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Abstract - This paper introduces one way to
integrate an interactive s imulator within a
behavioral  synthes is  too l ,  thereby a l lowing
concurrent synthesis and simulation. Such a
simulator performs dynamic analysis and execution
time evaluation.

This paper also discusses an implementation of
this concept resulting in a simulator, called AMIS.
This tool assists the designer for understanding the
results of behavioral synthesis and for architecture
e x p l o r a t i o n .

I INTRODUCTION

Starting from a behavioral description, the behavioral
synthesis allows to produce an architecture made of a
controller and a data path. The latter is generally given as an
RTL description which is 5 to 10 times larger than the
initial behavioral specification [1].

The first experiments using behavioral synthesis have
shown that designing with behavioral synthesis is an
iterative process. Starting from an initial specification, the
user proceeds in several iterations. At each behavioral
synthesis iteration, the hints extracted from earlier synthesis
sessions are used in order to produce an architectural
solution.

Such a scheme allows to produce very efficient results
when using behavioral synthesis. Several works in the
litterature report that behavioral synthesis may produce
efficient design that can be compared well to manual design
[2,3].

However this iterative scheme issues several challenges:
-1- The designer needs to understand the results of

behavioral synthesis in order to be able to analyze it. This
means that the behavioral synthesis tool should provide
facilities that show correspondence between the architecture
and the initial behavioral description.

-2- The analysis of the architecture may provide
information on the use of the resources and on the execution
time. Some of these informations need just static analysis,
the other informations may need dynamic analysis. For
example, in the case of a behavioral description that includes
a data dependent loop, the execution time cannot be
computed by a static analysis. Much work has been treating
static analysis [3] but no work at our knowledge has treated
dynamic analysis at the behavioral level within the synthesis
process.

-3- Debugging the results of behavioral synthesis is very
difficult and fastidious when performed on the resulting RTL
description. This step is however needed because behavioral
synthesis may produce unexpected architectures when the
input description does not comply with the restrictions and

writing style imposed by the behavioral synthesis tool.
As long as the three above-mentioned problems are not

solved, behavioral synthesis will remain restricted to
specialists who know very well the behavioral synthesis tool
they are using.

I.1 Previous Work

Several tools published tackle one or two of the above
mentioned problems. Some of them tried to solve the first
problem, which is to link the behavioral description and the
resulting architecture. In this field AWB [4] is a precurser, it
provides an original model which allows the user to analyze
and understand the decision of the behavioral compiler and
thereby to explain the resulting solution.

The dynamic analysis of the behavioral description,
pointed out as the second problem, can be done through a
simulation of the corresponding RTL description operated by
the behavioral compiler using standard simulators. Tools
such as CATHEDRAL [3] and PHIDEO [5] include facilities
for static analysis and are restricted to regular algorithms
without data dependent computation. MIES [6] is an
interesting approach to handle dynamic analysis. It is based
on a micro-architectural model similar to those produced by
behavioral synthesis. Unfortunately, it is not connected to
most popular behavioral compilers.

Finally only few tools tackled the problem of debugging.
Again, the architect workbench (AWB) is a precurser in this
field [7]. ISE [8] provides an interactive environment
allowing an easy interaction with the user for understanding
the architecture and debugging the design.

As mentioned above, some works have tried to solve one
of the three problems but none of the existing tools to our
knowledge allows to solve the three above-mentioned
problems.

I.2 Contribution

This paper introduces one way to solve the three
problems: the integration of an interactive simulator within a
behavioral synthesis tool. The simulator and the behavioral
synthesis are based on the same model. This model allows to
link the behavioral description and the architecture produced
by synthesis. The simulation can be performed step by step.
At each step the user can analyze the resources of the
architecture and the correspondence with the behavioral
description, thereby making specification debug easier. Of
course, the simulation provides a dynamic analysis for data
dependent computation. The simulator implemented is called
AMIS and is integrated within AMICAL, an interactive
behavioral synthesis tool based on VHDL.
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II COMBINING BEHAVIORAL SYNTHESIS WITH
ARCHITECTURAL SIMULATION

The key idea for combining behavioral synthesis and
architectural simulation is to use the synthesis representation
and internal data structures for simulation.

