
Evaluating Cost-Performance Tradeo�s for System Level

Applicationsy

Wei-Liang Ing1, Cheng-Tsung Hwang2, and Allen C.-H. Wu1

1Department of Computer Science, Tsing Hua University

Hsinchu, Taiwan, 300, Republic of China
2Department of Computer Science and Information Management,

Providence University, ShaLu, Taiwan, Republic of China

Abstract

Evaluation of design cost and performance is indis-
pensable to system partitioning. In the absence of a
system-level estimation and analysis tool, system par-
titioning is di�cult to perform in an e�cient and accu-
rate manner because design evaluation can only be done
after the �nal results are achieved. Furthermore, with-
out cost-performance tradeo� information relating to
di�erent design alternatives, the designer can not make
intelligent design decisions at the early system-level
partitioning stages. In this paper, we present a system-
level cost/performance evaluation approach which sys-
tematically explores the AT (Area-Time) design-space
from a system description. This allows the designer to
obtain �rst-hand design tradeo� information before the
partitioning process has taken place. We have also de-
veloped a system-level interactive design evaluation sys-
tem on top of the proposed approach. Experiments on
a number of examples demonstrate that our approach
provides the designer with a comprehensive system-level
design evaluation method to e�ectively explore all pos-
sible design alternatives in the early stages of system
development.

1 Introduction
Most embedded systems consist of a general-purpose

processor along with specialized hardware to perform
application-speci�c tasks. Converting a system-level
speci�cation into a target embedded system is usually
referred to as a hardware-software codesign problem.
A system-level speci�cation can be decomposed into a
set of interconnected modules. Each module can then
be implemented in a specialized hardware or in soft-
ware running on a processor. In general, a hardware
implementation has better performance whereas a soft-
ware implementation has lower cost. Thus, the main
objective in converting a system-level speci�cation into
a target embedded-system is to implement the speci-
�cation that has the minimum overall cost, including
hardware and software, while satisfying the required
performance constraints.

ySupported by the National Science Council of R.O.C. under

contracts No. NSC-83-0404-E-007-020 and NSC 85-2221-E-007-

034

In the past several years, hardware-software code-
sign related problems have been extensively studied in
the CAD community. A number of frameworks have
been proposed for design modeling, simulation, syn-
thesis, and integration [1, 2, 3]. In addition, many par-
titioning techniques have been proposed [2, 4, 5, 6] to
tackle hardware-software codesign problems. As indi-
cated in [2, 4], design evaluation of cost and perfor-
mance is indispensable in system partitioning. Many
estimation techniques have been proposed for area-
performance prediction in physical design [7, 8, 9] and
high-level synthesis [10, 11, 12]. However, little work
has been done at the system-level and e�orts that have
addressed this area focus mainly on software perfor-
mance estimation and evaluation [13, 14, 15]. In the
absence of a system-level estimation and analysis tool,
system partitioning is di�cult to perform in an e�-
cient and accurate manner because design evaluation
can only be done after the �nal results are achieved.
Furthermore, without cost-performance tradeo� infor-
mation relating to di�erent design alternatives, the de-
signer can not make intelligent design decisions at the
crucial, early system-level partitioning stages. Conse-
quently, a comprehensive system-level estimation and
evaluation method is needed to assist the designer in
performing system partitioning.

In this paper, we present a system-level cost-
performance evaluation approach. We propose a com-
posite evaluation method that systematically explores
the AT design-space of a given design. Based on our
proposed evaluation approach, we have developed S-
LIDE: A System-Level Interactive Design Evaluator.
Using this tool, the designer is able to e�ectively ex-
plore all possible design alternatives at the early stages
of system development.

The remainder of the paper is organized as follows.
Section 2 gives the overview of our proposed approach.
Section 3 presents the system-level AT design-space ex-
ploration method. Section 4 presents the experimental
results. Finally, section 5 gives concluding remarks.

