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Abstract The purpose of the paper is to outline
MULTI-PRIDE, a system for supporting multi-layered
printed wiring board design. It consists of (i) circuit
bipartition, (ii) placement and routing on each outside
layer, (iii) modi�cation of wiring and compaction, and
(iv) routing on inside layers.

I. Introduction

We have been developing MULTI-PRIDE (MULTI-
layered PRInted wiring board DEsign system), a system
to support designing multi-layered printed wiring boards
[M1]. Here, a multi-layered printed wiring boards means
one printed wiring board consisting of n layers for n � 1
(Fig.1), where if n � 3 then the �rst and the last layers are
called outside layers and any other layer is called an inside

layer. (In case of n = 2 , the �rst layer is called an outside
layer, and the last layer is called an inside one.) Elements
(ICs, resistors, capacitors, and so on) are placed on one or
both of the outside layers and routing is done on outside
layers and/or inside layers. Inside layers will be provided
if any connection requirement remains unconnected after
routing on outside layers: inside layers are increased one
by one until all connection requirements are connected.
The designing ow of MULTI-PRIDE consists of (i)

circuit bipartition, (ii) placement and routing on each
outside layer (often followed by moving some elements
to speci�ed positions), (iii) routing on inside layers, (iv)
modi�cation of wiring and compaction.
From practical point of view, the following (1)-(4) are

required as basic capability of placement and routing
methods.

(1) Placing an up-sided element as it should be, where
an up-sided element has a speci�ed side to be faced
to the board in actual mounting: almost all elements
are upside ones;

(2) Given a class of elements, placing each element of the
class at the individually speci�ed position of a board;

(3) Maintaining (or controlling) relative relations among
elements, such as adjacency, isolation, or even dis-
tances;

(4) Reducing the number of nonplanar connections
(wires that cannot be embedded without crossing) as
well as preserving high routability among terminals
of elements.

MULTI-PRIDE currently satis�es (1) through (4), and
various capabilities are being added and re�ned. Handling
timing and crosstalk is under investigation.

II. Hardware and Software Requirements

The main system has been implemented in C program-
ming language and runs on a workstation (or even a per-
sonal computer) with SunOS 5.5 or UNIX FreeBSD 2.1,
by utilizing X Window System(Release 6). Also used is
a subsystem consisting of a ring network of ten trans-
puters (INMOS/T-800 with implementation by Parallel
C) for parallel processing. The role of this subsystem is
being transferred to a network of workstations. MINOS
(Ver.5.3), a library of a linear programming (in FOR-
TRAN) developed by Stanford University, CA, U.S.A.,
is utilized.

III. Outline of MULTI-PRIDE

We briey explain each step in the design ow of
MULTI-PRIDE.

A. Physical conditions

(1) There are three kinds of elements; linear elements
(Fig.2), up-sided elements (Fig.3(a)), each having a
speci�ed side which has to be faced to the board in
actual mounting, and free elements (Fig.3(b)) that
have no such constraints. Usually a free element with
just two terminals is represented as a linear one.

(2) Each element is to be placed on an outside layer of a
board, and each up-sided element must be placed as
it should be.

(3) Wires between di�erent layers pass through vias.
Wires on outside layers are called outside wires and
those on inside layers are called inside wires.

(4) Any two wires can cross each other only at speci�ed
terminals.

(5) Routing through element-areas (an area on the board
to be occupied by an element) is prohibited. (We
add this condition for simplicity of discussion, since
this problem itself contains an NP-complete problem
[R1], making the discussion too complicated. This
restriction may be removed by incorporating post-
processing.)

(6) Each of an element, a terminal and an area for wire
passing is represented by a rectangle in placement,
where overlapping of any two rectangles is prohibited.



B. Graph models

We use two kinds of graph models called a terminal-
vertex graph and an element-vertex graph. Suppose that
a circuit is given by a set of net lists (Fig.4). A maxi-
mal set of terminals requiring electrical connection among
them is called a net, where distinct nets should have no
electrical contact.

B.1. Terminal-vertex graph GT = (VT ; ET )

If we are given a circuit (as in Fig.4) then we repre-
sent it as a graph GT (as in Fig.5). GT is de�ned as
follows. Represent each two-terminal element by an edge,
and other elements as those shown in Fig.2 for linear ele-
ments or those in Fig.3(a) for up-sided ones or those in (b)
for free ones. These vertices are called terminal vertices,
and we call these edges non-removable edges, which can-
not be removed in planar subgraph extraction. Each two-
terminal net is represented as a simple edge, and each of
other multi-terminal nets is represented by a star (a tree
de�ned by a new vertex, called the net vertex, and the
edges connecting the net vertex and each of its terminal
vertices).

B.2. Element-vertex graph GL = (VL; EL)

GL is obtained by shrinking each of linear elements,
two-terminal ones, free or up-sided ones of GT into indi-
vidual vertex (called an element vertex).

