
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

Property Veri�cation in the Design of Telecom Applications�

M. Bombana P. Cavalloro F. Ferrandi
DRSI DRSI Dip. di Elettronica e Informazione
Italtel Italtel Politecnico di Milano

Milano, ITALY 20019 Milano, ITALY 20019 Milano, ITALY 20133
Tel: +39-2-4388-7431 Tel: +39-2-4388-7431 Tel: +39-2-2399-3636
Fax: +39-2-4388-8593 Fax: +39-2-4388-8593 Fax: +39-2-2399-3411

e-mail: bombana@italtel.it e-mail: cavallor@italtel.it e-mail: ferrandi@elet.polimi.it

Abstract| The industrial interest in the applica-

tion of formal methods in the design of complex ASICs

is noteworthy to improve the e�ciency of the design

process (reduced time-to-market) and to increase the

quality of the �nal products (increased competitive

pro�le). In this paper we focus our attention on de-

sign capture and functional veri�cation, two critical

phases in the current design methodologies. A modu-

lar toolset built around a model checker is described.

A telecom co-processor is presented, and general prop-

erties derived. A user-oriented taxonomy of prop-

erties is introduced to support the design practice.

Guidelines for the application of this technique are

inferred from the example and generalized.

I. Introduction

In the telecom market the design time of a new compo-
nent becomes more and more comparable with the mean
expected life on the market of its current implementation.
Functional and real-time constraints, changing rapidly,
make it soon obsolete, i.e. requiring for example a di�er-
ent implementation with a new technology, or overcome
by competition. Moreover complexity is expected to grow
at a rate of 50% per year, and this must not impact neg-
atively on the product quality. For these reasons new
design methodologies attract a great interest from manu-
factures, as the only available mean to support e�ciently
such market requirements. Speci�cally design improve-
ments can be obtained by applying exact and rigorous
design methods. As a consequence, the industrial interest
in the application of formal methods applied to the de-
sign of complex ASICs is noteworthy. Design methodolo-
gies have been proposed ([1], [4], [5], [6], [7], [11],[12] [13])
and commercial tools are now available ([2], [8]) to par-
tially support the design practice with the power of formal
reasoning at di�erent levels of the design ow. Anyway
the application of formal methods is not trivial due to
the innovative content of the theoretical approach and to

�This research was partially supported by ESPRIT projects
FORMAT n. 6128 and REQUEST n. 20616

the fact that some of the supporting tools are not ma-
ture to cope with the industrial needs in terms of device
complexity, computational e�ciency or user-friendliness.
Moreover guidelines in terms of good practise for their ap-
plication in-�eld are completely missing, so diminishing
considerably their impact on potential users and design
ows.

To overcome these problems it is necessary to clearly
identify the role that these techniques can play in the
standard design ows and to highlight the advantages that
they can o�er in comparison with standard approaches in
terms of both improved e�ciency of the design process
(reduced time-to-market) and of the increased quality of
the �nal products (increased competitive pro�le) [3].

Manufactures' design ows are complex multi-vendor
environments, organized in a top-down sequence of tools
encapsulated into ESDA (Electronic System Design Au-
tomation) frameworks, which provide homogeneous envi-
ronments and user-interfaces. From an operational point
of view design ows include three di�erent abstraction lev-
els: a functional phase, a logical phase and a technological
phase. In the �rst phase design capture is implemented,
the system speci�cation is generated, and system level
veri�cation is applied to the generated speci�cation. Ver-
i�cation is accomplished through simulation, even if this
technique is non-exhaustive. Hardware description lan-
guages, and speci�cally VHDL and Verilog, have reached
the stage of de-facto standards in most design sites. They
are supported by almost all ESDA tools and well known
by designers. Anyway the �rst stages of design are the
most critical vs the introduction of errors and inconsis-
tencies, due to the complexity of designs. VHDL code
in particular needs to be veri�ed in terms of design re-
quirements at the functional level. The second phase is
called logical design because logic synthesis tools are used
to produce low-level netlists starting from RTL structural
VHDL architectures. The third phase, called technologi-
cal design, takes care of generating the layout and deals
with the physical implementation.