2 Overview of the proposed approach
We propose a composite evaluation method that sys-

tematically explores the AT design-space of a given
design targeted to an embedded system. Figure 1(a)

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

C description

C compiler

S-tree

AT curve

AT design-space
 evaluation

GNU C compiler

HW estimation

SW estimation

A

T

A

T

A

T

A

T

A

T

A

T

A

T

A

T

A

T

(a) (b)

Figure 1: The proposed: (a) cost-performance evaluation
approach, (b) a composite approach to AT design-space e-
valuation.

shows our proposed approach which consists of three
parts: software estimation, hardware estimation, and
AT design-space evaluation. The input to the evaluator
is a system-level description in C. The input description
is parsed into an S-tree (structural tree) which repre-
sents the structure of the C description in a hierarchical
fashion. We use a constructive method to generate an
AT-curve for each basic block including a software im-
plementation and a set of hardware implementations
with di�erent set of resources. Then we use an ana-
lytical method to explore the system AT design-space
by adding-up the AT-curves of leaf nodes throughout
the hierarchy all the way to the root node, as shown in
Figure 1(b).

In the section, we �rst describe the target system
architecture. Then we present the S-tree. Finally, we
give an overview of our proposed AT design-space eval-
uation approach.

2.1 Target architecture
We use a typical embedded system as our target ar-

chitecture which consists of a re-programmable proces-
sor, a memory module, a hardware module (containing
one or a number of ASICs), and an I/O interface. The
core processor is a general purpose processor, such as
8086 and 68000. The memory module includes the s-
torages used for program and data. For simplicity, we
assume that all memory accesses are to a single-level
memory. The hardware module is connected to the
system address and data buses. Data communications
between the processor, the hardware module, and the
external world take place via a shared memory. In
this paper, we make a simplifying assumption that the
target architecture has only one re-programmable pro-
cessor and a single-port memory module. Under this
assumption, only one software task can be executed on
the processor at any time. Furthermore, only one mod-
ule, either a software or a hardware module, is allowed
to access data from the memory at any time. We also
assume that all functionalities in the hardware module
is implemented with a single ASIC chip. Multiple-chip
partitioning is not considered in this paper.

2.2 S-tree Construction
An S-tree (Structural tree) represents the structure

of a C program in a hierarchical fashion. It consists
of two types of nodes: leaf nodes and internal nodes.
A leaf node contains a basic block which is de�ned
as a sequence of consecutive statements without any
halting or possibility of branching statements. On the

1: Main(){
2: int a,b,c,d,i;
3:
4: a := c + d;
5: b := a * (c + b);
6: if (a > 0){
7: b := b * c + d;
8: for (i := 0; i < 20; i++){
9: a := a * i + d;
10: c := d * i;
11: if (a > 200)
12: a := a + 10;
13: else
14: a := a - 10;
15: } /*end of for*/
16: } /*end of if*/
17: for (i := 0; i < 20; i++){
18: b := b + c;
19: if (b > a)
20: b := b + d * i;
21: } /*end of for*/
22: } /*end of Main*/

Main

BB1

if1
BB2

for1
BB3

if2
T

F

BB4

BB5

for2

if3
BB6

BB7T

Main

BB5

BB7

BB6

BB4

BB3

BB2

BB1 if1

for1

if2

T F

T

for2

if3

T

(a) (b) (c)

Figure 2: An S-tree example: (a) a C code example, (b)
its corresponding hierarchical structure, (c) its S-tree.

other hand, an internal node contains a control state-
ment such as conditional statements (e.g., if, case, for,
while) and procedure calls. Each internal node also
contains a basic block describing the conditional ex-
pression which may be a simple comparison expres-
sion or a complex computational expression (e.g., if
(100 � a+b�c�d) then). An internal node represents
a hierarchical block which may contain a nested con-
ditional statement and/or a set of basic blocks. In the
S-tree, there are two types of edges. The �rst one rep-
resents the hierarchical relationship between two con-
necting nodes. The other represents the dependency
relationship between nodes. Figures 2(a), (b), and (c)
show a C code example, its corresponding hierarchical
structure, and the corresponding S-tree, respectively.