C. Circuit bipartition

Actual bipartitioning is done concerning graph mod-
els of circuits. See [CP1]{[CP6] for partition of a graph.
We bipartition such a graph model into two subgraphs by
means of the UW method [CP7] that tries to minimize
both the number of vias and the di�erence between the
sizes of the two outside layers. The graph GT of Fig.5 is
bipartitioned into those of Fig.6. Then layout of each sub-
graph is designed on an outside layer. The UW method
improves any initial bipartition by moving vertices from
one group to another, followed by planar subgraph extrac-
tion for checking the number of nonplanar edges and esti-
mating the di�erence between the sizes of outside layers.
An initial bipartition is obtained by using the FM method
[CP1] or the the WHB method [CP3] with new measures
for partition [CP7] incorporated. These new measures are
provided in order to reect not only element sizes but also
the number of terminals and/or wiring areas required.

D. Placement and routing on each outside layer

Layout of each partitioned circuit is constructed on an
outside layer, mainly based on rectangular duals.

D.1. Extracting a planar spanning subgraph

We partition edges of a graph model into planar edges
and nonplanar ones (corresponding to noplanar connec-
tions in layout design). This is done by extracting a span-
ning planar subgraph (Fig.7). Each of many elements
has a speci�ed side to be faced to the board in actual
mounting. Such a condition has to be preserved when a
spanning planar subgraph is going to be extracted from
a given graph model. There are some known algorithms
that extract a spanning planar subgraph with maximal or

almost maximal number of edge. See [PL1] for planarity
testing and embedding, and [PL2]{[PL6] for planar sub-
graph extraction. Unfortunately they are unlikely to be
useful in practical design process due to lack of capabil-
ity of handling physical conditions speci�c to design of
printed wiring boards. Therefore the algorithm PLAN-
PWB or PLAN-MW is used. PLAN-PWB, proposed
in [PL7], is one of vertex addition algorithms and uses
PQR-trees [PL8] for �nding a planar spanning subgraph
of a given GT and for handling such physical conditions.
PLAM-MW is based on the path addition algorithm and
is proposed in [MP1, PL8] for the similar purpose with
capability of placing some elements to speci�ed locations
of a board. Further reduction of nonplanar connections is
being investigated [PL9].

D.2. Rectangular Duals

A properly triangulated planar (PTP ) graph [RD1] is
a connected planar graph satisfying P1-P3:

P1: Every face (except the exterior) is a triangle.

P2: All internal vertices have degree � 4.

P3: All cycles that are not contours of faces have length
� 4.

We can assume that the PTP graph is biconnected. (If
the PTP graph is not biconnected then, by adding some
edges, we can make it biconnected.)(see Fig.8)
A rectangular dual [RD3, RD6] is a dissection of a

rectangle into several subrectangles, representing a geo-
metric dual of a PTP graph , where each subrectangle
corresponds to a vertex of this PTP graph, and two sub-
rectangles share a boundary if and only if the correspond-
ing two vertices are adjacent in the graph (Fig. 9). It has
been widely used in placement algorithms for VLSI de-
sign [RD4, RD5, RD8]. See [RD1, RD2, RD7] for �nding
rectangular duals.
Since the two subrectangles, which correspond to the

two vertices of an edge, share a part of boundary, if
this edge represents connection requirement then a lay-
out, which assures feasible routing required by a given
PTP graph, can be obtained. It has capability of control-
ling placement: making two rectangles adjacent is done
by adding an edge between corresponding vertices in G,
and conversely placing two subrectangles apart can be re-
alized by creating a path of appropriate length between
corresponding two vertices of G.
Rectangles provided for elements and their terminals,

are called element-rectangles and terminal-ones, respec-
tively. Each of length and width of a element-rectangle
has to be larger than those of the corresponding element,
and a terminal-one must be wider than the maximum
width of the corresponding terminal and connecting wire.
Similarly we can get space for wires by providing subrect-
angles (called wire-rectangles) that are wide enough for all
required connecting wires to pass through. This implies
that the global routing is incorporated. This capability
of controlling placement is very useful to our purpose.
Actual �nal sizes of subrectangles are determined by rep-
etition of solving a linear programming (LP) with �nal
constraints on rectangle sizes.



Since the length and width of a printed wiring board
are usually speci�ed, this application requires capabil-
ity of computing or estimating sizes of subrectangles so
that the di�erence between the speci�ed board size and
those of the whole rectangle to be constructed may be
minimized, under the condition that those of each sub-
rectangle are no less than given lower bounds. This is a
quadratic programming problem, for which several opti-
mization techniques are existing [QP1].
Existing algorithms for optimum solutions become very

slow as the number of vertices or edges increases. On the
other hand, there are a number of choices on which the
size of the resulting whole rectangle heavily depends, such
as selecting four corners, deciding which side has the lower
bound on length (or width), and so on. Furthermore, in-
corporating routing area may cause increase in the size
of the whole rectangle. Consequently we adopt a heuris-
tic algorithm proposed in [MP3, RD9] for this problem,
producing sharp approximate solutions very quickly.