Recent surveys of the time spent in the various phases of
the design ow point to the fact that the functional phase
becomes more and more predominant in the global design

time. Moreover errors made at this level are transmitted
and ampli�ed in the following phases. In this paper we
show how property checking can play a predominant role
in assessing the functional correctness of control-oriented
VHDL models vs the initial abstract requirements (de-
sign capture). The missing guidelines for good practice
for the application of this technique are provided on the
base of the experience obtained from the analysis of the
control part of a telecom co-processor. In this way prop-
erty checking can be considered a useful complement to
simulation.

In section II. we describe the applied toolset and its
corresponding design ow, underlying mainly two aspects:

� the modularity of the toolset and its user-friendliness
when it is used on a stand-alone basis;

� feasibility of integration into an industrial design ow
and ESDA framework.

In section III. we briey introduce the telecom applica-
tion to which the design ow has been applied.e this goal,
modularity and exibility are required to guarantee an
easy encapsulation in ESDA environments. Section IV.
provides a taxonomy of functional properties based on
design experience. The following section describes the
obtained results and generalizes them into guidelines for
future application of this approach, from the designers'
point of view. Finally, Section VI. is devoted to conclu-
sions and directions for future work.

II. Design flow for properties checking in

VHDL

Industrial design ows are basically multi-vendor envi-
ronments, where di�erent needs are satis�ed by the most
appropriate tools. In order to achieve this goal, modu-
larity and exibility are required to guarantee an easy
encapsulation in ESDA environments. The toolset we
considered [10] for property veri�cation in VHDL mod-
els satis�es these requirements.
The core of the proposed design set is a powerful model

checker [14]. This tool uses BDD based model checking
techniques ([15]) and veri�es that an implementation, in
the form of a transition system (model), satis�es a spec-
i�cation given in terms of a formula in temporal logic
(property) ([16], [14]). The model checker can also prove
(by a process of weak simulation) that one design entity is
re�ned by another. A tautology checker, included in the
same package, is able to determine the universal correct-
ness of a Temporal Logic Formula. An advanced feature
of this package, seldom found in similar tools, is the so-
phisticated error path that is produced when the property
is not satis�ed in the chosen model. This feature is funda-
mental, as it enables an easy identi�cation of the error and
the subsequent correction of the VHDL model. The error
path consists of a simulation sequence, leading from the

������� ��
	���	����ÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇ

ËËËËËË
ËËËËËË
ËËËËËË
ËËËËËË
ËËËËËË

ËËËË
ËËËË
ËËËË
ËËËË

��������

���

�� ���

��������

ÀÀÀÀ
ÀÀÀÀ
ÀÀÀÀ

�	�
���

��������

TL GENERATOR
TD EDITOR FSM GENERATOR

MODEL CHECKER

����
��
�
��� ��� ��������

����

����
����
�
��
	

�����
����

ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ

 TD
EDITOR

Fig. 1. Veri�cation Flow for design properties through
model-checking.

activation of the process till the event that contradicts the
required property. A graphical interface supports the user
through a visualization of the sequence of patterns, pro-
viding both a simulation counter-example and a graphical
representation of the found inconsistency.

Properties cannot be directly speci�ed in temporal
logic, because designers have no background in this type
of formalism. To overcome this di�culty, a graphical lan-
guage has been developed, provided of sound semantics,
able to capture the meaning of temporal properties as
timing diagrams [4] through a graphical editor. The same
editor visualizes the error path generated by the model
checker, so providing a uni�ed interface to the user, from
speci�cation to debugging.

A synthesisable VHDL subset is used as entry language
for the description of behavioral models. This description
of the behavioral code is processed by a commercial com-
piler [9] which provides the syntactic checks, and stores
the information into an object-oriented data base. A �-
nite state machine representation for the control modules
is generated from this internal format and formalized as
BDDs, while the timing diagrams are translated into Tem-
poral Logic Formulas.

The various modules nicely build up an integrated de-
sign ow (see �gure 1). Moreover the most complex oper-
ations and internal formalisms used in formal design are
hidden from the average designer, who can use known
speci�cation styles, i.e. VHDL and timing diagrams. The
entire path is characterized by a high degree of user in-
teraction: both the compiler into BDDs and the Model
Checker require user de�ned parameters, giving the de-
signer a full control of the design process. The ow is
meant to be applied several times, in a design loop fash-
ion. In fact, corrections are introduced following the in-
dications of the error path when inconsistencies are dis-
covered in the provided speci�cations.