2.3 A composite AT evaluation method
There are two commonly used estimation methods:

analytical and constructive methods. Analytical meth-
ods perform design prediction based on abstract ana-
lytical models. It usually takes less time to run but
su�ers from less accurate estimates. By contrast, con-
structive methods usually produce more accurate esti-
mates but more time consuming compared to that of
analytical methods. To make a good compromise of
these two methods, Kurdahi and Ramachandran [8]
proposed a composite approach mixing constructive
and analytical methods to produce accurate estimates
in a reasonable amount of time. In our approach, we
use a composite method similar to the one proposed
by Kurdahi and Ramachandran to perform AT design-
space evaluation.

Figure 1(b) shows the composite methodology for
AT design-space evaluation. Our method �rst pars-
es a C description into an S-tree. Since each leaf n-
ode and/or internal node in the S-tree contains a basic
block, we can transform the C statements in the ba-
sic block into a DFG. Subsequently, our method uses a
constructive method to generate an AT-curve for each
basic block. Each design point on the AT-curve rep-
resents a cost-performance pair for a particular imple-
mentation of the design, such as a software implemen-
tation or a hardware implementation with a speci�c set
of resources. After generating AT-curves for all basic
blocks, AT-curves of leaf nodes are then added-up us-
ing an analytical method throughout the hierarchy all
the way to the root node.

B.B.1

a := c + d;
b := a * (b + c);

movl -12(%ebp),%edx
addl -16(%ebp),%edx
movl %edx,-4(%ebp)
movl -8(%edp),%eax
addl -12(%ebp),%eax
movl -4(%ebp),%edx
imull %eax,%edx

Technology for 80386

movl reg,reg 2 4

Clocks Bytes

Software estimates

GNU C

(a)

cd b

b

op1
 (+)

op2
 (+)

op3
 (*)

cd b

b

op1
 (+)

op2
 (+)

op3
 (*)

1

2

Cost

Performace

SW

HW1(1+,1*)

HW2(2+,1*)

(b)

ASAP

Figure 3: AT-curve generation: (1) software estimation,
(2) hardware estimation.

3 Design-space exploration

3.1 AT-curve analysis for basic blocks

In this section, we �rst describe how to obtain the
software estimate of a basic block and then the hard-
ware estimates with a varying set of resources.

In order to obtain the software estimates for basic
blocks, we need to compile the code in the basic block
into the instruction set of the target processor. For ex-
ample, if we choose the Intel 80386 as our target pro-
cessor, it needs to compile the code into the 80386 in-
struction set. In our implementation, we use the GNU
C compiler to translate the code into assembly codes
of the target processor. For example, Figure 3(a) de-
picts the C code of basic-block BB1 (Figure 2) and the
80386 assembly code generated by the GNU C. Using
the timing and size information of each type of instruc-
tion provided by the databook, the estimator can ob-
tain the software metrics, such as execution time and
program size, for each basic block.

To obtain an AT-curve of a design needs to explore
the entire design space by trading-o� hardware cost and
performance. We use an iterative approach to perform
hardware estimation for each basic block. Each design
point (i.e., a cost-performance pair) on the AT-curve
is obtained by performing scheduling on the DFG de-
rived from the code in a basic block with a speci�c set
of resources. Our approach �rst determines the mini-
mum and maximumbounds on execution units. Given
a DFG, the minimum bound on execution units is de-
�ned as the minimumresources required to execute the
DFG. Let OP = fopi j i = 1::ng be a set of distinc-
t type of operators in the DFG. For example, in Fig-
ure 3(b),Min(+) = 1 andMin(�) = 1. The maximum
bound on execution units of the DFG which is de�ned
as the resources required to achieve the maximumper-
formance (i.e., the maximally-parallel execution) of the
design. The maximally-parallel execution of the design
can be achieved by performing the as-soon-as-possible
(ASAP) scheduling on the DFG by taking into account
only the data dependencies but ignoring the resource
constraints. Let t be the shortest execution time-step
of the DFG and parj(opi) be the number of type-i op-

erations executed by type-i execution unit at time-step
j. The maximum bound on execution units of the D-
FG is de�ned as Max(opi) = MAX

j=t
j=1(parj(opi)) for

all opi 2 OP . For example, in Figure 3(b), the maxi-
mum bounds on adders and multiplier are two and one
(Max(+) = 2 and Max(�) = 1), respectively.

