
ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

Veri�cation Methodology of Compatible Microprocessors

Joon-Seo Yim, Chang-Jae Park, Woo-Seung Yang, Hun-Seung Oh, Hee-Choul Lee, Hoon Choi,

Tae-Hoon Kim, Seung-Jong Lee, Nara Won, Yung-Hei Lee, In-Cheol Park and Chong-Min Kyung

Department of Electrical Engineering

KAIST

Taejon, 305-701, Korea

Tel: +82-42-866-0700

Fax: +82-42-866-0702

e-mail: kyung@dalnara.kaist.ac.kr

Abstract| As the complexity of high-performance

microprocessor increases, functional veri�cation be-

comes more di�cult and emerges as the bottleneck of

the design cycle. In this paper, we suggest a functional

veri�cation methodology, especially for the compati-

ble microprocessor design. To guarantee the perfect

compatibility with previous microprocessors, we de-

veloped three C models in di�erent representation lev-

els, i.e., Polaris, MCV(Micro-Code Veri�er) and StreC. C

models are co-simulated with consistency checking be-

tween di�erent two models. The simulation speed of

C models makes it possible to test the \real-world"

application programs on the RTL design with a soft-

ware board model. To increase the con�dence level of

veri�cations, Pro�ler reports the veri�cation coverage

of the test vector, which is fed back to the automatic

test program generator. Restartability feature also helps

signi�cantly reduce the total simulation time. Using

the proposed veri�cation methodology, we designed

and veri�ed an Intel 486-compatible microprocessor

successfully.

I. Introduction

The advancement of semiconductor technology has
made it feasible to integrate more than ten million transis-
tors on a single chip and to operate at faster than 500MHz
clock speed. This astounding chip complexity has re-
sulted in di�culties in the veri�cation[1, 2, 3, 4, 5, 6, 7].
Moreover, recent microprocessors tend to maintain the
instruction-level compatibility with the previous ones to
save huge e�orts for application software development[2].
Though compatibility can be best guaranteed by an ex-
haustive simulation with real application programs, the
simulation time increases drastically as the design com-
plexity increases and has been a bottleneck in a complex
microprocessor design.
Therefore, it is crucial to verify the functionality of

design and eliminate errors at an early stage of the de-
sign. Eradicating the functional bugs which are alive un-

til the �nal gate level simulation requires excessively large
amount of computing time and debugging e�orts. E�-
cient veri�cation methodologies become vital to the suc-
cess of microprocessor design and their signi�cance will
continue to increase as we move into more complex de-
signs.

Recently, the veri�cation crisis of microprocessor design
leads to hot research issues both in academia and indus-
try. The hardware emulation[2], formal veri�cation[1] and
cycle-based simulation[8] have become the state-of-the-art
veri�cation methodologies. Even though the emulation is
widely accepted, it requires too much cost and requires
that the gate level design is already �nished. There-
fore, it requires large turnaround penalty to �x gate-level
bugs. Formal veri�cation method has been used success-
fully to verify a wide variety of moderate-sized hardware
designs [9] [10] [11] [12]. The industry is beginning to
look at formal veri�cation as an alternative to the sim-
ulation for obtaining higher assurance than is currently
possible. Despite the great increases in the number of
organizations and projects applying formal methods, for-
mal veri�cation is still the case that the vast majority of
potential users of formal methods fail to become actual
users[13]. The hardware description language(HDL) such
as VHDL and Verilog is a convenient method to describe
a hardware, and a cycle-based simulation shows a clear
simulation performance advantage over an event-driven
simulator[14]. However, the general purpose Verilog sim-
ulator is much slower than the custom-tailored simulation
using C language. Although hardware accelerators[15]
yield signi�cant speed-up for the gate-level design, they do
not give any advantage for RTL or behavior level design.
Most of the design time is consumed by RTL simulation
rather than the description of design itself. We propose
in this paper a low-cost simulation method based on RTL

C model to speed up the RTL simulation.

To estimate how much time this methodology can save
in a complex microprocessor design, one needs to under-
stand that a design is not a linear sequence of steps and
there are several iterations through design, simulation, de-

bugging, code �xing, recompile, and resimulation. In the
productivity issue, we will examine how much design time
is consumed for each design activities, and will suggest
important methodology to reduce the design veri�cation
time. Finally we will show how e�ective our veri�cation
methodology is over other HDL approaches.

