 45 22.02
35 AN 24 42 29.22
37 95 24 40 42.51
39 100 24 43 5241
44 110 24 45 69.52
49 120 24 44 178.08
57 135 24 44 2483.64
62 145 24 48 516.51
67 155 24 45 620.97
72 165 24 48 929.86
77 175 24 47 1154.51
\ with acceleration
data SK strategy LF strategy
control| no of{ no of | no of | CPU | no of | no of | CPU
steps | vars | MUs [words| time | MUs jwords| time
24 70 24 H 050 | 24 28 | 0.19
27 75 24 39 | 073 | 24 28 | 0.21
31 80 24 39 116 | 24 29 | 027
35 90 24 37 1.00 | 24 29 | 0.31
37 95 24 37 140 | 24 29 | 037
39 100 24 37 152 | 24 30 | 040
44 110 24 40 | 2221 24 31 0.49
49 120 24 40 | 320 | 24 30 ] 0.70
57 135 24 44 | 491 24 31 1.01
62 145 24 46 | 460 | 24 32 1.25
67 155 24 47 | 4.71 24 32 151
72 165 24 47 [ 545 | 24 32 1.83
77 175 24 46 | 689 ] 24 32 1.97

5 Conclusion

In this paper, we have addressed the
problem of optimizing memory allocation on
the estimated silicon area. There are two
important requirements, access-time and
lifetime compatibility among variables, which
allows to address the problem of register and
memory unit allocation. In most previous
approaches, they divided the problem into
two independent subproblems and solve each

of them separately. However, they suffer
from the negative interaction between
subproblems.  Consequently, a  complete

approach based on the heuristic cost function
is proposed. From the experiments with the
set of randomly generated cxamples, it is
shown that the proposed approach results in
a significant area savings (up tp 159%) in the

total area of memory units. The area has
been calculated based on the abstract layout
model. Actually, the method also incorporated
seed-selection techniques with the cost
function to improve its performance. These
are substantiated with results for randomly
generated examples. The result presented in
this paper constitute the foundation for out
future work on solving the memory allocation
to a cost-efficient memory synthesis problem.
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