After determining the minimum and maximum
bounds on execution units, we use an iterative ap-
proach to search the design space. The minimum
bound is then served as the initial resource constraint
for the design-space search process. By incremental-
ly relaxing the resource constraints (i.e., adding more
execution units), our approach produces a set of cost-
performance pairs indicating the design-space of the
design. Assume that there are n distinct types of op-
erators in the DFG of a basic block. The pseudo code
for the AT-curve generation of a basic block is shown
as below.

Procedure AT CURVE GENERATION(DFG)
begin

fMin(opi) j i = 1::ng = Min Bound(DFG);
fMax(opi) j i = 1::ng = Max Bound(DFG);
AT = (CostSW ;DelaySW);
for (Min(op1) to Max(op1))
begin

................
for (Min(opn) to Max(opn))
begin

(CostR;DelayR) = LIST SCHE(DFG,R);
AT = AT [(CostR;DelayR);

end of for
end of for
AT = PRUNE(AT);

end of Procedure

Min Bound(DFG) and Max Bound(DFG) are t-
wo procedures determining the minimum and max-
imum bounds on execution units, AT is a set of
cost-performance pairs, R is the resource constrain-
t. A design point (i.e., a cost-performance pair) is
obtained by performing the list scheduling algorithm
(LIST SCHE) on the DFG under the given resource
constraint R. We use the minimumbound as the initial
resource constraint and then incrementally add more
execution units. It takes

Qi=n

i=1 Max(opi) iterations to
explore the entire design-space of a basic block. For ex-
ample, in Figure 3(b),Min(+),Min(�),Max(+), and
Max(�) are 1, 1, 2, and 1, respectively. Two iterations
are needed to generate the AT-curve. When the search
of the entire design space is completed, the procedure
PRUNE is invoked to prune the inferior design points.

3.2 System-level AT-curve analysis
After generating AT-curves for all basic blocks, we

use an analytical method to merge the AT-curves re-
cursively throughout the hierarchy of the S-tree all the
way to the root node. We use an approach similar to
the one reported in [9] to obtain the AT-curve shape
function.

There are two main factors which will directly a�ect
the AT-curve analysis. The �rst one is the hardware
sharing e�ect in the hardware module. As indicated

n1

n2 n3

HW1 1+,1* 130 80

SW1

HW2 2+,2* 260 40

30 150
A TR

HW3 1+,1* 130 100

SW2

HW4 2+,1* 160 60

20 200
A TR

(SW1,HW3) 1+,1* 160 250
(SW1,SW2)

(SW1,HW4) 2+,1* 190 210

50 350

A TR

(HW1,SW2) 1+,1* 150 280

(HW1,HW3) 1+,1* 130 180

(HW1,HW4) 2+,1* 160 140
(HW2,SW2)

(HW2,HW3)

(HW2,HW4)

2+,2*

2+,2*

2+,2*

280 240

260 140

260 100

(SW1,HW3) 1+,1* 160 250

(SW1,HW4) 2+,1* 190 210

(SW1,SW2) 50 350

A TR

(HW1,SW2) 1+,1* 150 280
(HW1,HW3) 1+,1* 130 180

(HW1,HW4) 2+,1* 160 140

(HW2,SW2) 2+,2* 280 240

(HW2,HW3) 2+,2* 260 140

(HW2,HW4) 2+,2* 260 100

A

T
(SW1,SW2)

(HW1,HW3)

(HW1,HW4)

(HW2,HW4)

(n1)

A

T

A

T

SW1
HW1

HW2

SW2
HW3

HW4

(n2) (n3)

(a)

(b)

(c)

(d)

n2 n3

n1 n1

Figure 4: AT-curve merging method: (1) merging two con-
secutive nodes, (2) AT-curves, (c) tabulated design-space of
nodes n2 and n3, (d) tabulated design-space of node n1.

earlier, we assume that all functionalities in the hard-
ware module is implemented with a single ASIC chip.
Hence, in order to obtain more realistic cost analy-
sis, the hardware sharing between functionalities in the
hardware module has to be considered. The second one
is the communication delays. In order to obtain more
realistic delay analysis, the communication overhead
between hardware and software components has to be
taken into account.