This paper describes the functional veri�cation
methodology of K486, which is Intel 80486 compatible
microprocessor which is being developed at KAIST. The
paper is organized as follows. A proposed functional ver-
i�cation methodology is described in section II. And sec-
tion III deals with the productivity issue for design veri�-
cation. Finally section IV shows some veri�cation results.

II. Functional Verification

A. Design Flow

A traditional top-down design
ow for microproces-
sors is presented in Fig. 1(a). From the design speci�-
cation, design is gradually re�ned and moved down to the
physical implementation level. An important problem in
the top-down design
ow is how to maintain the consis-
tency between the consecutive design levels. As shown
in Fig. 1(b), we divide the description level in more de-
tail such as C1, C2 and C3, which represent the model
of microprocessor written in C for behavioral, micro-
operational, and RTL description respectively.

level model level of description language

C1 Polaris Instruction behavior C

C2 MCV Micro-operation C

C3 StreC RTL C

V V4 RTL Verilog

C1

C2

C3

V

Specification

Verilog

Specification

physical layout physical layout

(b)(a)

Fig. 1. (a) Traditional vs. (b) proposed design
ow for

microprocessors

In our simulation-based approaches for microprocessor
design, RTL structural design using C language is co-
simulated with a reference model[4, 5, 6, 7], i.e., a be-
havioral level model or micro-operation level model. Real-
world application programs are executed on these C model
with a software model for the target system .

B. Reference Model

Traditionally, instruction set simulators are developed
for the compiler or software development concurrently
with chip design and used to determine such design pa-
rameters as instruction set, cache architecture, bu�er size,
bus protocols and other hardware resources. In the ver-
i�cation, this instruction set simulator can be used as a
reference model for further detailed designs.

TABLE I
Description of CPU models in various levels

model description features code lines

Polaris Macro instruction behavior register 9,675

MCV Micro-operation behavior register 18,534
internal bus

StreC Clock-Level RTL Flip-
op,latch 55,415
Phi 1 edge, Phi 1 level internal bus
Phi 2 edge, Phi 2 level combinational

pipeline

Verilog Clock and event-based RTL Flip-
op,latch 35,223

HDL internal bus
combinational

pipeline
timing

There are two types of reference models in our design.
As Table I shows, Polaris describes the behavior of X86
instruction sets. It does not describe the detailed archi-
tecture such as pipelining, superscalar instruction pair-
ing, parallel functional units, cache, and bu�ering. Rep-
resenting a higher abstraction level allows us to produce
a reference model that contains very few bugs and to ex-
ecute over 150 times the speed of the RTL C model. This
execution speed of Polaris makes it possible to run the
test consisting of several billion instructions on software
model. This is impossible with a commercial cycle-based
simulator or gate level HDL simulation even with hard-
ware acceleration.
For the CISC microprocessors and FPU, one macro in-

struction consumes multiple cycles, therefore one macro
instruction is subdivided into a number of micro-
operations which is executed in one clock cycle. Micro-
operations are closely related to the datapath hardware
or exception handling scheme. MCV(Micro Code Ver-

i�er) veri�es a C model describing the micro-operation
level behavior. Neither Polaris nor MCV exactly matches
the timing details as obtained via RTL model as shown
in Fig. 2. However, the speed advantage of Polaris and
MCV makes them to be used as \golden" reference model
of RTL micro-architecture design.
To verify all the cases which can occur in real system,

such as hardware interrupts, multiple memory and I/O
cycles, it is necessary to simulate through real-world pro-

grams rather than by instructions. To run the real-world
programs in design model, a software model of system
board[3] called VPC(Virtual PC) is developed. VPC con-
tains the software models of all PC components. It in-

Polaris MOVSADD

MCV WMDRcx= 8 cx--

StreC

Verilog

Fig. 2. Timing of each model

cludes main memory, hard/
oppy disk drive, interrupt
controller, timer, keyboard, and video display linked to X
window system on the workstation as shown in Fig. 3.