II.1 Behavioral Synthesis

Behavioral synthesis is generally organized in two major
steps. The first step performs scheduling and allocation in
order to produce the data path and to fix the controller. The
second one performs the generation of the controller and
produces the RTL description. Most of the design decisions
are made during the first step. At this stage, we have enough
information about the architecture to perform architectural
simulation.

The scheduling and allocation steps fix the execution
order of the operations of the behavioral description. All the
complex operations are decomposed into basic transfers (and
operator activations). The paths used to transfer data in the
data path are fixed. These may be made through multiplexers,
switches and buses. The intermediate model produced by this
step is called an abstract architecture. This model can be used
for architectural simulation. Figure 1 shows a design flow
combining architectural simulation and behavioral synthesis.
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Fig. 1: Mixing Behavioral Synthesis and Architectural Simulation

The final step of the behavioral synthesis produces an
RTL description that can feed simulation and synthesis tools
acting at the logic level. However such a simulation would
also need a long time (hours for description) for the
compilation, elaboration and simulation.

II.2 Architectural Simulation

Architectural simulation is cycle based. It makes use of
the abstract architecture to simulate the execution of the
design at the architectural level. This simulation is performed
at the clock cycle level. At each cycle both data path and
controller execute one step. A controller step selects a
transition and computes the next state. A data path step
executes the transition selected by the controller. A transition
is made of a set of elementary operations that have to be
executed simultaneously in the same cycle. An operation
may be a data transfer between resources or a functional unit
selection. The execution of a transfer may need the activation

of several components of the data path (switches,
multiplexers, registers, ...).

More details on the simulation scheme will be given
later (section IV). The simulator produces several results that
may be used by the designer to understand and refine his
solution during the iterative design process (figure 1).

The simulator produces:
- All the details about the execution of the operations of the
behavioral description
- The detailed order of the execution of the operations by
means of a trace of the controller execution
- The intermediate values of all the resources of the data path
for each cycle
- The value of the outputs of the design at each cycle
- The operations executed by the functional units during each
cycle.

In addition to this cycle based information, the simulator
computes and provides dynamic statistics on the resource
use. The cycle based informations are generally used to
understand and debug the design. The statistics are used to
analyze the architecture and to react for the modification of
the synthesis script or the behavioral description (illustrated
by bold arrows in figure 1). Section V will illustrate the use
of architectural simulation in order to understand the design
and to refine the architectures using statistics.

II.3 Combining Architectural Synthesis and Simulation

Starting with a pure behavioral or functional description,
behavioral or architectural synthesis generates a cycle based
description. Therefore the RTL description obtained after
synthesis has an execution time different from that of the
initial one. As a matter of fact, one of the major problems
met when debugging RTL description produced by HLS is
the definition of a new testbench or re-using the initial
testbench used to behavioral description.

The validation of RTL descriptions with respect to the
behavioral ones becomes a tough task when the latters
include multi-cycle operations executed on complex
functional units. The use of a complex functional unit that
may execute several operations or that may run concurrently
with respect to the rest of the design requires a model which
combines its functionality with its execution scheme.

The interactive architectural simulation allows the
designer to follow the data transfers and to understand the
operation schedule. The combination of architectural
synthesis and simulation allows the validation of the
architecture with respect to synchronization with the external
world, in taking into account local execution delay.

III DESIGN MODELS USED BY AMIS

This section introduces the different models used by
AMIS. As stated above AMIS shares the concepts and the
intermediate formats used by the behavioral synthesis tool
AMICAL. More details about AMICAL can be found in [9],
only the models needed to understand AMIS will be detailed.

III.1 Architectural Model

AMICAL is based on a flexible target architecture model
composed of a top controller, a set of functional units and a



communication network. These last two constitute the data
path.

The architecture may include several functional units that
may run in parallel. The functional units interact through the
communication network which is composed of buses,
multiplexers, switches and registers. With this scheme, large
memorization blocks and I/O units are handled as functional
units and managed by the user in the behavioral description.
This architecture is general enough to represent a large class
of designs. The target may be a simple ASIC or a complex
application specific architecture where the top controller acts
as a main processor and the functional units as co-processors.

III.2 Input Description

AMICAL starts with two kinds of inputs, a behavioral
description and a functional unit library. The behavioral
description is given in VHDL. Like most behavioral
synthesis tools, the compilation unit of AMICAL is a single
process.