In this section, we �rst present the AT-curve gener-
ation method considering hardware sharing and then
describe how to estimate communication delays.

3.2.1 AT-curve generation

There are three basic AT-curve merging operations: (1)
merging a sequence of nodes, (2) merging a conditional
node, and (3) merging a loop node. Due to the page
limitation, in this paper we only show the �rst merging
operation. The detailed description of the other two
merging operations can be found in [16].

We use the example illustrated in Figure 4 to demon-
strate how to merge two consecutive nodes n2 and n3
into n1. Each node has three design points, SW1,
HW1, and HW2 for node n2 and SW2, HW3, and
HW4 for node n3, as shown in Figures 4(b) and (c).
Figure 4(d) shows the nine possible design points by
merging the AT-curves of n2 and n3.

Each merged design point represents a new cost-
performance pair of an implementation combination
applied to n2 and n3. We �rst describe the perfor-
mance estimation and then the cost estimation of a
merged node. Since these two nodes are executed in
sequential order, the delay of merged node n1 is the
sum of the delays of nodes n2 and n3. For exam-
ple, in Figure 4(d), when nodes n2 and n3 are ex-
ecuted by implementations of SW1 (delay=150) and
SW2 (delay=200), respectively, the delay by merging
n2 and n3 is 350. We now describe the cost estima-
tion of a merged node. Since these two nodes are ex-
ecuted in sequential order, the hardware used in n2
can be shared by n3. Hence, the cost estimation of a
merged node needs to take into account the hardware-
sharing e�ect. For example, in Figure 4(d), when n-

BB3

BB1

for1

if2

if3

BB5

for2

if1

BB4

BB2

BB7

BB6

a
b

d

d

d a

i

a

b
c

a

a

a

bi db

(a)

1 1 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 1 0 0 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

BB1
BB2
BB3
BB4
BB5
BB6
BB7
if1
for1
if2
for2
if3

B
B

1
B

B
2

B
B

3
B

B
4

B
B

5
B

B
6

B
B

7
if1 fo

r1
if2 fo

r2
if3

(b)

Figure 5: Communication analysis: (a) communication
graph, (b) communication matrix.

odes n2 and n3 are executed by implementations of
HW1 (R=f1+,1*g) and HW4 (R=f2+,1*g), it needs
only two adders and one multiplier to implement the
merged design, i.e., A(HW1,HW4)=160. (Note that
the interconnect cost of a merged design may be in-
creased. However, for simplicity we only consider the
cost of execution units.) After generating all nine pos-
sible design points, we apply a pruning procedure to e-
liminate the inferior design points. For example, in Fig-
ure 4(d), the cost-performance pair (A = 150; T = 200)
of implementation-combination (HW1; SW2) is more
expensive and slower than that of implementation-
combination (HW1;HW3) ((A = 130; T = 180)).
Hence, implementation-combination (HW1; SW2) is
an inferior design which can be pruned. As a result, the
�nal AT design-space of merged node n1 contains only
four design points, as shown in Figures 4(b) and (d).

3.2.2 Communication delay estimation

Based on the target architecture, there are three types
of data communications: (1) data transfers between the
processor and the memory, (2) data transfers between
the ASIC and the memory, and (3) data transfers be-
tween the processor and the ASIC. We assume that the
data transfers between the functionalities in the soft-
ware module are through the internal registers in the
processor. Similarly, the data transfers between the
functionalities in the hardware module are through the
internal registers in the ASIC. Therefore, there is no
communication overhead for these types of data trans-
fers. Furthermore, we assume that all the global vari-
ables declared in the C description are stored in the
memory. A data transfer is required between the mem-
ory and the processor or the memory and the ASIC
when the functionalities in the software module or the
hardware module need to access those global variables.