Software Board(VPC)

Keyboard

Video Display

Memory

Interrup Controller

Hard/Floppy Disk

Polaris

MCV

Verilog

StreC

Interface

PLI

C:\> DIR

Fig. 3. VPC(Virtual PC) model interfaced with various simulators
i.e., Polaris, MCV, StreC and Verilog

C. StreC : RTL C model

Traditionally, RTL description is based on HDL such as
Verilog. To achieve high simulation speed, we described
RTL operation in C language. This model called StreC

accurately describes the cycle-by-cycle synchronous logic
behavior as shown in Fig. 4. All the registers, combina-
tional signals and clocks are declared as global variables.
All the
ip-
op and latch are updated simultaneously at
the edge of clocks, Phi1 and Phi2 as shown in Fig 4.
The combinational logics are evaluated at the interme-
diate point of Phi1 and Phi2. Fig. 5 shows the RTL logic
blocks stylized as C subroutines. Top module calls all the
block subroutines in succession at the two clock edges and
two clock levels.

As StreC is not event-driven, special care should be
taken to allow signals to
ow correctly between modules.
Signal Flow Graph(SFG), which represents the prece-
dence relations and temporal relations, is very useful for
correcting many tricky timing problems which, although
unveiled during the C-level simulation, can later be de-
tected as hardware bugs.
To describe the synchronous circuit operation in C is

not a simple job, it requires cautious e�orts such as static
signal ordering and asynchronous loop removal. But most

of the design time is consumed by simulation rather than
the description of design itself.

The speed advantage of C over the general-purpose
HDL is liken to the assembly programming over the
compiler-assisted high level language programming. Even
though the hardware description using C is di�cult than
the well-formalized VHDL or Verilog in many aspects,
its simulation speed can be very fast than the general-
purpose commercial simulation engines. StreC was
mainly used to design and debug the micro-architecture
of K486. The RTL model runs program at 1400 cycle/sec
as shown in Table II.

main()
f

input sim condition(IPC,SAVE,TRACE,RESTART,PROFILE);
if(RESTART) Load Status();

while(!simDone)f
if(SAVE) Save Status();
clock++;

/* phi1 phase */
P1E evaluation();

Update
ip
op();
P1L evaluation();

/* phi2 phase */
P2E evaluation();
Update
ip
op();
P2L evaluation();
if(microcode.sequence==Instr.End)f

if(IPC) model di�erence check();
InstructionCount++;

g
g
report sim statistics(PROFILE);

g

Fig. 4. Top module of StreC increases the clock counter for each
cycle and calls C subroutines in sequence for P1E, P1L, P2E and

P2L

Comb1

P1E

Comb4

P2E P2L

FF1 FF3 Latch1

Comb2

P1E

Comb3

P2E P1E

FF2 FF4 FF5

Comb5

phi1_edge()
{

assignReg(FF1);
assignReg(FF2);
assignReg(FF5); }

phi2_edge()
{

}

Comb1 = f1(FF1);
Comb2 = f2(FF1,FF2);

phi1_level()
{

}

Comb3 = f3(FF4);
Comb4 = f4(FF2,FF3,Comb3);
Comb5 = f5(Comb3);
Latch1 = comb4;

phi2_level()
{

}

assignReg(FF3);
assignReg(FF4);

P1E P2L

phi1

phi2

P1L P2E

Flip-flop

Latch

Combinational
Logic Cluster

(a) (b) (c)

Fig. 5. (a)Signal Flow Graph showing the clock timing of

ip-
ops(FF's) and latches, (b) symbols for SFG and (c) the
corresponding RTL C description, 2-phase clocking scheme was

assumed.

D. Consistency Check

In traditional approaches [4, 5], simulation traces of
both a reference model and RTL model are dumped. The
reference trace captures how the architecturally visible
states change as a result of instruction execution. The
RTL trace represents the internal
ip-
ops, and combina-
tional signals as well as state registers, instruction pointer,
address, bus value, and
ags as a result of executing the
same sequence of instructions. After �nishing the long
simulation, the post-analysis tool compares two trace �les.
If some inconsistencies were detected, design error was
reported. For a long simulation, the trace �le size may
be enormously larger than several Giga bytes. Moreover,
dumping of trace �le slows-down the simulation by 5 or 6
times.
As an alternative, we use a dynamic consistency check

mechanism using IPC(Interprocess Communications) in
UNIX[16] during the co-simulation. It neither requires
extra trace �les nor degrades the simulation speed.
StreC and MCV(or MCV and Polaris) run in parallel.