The other part of the input description is a library of
functional units. AMICAL does not assume a predefined
library of operators. The user is requested to provide the set
of functional units (or operators) needed to execute the
operation of the behavioral description. An operation may be
a standard VHDL operator (e.g. + ,-, etc.), a procedure call or
a function call.

Each functional unit of the library is described according
to several views. These different views are given for the
adder-substractor (AS) in figure 2.
- Conceptual view: From the conceptual point of view, the
functional unit is an object that can execute one or several
operations which may share some data.
- Behavioral view: At the behavioral level, the functional
unit is described through the operations it can execute. These
may correspond to standard operations, procedures or
functions. With respect to the conceptual view, the
behavioral view defines additional informations about the
data necessary for each operation as well as the ones
generated by each of them.
- Implementation view: This model gives all the
implementation details of the functional unit. It may be an
RTL or a gate level description. This view includes all the
data and control ports of the functional unit.
- Synthesis view: The high-level synthesis view of the
functional unit links the behavioral and implementation
views. It includes the interface of the functional unit, its
operation-call parameters, the operation set executed by the
functional unit as well as the parameter passing protocol for
each operation.
- Simulation view: The simulation view of a functional unit
is an advanced form of the behavioral view. It defines the
functionality or algorithm corresponding to each functional
unit. While the behavioral view defines only the different
operations used in the behavioral description, the simulation
view links the synthesis and behavioral views by giving an
abstract description of the implementation view. In other
words, it defines the behavior of the operations executed by
each functional unit. Therefore the simulation view emulates
the functional unit. However, during simulation it shall be
combined to the synthesis view so that the timing

characteristics are also taken into account.
The simulation view, illustrating the adder-substractor

(AS) in figure 2, is given as an independent C program that
executes the operations of the functional unit. This will be
executed during the simulation process.

Conceptual View Behavioral View for Re-use

(HL) Synthesis View Implementation View

Simulation View

+ - function "+" (in1, in2: integer) return integer;

function "-" (in1, in2: integer) return integer;
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(Functional_Unit AS
  (Area 418) (Width 700) (Height 60)
  (Parameter (Input a b) (Output c))

  (Connector
    (Input in1 (Bit 8) in2 (Bit 8))
    (Output out1 (Bit 8))
    (Ctrl_Input sel (Bit 1))

  )
  (Operator + (Commutative a b)
    (Cycle 1
      (Transfer a in1)

      (Transfer b in2)
      (Transfer out1 c)
      (Valid sel (Value 0)
    )

  )
  (Operator -
    (Cycle 1
      (Transfer a in1)

      (Transfer b in2)
      (Valid sel (Value 1)
    )
    (Cycle 2

      (Transfer out1 c)
      (Valid sel (Value 1)
    )
  )

)

void main (int argc, char** argv)
{

int adr_write;
int in1, in2, out1, sel;

adr_write = atoi(argv[1]);

in1 = atoi(argv[2]);
in2 = atoi(argv[3]);
sel = atoi(argv[4]);
if (sel == 1) out1=a-b;

else out1=a+b;
write(adr_write, &out1, sizeof(int));
}

Fig. 2: View of the AS Functional Unit

III.3 Abstract Architecture

The abstract architecture is the model used during
simulation. It is composed of a scheduled behavioral
description and a data path. This model is the intermediate
model used by AMICAL and obtained after the scheduling,
the allocation and the data path generation step.

At this level an operation may hide a complex behavior
and may therefore require several basic cycles (or clock cycles
to execute). Each operation is decomposed into a set of
elementary transfers by the synthesis process. An elementary
transfer is composed of a source and a sink that may be a
register, a port or a connector (input or output) of a
functional module. During data path generation, a connection
path (set of multiplexers, buses, switches) is associated to
each elementary transfer. Of course, when several transfers
have to be executed in parallel, separate connection paths
should be allocated.

The FSM can be seen as the result of a two-level
scheduling of the behavioral description. The first one fixes
the parallelism of operation and produces an FSM where each
transition is made of a macro-cycle. The second level
decomposes each macro-cycle into a set of basic transitions
that have to be executed in sequence. Each basic transition is
a micro-cycle whose execution will take a single clock cycle.