We use a communication graph to express data-
transfer relationships between basic blocks. The com-
munication graph can be easily retrieved from the sym-
bol table during the parsing stage. Figure 5(a) depicts
the communication graph of the C description shown in
Figure 2. Each node in the communication graph repre-
sents a basic block or an internal node. A directed-edge
connected two nodes represents that data is produced

Main()
{
 int i, N;
 int d[100], y[100], w[100], u[100], p[100], x[100];

 N= 100;
 for(i=2;i<N;i++)
 d[i] = 2*(x[i+1]-x[i-1]);
 for(i=1;i<N;i++)
 u[i] = x[i+1] - x[i];
 for(i=2;i<N;i++)
 w[i] = 6 * ((y[i+1]-y[i]/u[i] - (y[i]-y[i-1])/u[i-1]);
 p[1] = 0;
 p[N] = 0;
 for(i=2;i<N-1;i++)
 {
 w[i+1] = w[i+1]-w[i]*u[i]/d[i];
 d[i+1] = d[i+1]-u[i]*u[i]/d[i];
 }
 for(i=N-1;i>1;i--)
 p[i] = (w[i]-u[i]*p[i+1])/d[i];
}

for1

for2

for3

for4

for5

BB4

BB1

BB2

BB3

BB5

BB6

(a)

Cost(1000XTrs)

5

15

10

.25 .5 25 30
(b)

20

 Delay (10 ns)6
1 2 35

(22049,1900400)
(22558,250400)

(0,33612400)(575,32342500)
(1592,30337800)

(9780,27428400)

Figure 6: Example 1: (a) the C code, (b) the AT curve.

in one node and consumed by the other. Each edge
is associated with a weight indicating the size of data
transferred between two nodes. For instance, in Fig-
ure 5(a), variable a is produced by BB1 and consumed
by BB2. In addition, variable d is stored in the mem-
ory and consumed by BB1. After generating a com-
munication graph, we then construct a communication
matrix to represent data sizes communicating between
nodes. For example, Figure 5(b) shows the communi-
cation matrix derived from the communication graph
shown in Figure 5(a). Note that the number on the
diagonal line represents the number of global variables
consumed by each node (e.g., [BB1,BB1]=1 because
one global variable d is consumed by BB1).

During the AT-curve merging stage, the communica-
tion overhead can be estimated through a table look-up
procedure. For example, in Figure 4, when merging two
nodes n2 and n3 communicationoverhead occurs in two
cases. First, n2 or/and n3 need to access global vari-
ables. Second, there exists data transfers between these
two nodes, while one of the nodes is implemented in the
hardware module and the other in the software module
(e.g., n2 with HW2 and n3 with SW2). The commu-
nication data sizes can be directly obtained from the
communication matrix. The estimated communication
overhead is then added into cost-performance pair for
AT-curve generation.

4 Experiments
Based on the proposed approach, we have developed

the SLIDE: A System-Level Interactive Design Evalu-
ator. It provides the user an interactive design evalua-
tion environment. With SLIDE, the user can interac-
tively evaluate any segment of the system description
via the GUI.

The SLIDE is implemented in C with Motif graphics
library and X-Window system running on SUN or/and
HP workstations. We performed two sets of experi-
ments. We �rst tested the feasibility of our proposed
approach on two C examples. Then, we applied our

(a)

for1
for2

for3

for4

if1

BB4

BB1

BB2

BB3

pivot(int p, int q)
{
 int j, k;
 for (j=0;j<=N;i++)
 for (k=M+1;K>=1;k--)
 if (j!=p && k!=q)
 a[j][k] = a[j][k]-a[p][k]*a[j][q]/a[p][q];
 for (j=0;j<=N;j++)
 if (j!=p)
 a[j][q]=0;
 for (k=1;k<=M+1;k++)
 if (k!=q)
 a[p][k]=a[p][k]/a[p][q];
 a[p][q]=1;
}

if2

if3

Cost(1000XTrs)

20

5

15

10

.25 .5 11 12
(b)

 Delay (10 ns)6
1 13

(0,13144800)
(550,12786600)

(708,12243750)
(1220,12186000)

(2240,12104850)

(23230,56300)

(9932,11941850)

(22050,1001850)

(22560,60300)

Figure 7: Example 2: (a) the C code, (b) the AT curve.

approach to a medical measuring system as a case s-
tudy. In all experiments, our software estimation was
based on an 8086 microprocessor with a 5MHz clock
(i.e., 200ns per cycle). We also use a simpli�ed hard-
ware component library including an adder, subtrac-
tor, multiplier, divider, and comparator with costs of
512, 512, 8192, 12800, and 512 transistors, respectively.
(We assume the bit width of all components is 16). We
also assume that the clock rate for the hardware imple-
mentation is 20MHz (i.e., 50ns per cycle). In addition,
we assume that memory access time takes three clock
cycles.