When StreC completes one instruction execution, StreC
sends its results to MCV, while MCV waiting for the re-
sults of StreC compares the received results with its own
results and then tells StreC whether the results are con-
sistent or not. Simulation stops when the di�erences are
detected. Our experiment has shown that IPC yields a
speed degradation of 10 { 20 %, depending on circuit size.
In MCV, all micro-operations are executed in a single

cycle. However, because of many advanced implementa-
tion features, such as pipeline, cache, delayed handling
and bu�er, two models may not be identical. In StreC,
the micro-operations can be delayed by more than one
cycle. For example, the instruction counter, speci�c reg-
ister values and memorymap may be shifted by one cycle,
but this does not mean errors in reality. An intelligence
is needed for the simulation engineer to di�erentiate the
real bugs from artifacts.
X window-based micro-architecture tool displays in-

formation such as register values, micro-operations and
memory content on the screen. The designers eradicate
the hardware bugs using both the micro-architecture tool
and waveform displayer of RTL trace as shown in Fig. 6.

E. Piggyback

Once the RTL C model is veri�ed, it is one-to-one
translated into the synthesizable Verilog code. During
the translation process, some errors may arouse in Ver-
ilog model. There are three candidates to con�rm the
correct translation. The �rst one is to assert test vec-
tors into block Verilog model. The only block boundary
in/out signals are traced from the RTL C simulation, then
the input signals are asserted and outputs are compares
with trace �le. The drawback of this approach is that
the amount of trace is enormously large like as hundreds
of mega bytes. The second one is to substitute a spe-

0000ffff 0104abe

VPC

Difference Monitor

Stre-C

RTL model

MCV

Bug?Yes Yes

trace-on-demand trace-on-demand

Micro-architecture
 Prober

Wave Window

Profiler
Test Coverage

op-
code FSM

pipe
stall cache

Hand Coded
 Test Vectors

Co-Simulation

0000ffff 0104abe

c:\> _ c:\> _

IPC
Reference

Real Application
 Softwares

Randomly Generated
 Test Vectors

Test Suits

Debugging

Fig. 6. Dynamic consistency checking between two C models
during the co-simulation

ci�c block in C with a Verilog model as shown in Fig. 7-
(a). C and Verilog interface is done by PLI(Programming
Language Interface)[14]. In this case, the bug locat-
ing may requires large e�orts. We use another method
called \piggyback"[6, 7]. This is a co-simulation tech-
nique. Original C model for BUT(block under test), and
Verilog model for BUT run concurrently. Verilog BUT
\rode on the back" of the complete C model. The impor-
tant distinction between substitution and piggybacking is
that, in piggybacking, both the StreC and Verilog BUT
run simultaneously. Verilog model receives a block ex-
ternal inputs from C model, but the outputs from Verilog
model are not feed into C model. The output signals from
Verilog model are compared with the output signals from
C model. In addition to the external outputs from the
BUT, many internal signals are also compared. Because
there is a close correlation between C model and Verilog
model, bugs in Verilog model can be quickly detected and
isolated.

Running the RTL C simultaneously adds little overhead
to the Verilog simulation because C is very fast than Ver-
ilog. This technique proved to be a very e�ective way of
comparing the two models' consistency and obviated the
need to extract and maintain large trace �le.

Stub Module

Target
Modulemodule

 input

module
output

Stub Module

Target
Module

compare

module
 input

module
output

(a) (b)

Fig. 7. Consistency Check between C model(StreC) and Verilog
model (a) Substitution vs. (b) Piggyback

III. Productivity

A. Debugging Cost

Most of bugs found during RTL simulation result from
the interaction between modules under various combina-
tions of events. As these bugs are di�cult to detect at the
block level, designers hurry to integrate all the modules
without complete assurance of all blocks being error-free.
However, when the test vectors are applied to the fully
integrated system-level design, the amount of simulation
time soars, signi�cantly degrading the design turnaround.
The design complexity of complex microprocessor made
it necessary to apply the \divide-and-conquer" method,
i.e., \module-by-module" test should precede the \post-
integration" debugging. In the debugging of a module
called Kunit in K486, about 86 % of bugs were found be-
fore the integration or during the integration, while the
14% was �xed during the full-chip system-level simulation
after the full integration as shown in Fig. 8.