Complex transfers may be decomposed into several basic
transfers. For example, a transfer including an operation may
be decomposed into several register-FU transfers (in order to
feed the FU with input and to recover the outputs) and a
control transfer that selects the operation that has to be
executed by the functional unit.



Fig. 3: Combined Simulation/Synthesis Session

IV AMIS: THE AMICAL ARCHITECTURAL
SIMULATOR

AMIS is an architectural simulator embedded in
AMICAL. Figure 3 shows a screen dump of a combined
synthesis and simulation session.

The top left part of the screen shows the AMIS
interaction window. The right window gives the
corresponding architectural simulation report, while the
windows underneath show the standard AMICAL results
(controller and data path). The simulation and the synthesis
tools are fully integrated. AMIS is invoked through a simple
command from the AMICAL menu.

The rest of this section details the simulator organization
and the simulation modes. The next section illustrates the
use of AMIS within an interactive synthesis process.

IV.1 Simulation Scheme

As stated above, AMIS is embedded in the synthesis
environment AMICAL. The simulation is made using three
cooperating processors:
- A simulation engine in charge of executing the statements

of the behavioral description in the right order.
- A functional unit emulator in charge of executing the

simulation view of the functional units.
- An environment emulator in charge of providing the

stimulus.
Figure 4 shows the AMIS organization. The simulation

engine communicates with the functional unit emulator and
with the environment emulator through UNIX-IPC [10].
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Fig. 4: AMIS Organization

IV.2 The Simulation Engine

The simulation engine performs the interpretation of the
abstract architecture. The simulator is cycle based. The
simulation unit is the micro-cycle. The simulation algorithm
is given in figure 5.

The main steps performed by the engine are the
sequencing of the macro-cycle (step 2 of the algorithm) and
the transfer execution (step 3).

The present version of the simulator restricts the
behavior to three kinds of data transfers and one type of
control transfer:



  1- Initialization
Current -State:= initial state

Set All variables to initial values
Set All connections to undefined values

  2- Select a transition (macro-cycle)
a- Evaluate all the conditions of the outgoing

transitions from current-state
b- If there is one and only one true condition

Then current-macro-cycle:= the transition
with true condition

Next-state:= successor state of the transition
Else SPECIFICATION-ERROR

  3- Execute a Macro-cycle
For each micro-cycle in the macro-cycle
Execute simultaneously all data and control transfers

(functional unit selections)

  4- Current-state := next state
Go to 2

Fig. 5: Simulation Algorithm

- Pure register transfer: data transfers between two registers
of the data path without invocation of functional unit or
I/O ports.

- Register-functional unit transfer: this kind of transfer
allows to exchange data with functional units. The data is
transferred from/to the emulator of functional units through
system calls (UNIX-IPC) (see next section) [10].

- I/O Transfers: this kind of transfers is needed to exchange
data with the environment of the simulation e.g. reading
stimuli and writing results.

- Control transfer: this kind of transfer corresponds to
commands from the controller to the data path. At the
architectural level, only the control of functional units is
concerned by this kind of transfer. It also needs
communication with the functional unit emulator.

IV.3 The Functional Unit Emulator

The data path may include complex functional units
executing multi-cycle operations and that may have internal
states. This implies that the functional modules may have
their own sequencing and that we may have several of these
functional units running in parallel [11KiDJ94]. In order to
cope with this concurrency AMIS makes use of a functional
unit emulator. The emulator is in charge of executing the
simulation view corresponding to the functional units. As
explained above (Section III.2), each functional unit has a
simulation view that may be given as a C program. This is
made using separate UNIX processes and parameter
exchanges (inputs and results) is made through a UNIX/IPC
protocol [10].

IV.4 The Environment Emulator

This sub-system is in charge of providing stimulis (test
vector for the simulation) and recovering the output of the
circuit simulated. It acts as a testbench in a standard
simulation environment. In the present version, the

environment emulator is also an independent C-program
executed as a separate program. The communication with the
simulation engine is also made through a UNIX/IPC
protocol.

V USING AMIS FOR THE ARCHITECTURE
EXPLORATION

This section illustrates the use of AMIS for
understanding, debugging and improving the results of
behavioral synthesis. We will use the GCD example to
illustrate this process. The next section will report on the
design of larger examples.