The �rst example is the C code for computing a cu-
bic spline [17]. This example contains �ve for loops,
as shown in Figure 6(a). In our design evaluation, we
assume that all of the arrays (e.g., d[100], y[100],...)
are stored in the memory module. The result of the
software execution-time pro�le shows that loops for1,
for2, for3, for4, and for5 account for 9.9%, 4.9%,
29%, 37.3%, and 18.9%, respectively, of the total exe-
cution time. In addition, there are 6 design alternatives
ranged from (cost=22558 transistors,delay=250400 ns)
with all hardware implementations to (cost=0 transis-
tors,delay=33612400 ns) with all software implementa-
tions, as shown in Figure 6(b).

The second example is the C code of the requisite
pivoting procedure [17], as shown in Figure 7(a). We
assume that the coe�cients M and N are 10 and 6,
respectively. The result of the software execution-time
pro�le shows that the nested for1 and for2 loop ac-
counts for 90% of the total execution time. Finally,
Figure 7(b) shows the 9 possible design alternatives
ranged from (cost=23230 transistors,delay=56300 ns)
with all hardware implementations to (cost=0 transis-
tors,delay=13144800 ns) with all software implementa-
tions.

The third example is a medical system for measur-
ing bladder volume. Figures 8(a) and (b) show the
system block diagram and the system graph, respec-
tively. In the initialization step, the system loads the
number of scanning points. For each scan, the motor-
controller �rst sends out signals to move the transducer

Analog-to-digital
 convertor (ADC)

To transducer

Measuring system

 Storage
(Hard-Disk)

Motor control
 circuit

Control panel

(a)

P1

P2

P3

P4

P5

P6

Stop

P1: Initialization.
P2: Motor control.
P3: Data acquisition.
P4: Wall detection.
P5: Volume estimation.
P6: Data storage.

w(e3
6)=

25
6 W(e34)=256

w(e45)=4

(b)
T co

ns
tra

int

Cost(1000XTrs)

Delay

30

30

20

10

(0,32411070)

(c)

(546,24590490)
(1090,21308280)

(1598,20907020)

(8746,16293810)
(9250,8473230)

(10 ns)6

15 20105

(17968,4931570)

(22588,4901320)

(30795,4901170)

Figure 8: The medical measuring system: (a) the system
block diagram, (b) the system graph, (c) the AT curve.

to the designated scanning position. The data acqui-
sition module then converts the ultrasonic echo into
digital data and sends the data back to the system.
For simplicity, in this paper we assume that each echo
takes 256 bytes of data . The wall detector and volume
estimator then compute the diameter and the volume
of the bladder. Finally, the echo data is stored into the
hard-disk for later analysis.

In this experiment, we assume that the ultrason-
ic echo data (256 bytes for scan) is stored in the
memory module. Figure 8(c) shows the AT curve
for each scanning iteration. There are nine possible
design alternatives ranged from (cost=30795 transis-
tors,delay=4901170 ns) with all hardware implementa-
tions to (cost=0 transistor,delay=32411070 ns) with all
software implementations. One interesting observation
of this example is that the wall detection section ac-
counts for 70% of the total execution time in which the
main contributor is the data communication delay (up
to 50%). From the analysis, we can conclude that the
obvious performance bottleneck of the system caused
by data-transfers between software or/and hardware
modules and the memory.