1 2 3 4 5 6 7 8

10

20

30

40

50

60

70

80

90

100

Months

Bug Eradication(%)

Initial Block
 Design

Intial
Design
Review

Initial
Integration

Post Integration
Simulation

14%

13%

58%

14%

Total 78 Bugs in Kunit

Fig. 8. Bug eradication curve for Kunit in the K486

microprocessor

During the system-level simulation, many bugs were
detected at an early phase as shown in Fig. 9. Small per-
centage i.e., 15 % of bugs remaining to the end of the de-
sign process occupies most of simulation time(50% of total
debugging time). Sometimes a \careless" design modi�-
cation may lead to malfunction of another block shown
as a deep canyon at 17 million instructions as shown in
Fig. 9. Regression test should run in company with the
frontier RTL simulation in order to guarantee that pro-
posed bug correction did not corrupt other behaviors.
Built-in checkers, which are parts of RTL model, mon-
itors certain illegal state transitions or the violation of
protocols. This built-in checkers may slow down the sim-
ulation speed, but this performance degradation is com-
pensated by bug-detecting pay-back. At an earlier ver-
i�cation phases, all the built-in checkers are turned on.
As the design becomes stabilized, minimum checkers are
alive.

B. Test Suites

Good test vectors help �nd design bugs quickly during
the simulation. We deliberately try to stress the design

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Time (days)

Bug Occurred

Real mode Test Protected mode Test Applications(Window3.1)

Number of instruction
executed (unit: Million)

0.5
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Fig. 9. StreC debugging curve to boot Windows3.1

models to their limit. In our case, there are three kinds of
test suites. The �rst one is hand-crafted test vector, the
second one is very long sequence of instructions generated
in a biased random fashion. The last one is real-world
application programs including operating systems.
The �rst hand-crafted codes are the by-product of X-

86 instruction behavior discovery program that scruti-
nizes the real, virtual and protected model behavior of
X-86 microprocessors. They are computer-generated vec-
tors with a hand-coded template by architecture design
team and test team for several years. The total number
of hand-crafted test vector amounts to 500. The permu-
tation, iteration and interleaving of existing instruction
sequences into new sequences and many exceptional cases
which rarely happens in real application software.
The second test program comes from the random test

program generator, called Pandora shown in Fig. 10. It
focuses on producing long sequences of legal instructions
assuming that the random interaction of these instruc-
tions will exhaustively cover all the test cases and pro-
duce conditions that rarely happens. Now, we plan to
develop more intelligent ATPG which generates the high
quality test vector which guarantee the 100% path cov-
erage and 100% arc coverage. Given a directed graph of
the FSM(Finite State Machine)'s or micro-code, it should
generate the test programs that cause the simulation to
exercise every arc in the graph with minimal redundancy.

C. Test Coverage and Pro�ler

The \debugging-and-redesign" is an endless loop, which
can be terminated only by the tape-out schedule. The test
coverage[4, 5, 6, 7] probably is the single most important
measure of the veri�cation quality, while such measures
as the volume of test vectors and the rate of decrease of
bugs detected are all indirect measures. Random genera-
tion of test vectors for the veri�cation of the behavior of
op-code cannot guarantee that all the block interface pro-

Fig. 10. ATPG(Automatic Test Program Generator) called
Pandora generates more than 300 test programs with the biasing
information of instruction and operand type

tocols and complex state machine traversals are covered.
State-of-the-art microprocessors include complex hard-
ware schemes such as instruction pipelining, branch pre-
diction, superscalar multiple pipes, external bus bu�ering,
multiprocessor cache, and many exceptional cases. Enu-
merating all the test combinations of various situations,
signal paths, and FSM transitions is nearly impossible.

Therefore, reports on the coverage statistics are nec-
essary to determine what percentage of events were cov-
ered and what events are to be covered. Pro�ler gives
test coverage metrics such as instruction coverage, micro-
operation mix, FSM transition coverage, pipeline stall
event coverage, and interface protocol coverage. For ex-
ample, Fig. 11 shows the FSM for a controller of segment
unit in the K486, where some arcs are never activated
even after the execution of 20 million instructions. These
uncovered arcs might be responsible for some vicious bugs
which may be captured at the �nal veri�cation phase or
even too late!

These coverage metrics are used subsequently to im-
prove the quality of the test vector set, and gives the de-
signers a feeling for the overall e�ectiveness of test vector
set. Without meaningful test coverage metric, all simu-
lation time is wasted by testing cases that are no longer
needed to be tested, while some cases are never excited.