D.3. Placement and routing on each outside layer

Actual elements can be put into corresponding element-
rectangles determined so far, where we try to mount them
so that routing among the actual terminals and corre-
sponding terminal-rectangles can be done as much as pos-
sible inside each element-rectangle.
Routing is separated into two stages: interconnection

among terminal-rectangles of distinct elements, and con-
nection inside each element-rectangle. The former is easy
because wire-rectangles are provided and they are placed
adjacent to terminal-rectangles to be connected. On
the other hand, the latter may require increasing lower
bounds: if any mounting of an actual element into the
corresponding element-rectangle fails to obtain a desired
routing then this element-rectangle has to be enlarged
(Fig.10).
Routability testing inside any element-rectangle is done

as follows. Suppose that the terminals are i = 1; � � � ; n.
The subrectangle inside each element-rectangle, in which
the center of the element can be placed, is partitioned
into several subrectangles. We assign one transputer or
a workstation to each subrectangle so that it may try to
�nd n routes, one for each pair of the terminal i and its
terminal-rectangle, by means of exhaustive search for each
case where the center of the element is placed at any one
grid point inside this subrectangle. In each trial for any
one pair, we keep �nding routes even if some route may
overlap with any other one so that the minimum number
of overlapping of those routes for this pair can be com-
puted. Reducing computation time by taking advantages
of noncrossing paths is being investigated [T1].

E. Layout Improvement

The assured routability of connection requirements
among terminals is a remarkable merit of routing by
using rectangular-dualization on outside layers, while it
may result in placing some elements apart from the de-
sired locations to be actually mounted and/or in round-
about routing(Fig.11). We use rubber-band equivalent
[RB1, RB2, RB3] (or visibility graphs, to be exact) to

improve this demerit, and this modi�cation also shortens
the total wire length of layout with the original routabil-
ity preserved. Placement and routing are modi�ed by
using a visibility graph whose vertices represent termi-
nals, four corners of elements (that are represented as
rectangles) and the four corners of a given board. By us-
ing this method, we can obtain a layout with elements
placed at speci�ed positions. Subsequent compaction will
be done by executing one-dimensional x-coordinate or y-
coordinate compaction alternatively (Fig.12). See [MP3]
for the details and [CM1, CM2, MP3] for compaction.

F. Routing on Inside Layers

In case of single-layered layout, jumpers are only con-
nection requirements left to be processed. On the other
hand, in case of multi-layered layout, there are two kinds
of nets that should be processed on inside layers: nonpla-
nar edges (edges deleted in extracting a spanning planar
subgraph) and those edges each having a pair of virtual
terminals (vertices inserted in circuit partitioning). All
of them are two-terminal nets. Hence,we assume that
a given routing region is a rectangle having only two-
terminal nets inside or on the boundary. As the number
of layers and/or the size of a board increase, this routing
takes long computation time. Hence a parallel detailed
router TRED is developed and is used in order to reduce
this computation time [P6, MP2]. See [P1]-[P6] for paral-
lel routers. (References for sequential routers are omitted
due to shortage of space.)

We assume that the whole routing area is represented as
a two-layered rectangular grid graph. Our router basically
consists of the following three phases:

1. Global routing and dividing a given routing region
into subregions so that their predictive densities may
be almost equal, by executing (a) initial global rout-
ing, (b) modifying boundaries, (c) rip-up and rerout-
ing.

2. Locating virtual terminals at the boundaries of sub-
regions.This is the important step for abtaining high
routability. In order to prevent resundant crossings,
we modify the algorithm of [V1] so that we can ob-
tain a desired placing order of virtual terminals at
boundaries.

3. Detailed routing inside each subregions consist of (d)
initial detailed routing, and (e) rerouting.

The main advantage of this approach is highly paral-
lelized processing even if only small number of processors
are available. As a drawback, however, routability may
be reduced because routing heavily depends upon loca-
tions of virtual terminals. So we incorporate various im-
provements in order to attain high routability. Currently
the proposed routing method is realized as a ring-network
of ten transputers (INMOS/T800), one of which is ex-
clusively used for overall control. Improving routability
through constrained or unconstrained via minimization
problem is being investigated. See [R2] for the details.
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Fig. 1. A schematic explanation of layout design of an n-layered
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Fig. 6. The terminal-vertex graphs

constructed by bipartitioning the graph of

Fig.5.
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Fig. 9. A rectangular dual of the PTP graph in Fig.8.
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Fig. 10. An example requiring enlarging an element-rectangle

(1)Connecting actual terminals 7, 8 to their terminal-rectangles is

unsuccessful; (2)Enlarging the rectangle enables routing that satis�es all

connection requirements

Fig. 11. An initial layout obtained for the circuit of Fig.6(a)

.

Fig. 12. A �nal layout obtained from that of Fig.11
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