5 Conclusions
In this paper, we have presented a system-level cost-

performance evaluation approach to systematically ex-
plore the AT design space of a given design. The ap-
proach allows the designer to obtain �rst-hand design
tradeo� information before the partitioning process has
taken place. We have developed the system-level in-
teractive design evaluator SLIDE on top of the pro-
posed approach. Using the tool, the designer can in-
teractively perform design evaluation on any segment
of the system description. Furthermore, the wide va-
riety of graphical design views provided fully support
user analysis in every aspect of design evaluation. Our
proposed approach and evaluator provide the designer
with a comprehensive system-level design estimation
and evaluation method to e�ectively explore all pos-

sible design alternatives in the early stages of system
development.

Future work include enhancing the evaluator by
adding more accurate estimation models and incorpo-
rating a partitioning approach for hardware-software
partitioning.

References
[1] R. Ernst, J. Henkel, and T. Benner, \Hardware-Software

Cosynthesis for Microcontroller," IEEE Design & Test of

Computers, pp. 64-75, Dec., 1993.

[2] R. K. Gupta and G. D. Micheli, \System-Level Synthesis

Using Re-programmableComponents," in Proc. of EDAC'92,

pp. 2-7, 1992.

[3] M. B. Srivastava and R. W. Brodersen, \Rapid-Prototyping

of Hardware and Software in A Uni�ed Framework," in Proc.

of the ICCAD'91, 1991.

[4] R. Ernst and J. Henkel, \Hardware-Software Codesign of

Embedded Controllers Based on Hardware Extraction," in

Proc. of the Internation Workshop on Hardware/Software

Codesign, Sept., 1992.

[5] F. Vahid, D. D. Gajski, and J. Gong, \A Hardware-Software

PartitioningAlgorithm for Minimizing Hardware," in Proc. of

the Euro-DAC'94, 1994.

[6] E. Barros, W. Rosentiel, and X. Xiong, \A Method for Parti-

tioning Unity Language in Hardware and Software," in Proc.

of EuroDAC'94, pp. 220-225, 1994.

[7] F. J. Kurdahi and A. C Parker, \Technique for Area Esti-

mation of VLSI Layouts," IEEE Trans. on CAD, vol. 9, no.

9, pp. 938-950, 1990.

[8] F. J. Kurdahi and C. Ramachandran, \Evaluating Layout

Area Tradeo�s for High Level Applications," IEEE Trans. on

VLSI Systems, vol. 1, no. 1, pp. 46-55, March, 1993.

[9] G. Zimmermman, \A New Area and Shape Function Esti-

mation Technique for VLSI Layouts," in Proc. 25th DAC, pp.

60-68, 1988.

[10] R. Jain, A. C. Parker, and N. Park, \Predicting System-

Level Area and Delay for Pipelined and Non-pipelined De-

signs," IEEE Trans. on CAD, vol. 11, August, 1992.

[11] D. S. Rao and F. J. Kurdahi, \Hierarchical Design Space

Exploration for a Class of Digital Systems," IEEE Trans. on

VLSI Systems, vol. 1, no. 3, pp. 282-294, September, 1993.

[12] J. M. Rabaey and M. Potkonjak, \Estimating Implementa-

tion Bounds for Real Time DSP Application Speci�c Circuit-

s," IEEE Trans. on CAD, vol. 13, no. 6, pp. 669-683, June,

1994.

[13] J. Gong, D. D. Gajski, and S. Narayan, \Software Estima-

tion fromExecutableSpeci�cation," Journal of Computer and

Software Engineering, 1994.

[14] W. Wolf and J. Martinez, \C ProgramPerformanceEstima-

tion for Embedded Systems Architecture Sizing," in Proc. of

the Internation Workshop on Hardware/Software Codesign,

1993.

[15] W. Ye, R. Ernst, T. Benner, and J. Henkel, \Fast Timing

Analysis for Hardware-SoftwareCo-Synthesis," in Proc. of the

ICCD'93, pp. 452-457.

[16] W.-L. Ing, \EvaluatingCost-PerformanceTradeo�s for Sys-

tem Level Applications,"Master Thesis, CS Dept., Tsing Hua

University, 1995.

[17] R. Sedgewick, Algorithms in C, Addison-Wesley Publishing

Company, Inc., pp. 549 and pp. 617, 1990.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