Pro�ler also reports the performance statistics related
to the utilization of resources such as cache access, cache
hit/miss ratio, bu�er, and bus tra�cs. Some design er-
ror leads to performance degradation without destroying
the functionality. This kind of error is called a perfor-
mance bug, which is di�cult to detect. For example, we
monitored the cache hit rate during the simulation. Af-
ter certain situation, it went below 50% for a long time.
We discovered later that there was a wrong description in
the cache controller, but it did not cause any behavioral
problem in booting operating system. Fig. 12 shows one

RESET

SHORT

PIPE

BOUND

WRAP

BWPG

WWPG

LONG

118909 70725
17344

1391

69754

117169

102661

28287

12

16710

70136

1565440

940597

23746

340

0

120067

1140

1387

9583651

8670781

142949

851

0

32585

17015

15783

13179

320

9

2593

39408
38268

16752600

16003366

Fig. 11. Number of transitions which occurred among various
states in the state transition diagram of an FSM in running DOS a
pplication programs(after 20 million instructions). It is shown that
some arcs denoted as `dotted arrow' were not invoked at all. The
Pro�ler monitors the input signals and the states, and compares
them with previously states given as table format.

example of performance pro�le.

Number of Instructions (10 thousand)
0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
ac

he
 H

it
R

at
io

(%
)

DOS Windows3.1

Fig. 12. Behavior of Cache hit ratio vs. the number of instructions

executed during Windows3.1 booting

D. Restartability

Traditional simulation has an important weak point.
Designers usually do not dump the signal trace in the
�rst simulation because it is impossible to know where
the error should occur beforehand, and the signal trace
overburdens the simulation speed by 5{6 times. There-
fore, if an error is detected, designers simulate once more
from the �rst instruction to the bug point to dump the
signal trace within the small time interval as shown in
Fig. 13. After the debugging, designers modify the model
and re-simulate from the �rst instruction. This has been
a tedious but unavoidable process in the traditional sim-
ulator. In our experience, the simulation time is as much
as 15 times that of the debugging itself in a traditional
simulator for the microprocessor level design.
The key point is to save this redundant simulation time

debugging

3rd sim

1st sim Bug
simulation with (IPC, saver)

2nd sim simulation for trace
trace window

pass

simulation with (IPC, saver)

Simulation Restart

Bug-detected

New-
Bug

Simulation Restart

debugging

3rd sim

1st sim Bug
simulation with IPC

2nd sim
simulation for trace

pass

Re-simulation with IPC

Bug-detected

New-
Bug

Fig. 13. Reduction of simulation time by the save-and-restart
feature of StreC

by providing restartability. StreC saves internal states at
the completion of every K instruction periodically. This
is di�erent from the trace dump. Only the internal states
such as
ip-
op signals are saved at a snapshot rather
than long time trace for all signals. This makes it possi-
ble to restart simulation from arbitrary point by loading
the saved snapshot. As most trivial bugs are detected and
design becomes stabilized, the minor modi�cations of de-
sign have little e�ects on the system state. Restartability
plays a key role to �nd more bugs in a shorter time by
reducing the redundant simulation. Using the restartabil-
ity feature, the total simulation time is minimized to 30%
of the traditional simulation approach without restarta-
bility.

IV. Result

We applied the proposed functional veri�cation
methodology to the K486, which is an Intel i486TM-
compatible microprocessor being developed at KAIST.
K486 microprocessor consists of pipelined 32-bit integer
unit, 64-bit
oating point unit and a 8 K-byte cache.
Most of datapath and control logic blocks are built from

the cell-based 0.8�m CMOS library, while only area and
time critical blocks, such as clock, cache, TLB, shifter,
adder, and fast comparator are designed by full-custom
layout. Total 1.25 million transistors are integrated in 1.6
x 1.6 cm2 area at 0.8�m DLM CMOS process. A target
working frequency is 60 MHz.
In our K486 project, there were limited number of de-

signers within the limited schedule as shown in Fig. 14.
One designer wrote the instruction level behavior model,
one wrote the micro-operation level model, one wrote the
system board model, and four designers wrote the RTL
C model. But using an e�cient veri�cation methodology,
total several billion cycles are simulated on the RTL C
model until the tape-out. We were able to successfully
boot MS-DOS and Windows3.1 on the StreC as shown in
Fig. 15.
Table II shows the simulation time needed to boot

various operating systems and compares the simulation
speed between C and Verilog description of K486. Enor-
mous speed advantage of StreC over event-driven simula-
tor comes from the cycle-based logic evaluation. In the
cycle-based simulator, the sequence of logic evaluation is

Block
Design

Block
Descr-
iption

Integration Real Mode Test DOS
boot

Protected Mode Test

phase 1 phase 2 phase 3

Initial Design (17%) Integration (12%) Verification of Design(59%)

Final P & R and
Timing Verification

Final Layout (12%)

phase 4

Winodw 3.1 and Applications

94/8/17 96/11/3196/6/24

Fig. 14. K486 design milestone

Fig. 15. 20 million instructions are executed to boot Windows3.1
at StreC for 48 hours

determined completely in the static fashion during the
compile time and the redundant signal transitions are not
evaluated like as LCC(Levelized Compiled-Code) simula-
tor. This gives no expensive overhead of event scheduling.