V.1 Using AMIS to Understand the Results of Behavioral
Synthesis

The main transformations performed by behavioral
synthesis are scheduling, allocation and data path generation.
In order to understand the resulting architecture the designer
needs to relate it to the initial behavioral description.
Without specific aid tools, the designer would have to decode
the produced architecture in order to find the correspondence
with the behavioral description. This is a fastidious task
which can be made very easily with a tool like AMIS.

During simulation, at each step, AMIS shows the
resources of the data path used for the execution of the
current transition. For example, in figure 4, AMICAL
framed macro-cycle 8 which is the current macro-cycle used.
In the same time it highlighted the resources used to execute
the operation of this macro-cycle in the data path. When
parallel operations or parallel transfers are executed during a
macro-cycle or a micro-cycle, the corresponding resources are
highlighted using different colors. The designer can easily
find which path is used to execute which transfer and which
functional unit is used to execute which operation.

V.2 Using AMIS to Debug the Behavioral Specification

The architectural simulation allows to detect several kinds
of specification errors that cannot be detected using
behavioral simulation. Typical errors are those related to
communication protocols with the external world and with
functional units. In fact several operations of the behavioral
description take zero-delay during behavioral simulation.
After scheduling and micro-scheduling, the execution details
of these operations are fixed and may introduce extra
execution cycles. This may induce a change between the
results of behavioral and RTL simulations. These changes
may provoke errors, but they can be easily detected by
architectural simulation.

During the simulation with AMIS, the users have access
to all the intermediate values of the different resources. By
this way, the execution can be followed micro-cycle by
micro-cycle in order to detect the origin of changes in the
behavior. In figure 4, the system shows the value of different
registers and buses.

V.3 Using AMIS to Improve the Results of Behavioral
Synthesis

AMIS provides a great deal of help in making the
iterative synthesis process (introduced in section 1) easier.



Besides all the facilities provided to help the designer
understand the architecture, AMIS provides statistics on the
use of the resources of the architecture. These statistics are
computed dynamically during simulation. Of course, the
quality of these data depends on the quality of the test vectors
used for architectural simulation. For example in the case of
the GCD, table 1 gives the statistics corresponding to a
typical testbench.

The table gives for each resource the percentage of cycles
it is used. We can easily see from this table that the two I/O
units and the buses 3 and 4 are used only during few cycles.
In fact the solution includes 2 I/O units because the
scheduling step produced a solution  where several macro-
cycles make use of 2 parallel I/O operations (transitions 7,
10 and 11) in figure 4.

Resou rce

Fre quency
of Usage

AS
(FU)

I/O
(FU)

I /O 2
(FU- 1) Bu s 1 Bus 2 Bus 3 Bus 4 X Y

95,93% 2,6 4% 2 ,64 % 10 0% 5 0,6 1% 2,64% 2,6 4% 74,8% 7 3,17 %

Table 1: Frequency of Use of the Resources

In this case, we can iterate in the design process by
changing the synthesis script in order to restrict the number
of I/O operations. This induces a serialization of the
execution of the I/O operation in cycles 7, 10 and 11.

Fig. 7: New Solution after Resynthesis

Figure 7 shows a new screen where the scheduled
behavioral description (top window) has no parallel I/O. In
this case, transition 10 is scheduled into 2 mico cycles in
order to allow the serial execution of the two operations. The
bottom window shows the corresponding data path after a
new synthesis session. The data path is simpler since it
includes only one I/O unit and 2 buses.

In this case we obtain a smaller solution with only a
small speed overhead (less then 3%) for our testbench.

CONCLUSIONS

This paper presented a solution for integrating an
interactive simulator within a behavioral synthesis tool so as
to help the user in the analysis of the resources of the
architecture and the correspondence with the behavioral
description. This scheme allows the designer to understand
the architectural solution. It enables also to make
specification debug easier. The simulation provides a
dynamic analysis for data dependent computation. The
simulator AMIS has been integrated within AMICAL, an
interactive behavioral synthesis tool based on VHDL.

The architectural simulation allows to detect several kinds
of specification errors that cannot be detected using
behavioral simulation. Typical errors are those related to
communication protocols with the external world and with
functional units. In fact several operations of the behavioral
description take zero-delay during behavioral simulation.
After scheduling, the execution details of these operations are
fixed. This may induce a change between the results of
behavioral and RTL simulations. These changes may
provoke errors, but they can be easily detected by
architectural simulation.
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