TABLE II
Comparison of simulation speed of each models for booting

DOS(460,000) and Windows3.1(20,000,00 0 instructions) on

Sparc20 (CPS: Cycles Per Second)

execution execution time

Model speed(CPS) DOS Windows3.1

Polaris 210 KHz 15 secs 20 mins

MCV 50 KHz 1 mins 50 mins

StreC 1.4 KHz 2 hours 2 days

Verilog RTL 10 Hz 10 days 280 days

Verilog gate (with Zycad) 50 Hz 2 days 56 days

V. Conclusion

A functional veri�cation methodology for the compat-
ible microprocessor was proposed in the paper. The ver-
i�cation is focused on fast simulation to remove logical
errors at the early design stages. This methodology was
proven to be adequate for most microprocessor designs es-
pecially in CISC microprocessor such as K486. The hard-
ware description based on C language is more e�cient in
terms of simulation speed over existing HDL simulator as
shown in Table II. Most of the design errors can be iden-
ti�ed through the simulation based on C. We were able to
boot real-world operating systems and many application
programs. The test coverage measure and restartability
concept were also instrumental in minimizing the veri�-
cation cost.

References

[1] A.L.Sangiovanni-Vincentelli, et.al., \Veri�caiton of Electroic
Systems",in Proc. DAC, 1996, pp.106-111

[2] Gopi Ganapathy, et.al., \Hardware Emulation for Functional
Veri�cation of K5",in Proc. DAC, 1996, pp.315-318

[3] Lawrence Yang, et.al., \System Design Methodology of
UltraSPARC-I",in Proc. DAC, 1995, pp 7-12

[4] Anoosh Hosseini, et.al., \Code Generation and Analysis for
the Functional Veri�cation of Microprocessors",inProc. DAC,
1996, pp.305-310 , 1996

[5] Michael Kantrowitz, et.al., \I'mDone Simulating; Now What?
Veri�cation Coverage Analysis and Correctness Checking of
the DECchip 21164 Alpha microprocessor",in Proc. DAC,
1996, pp.325-330 , 1996

[6] Richard A. Lethin, et.al., \MDP Design Tools and Methods",
in Proc. ICCD, 1992, pp424-435

[7] Walker Anderson, \Logical Veri�cation of the NVAX CPU
Chip Design", in Proc. ICCD, 1992, pp306-309

[8] \The SpeedSim/3 : Software Simulator", SpeedSim Inc., ver-
sion 2.0, 1995

[9] Steven P. Miller and Mandayam Srivas. "Formal Veri�cation
of the AAMP5 microprocessor: A case study in the industrial
use of formal methods," WIF '95: Workshop on Industrial

Strength Formal Speci�cation Techniques , pp. 2{16, Boca Ra-
ton, FL, 1995, IEEE Computer Society.

[10] Mandayam K. Srivas and Steven P. Miller. "Applying Formal
Veri�cation to a Commercial Microprocessor,"CHDL '95, pp.
, 1995.

[11] Toru Shonai and Tsuguo Shimizu. "Formal Veri�cation of
Pipelined and Superscalar Processors," CHDL '95, pp. 513{
518, 1995.

[12] W.J. Cullyer. "Implementing Safety-Critical Systems: The
VIPER Microprocessor,"VLSI Speci�cation, Veri�cation and

Synthesis, pp. 1{25, 1988, Kluwer Academic Publishers,
Boston.

[13] J.P. Bowen and M.G. Hinchey. "Seven More Myths of For-
malMethods,"University of CambridgeComputer Laboratory
Technical Report 357, 12pp, January 1995.

[14] \Verilog-XL ReferenceManual", Cadence Design System Inc.,
version 1.6, 1991

[15] \ZyCAD XPlus Logic Simulation", Zycad Corporation 1994

[16] W.R. Stevens, \Advanced Programming in the UNIX Envi-
ronment," Addison-Wesley Publishing Company, 1992.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