A design ow including this veri�cation step is shown
in �gure 2 in the box labeled 'veri�cation'. Clearly it

���	���

���	���

���	���

���	������

����

��	������	��

���	

����

����

�����	�

���������

��
�
	������

��
�
����������

������������

���������

��
�
	��������������

���������

���

���

���

���

���

������ �

��������
������	�����

Fig. 2. Design ow including formal veri�cation.

complements the simulation task and operates in parallel
with it.

III. Device specification

In the telecom domain, the percentage of devices im-
plemented as Application Speci�c Integrated Circuits
(ASICs) is expected to grow considerably. Their complex-
ity and the strict design constraints they have to satisfy,
put under a hard test actual and future ESDA environ-
ments. The device we chose is designed to monitor the
run-time behavior (incoming rate) of the Asynchronous
Transfer Mode (ATM) connections, acting as a �lter when
they do not comply to speci�cations. The module is part
of a large board composed of several ASICs, memories,
busses and controlled by a micro-processor. The unit op-
erates as an arithmetic co-processor devoted to data pack-
ages analysis and translation. The co-processor applies a
computationally simple algorithm, including multiplica-
tions, enhanced to avoid data overow. The computation
of the algorithm is parameterized according to di�erent
classes of users. Computation parameters are stored in a
register �le upon the initialization phase. In the selected
implementation each class of users is characterized by a
speci�c set of the parameters.
The design capture of the co-processor is handled in

VHDL applying a 'divide and conquer' strategy to de-
crease the behavioral complexity of the system. The re-
sult of the partitioning is the identi�cation of a data path
and a control module, with the addition of supporting
logic and memories to comply with the required functional
speci�cation. When the control module is still too com-
plex, it is further partitioned into interacting �nite state
machines.
The result of a possible hierarchical partitioning spec-

i�cation identi�es two FSMs: one to control speci�cally
the data path, the second to control I/O operations and
interaction with the main memory. Communication pro-
tocols are de�ned to model the communication with the
environment, and among communicating modules. Such

TABLE I
Characteristics of the considered modules.

Module S T IV LV IB SB BDD VHDL

main module 226 319 21 89 39 255 745 332

control block #1 155 214 15 60 15 81 155 307

control block #2 73 94 9 52 10 69 75 183

computation block 63 75 19 64 46 182 762 131

S = # States

T = # Transitions

IV = # Input variables

LV = # Local variables

IB = # Inputs bits

SB = # State bits

BDD = # BDD nodes

VHDL = # lines of VHDL code without standard packages

protocols provide a clear path to identify in part the re-
quired properties (in terms of communication) that the
VHDL models must satisfy. In �gure 3 the protocols be-
tween the control module and the surrounding blocks are
sorted out. Two di�erent levels of complexity are identi-
�ed: the �rst regards the veri�cation of each protocol by
itself (i.e., considered as a binary interaction among two
modules, or one module and the environment). A sec-
ond level of complexity involves functional sub-parts of
the VHDL model where di�erent protocols are subject to
a strict sequencing structure. Both cases can be veri�ed
formally.

Statistics related to the size and complexity of the con-
sidered modules are reported in table I.

Each block is de�ned as an abstract VHDL entity, to
which di�erent architectures are associated. In addition
to the traditional structural and behavioral descriptions,
new architectures include timing diagrams (TDs). To al-
low an automatic veri�cation of the properties of a module
both speci�cations and implementations are VHDL archi-
tectures associated with the same VHDL entity. Usually
not all the component referenced in the structural de-
scription must have timing diagram speci�cations. This
means that the veri�cation can deal with incomplete spec-
i�cations. The designer incrementally describes all the
modules of the hierarchy of the device and correspond-
ingly verify step by step the device design. The applied
methodology considers the possibility of using logic syn-
thesis tools after the functional veri�cation phase (logic
phase of �gure 2). In this case the initial VHDL belongs to
the subset accepted by the logic synthesis tool used in the
manufacturer's design ow (e.g. Synopsys and Mentor).

When the modules are still rather complex the parti-
tioning strategy can be applied again, producing further
structural decompositions into simpler elements at a later
stage. In this way it is natural to include also design
constraints and implementation details, like word length,
data handling in records, memory elements initialization,

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

������

	��
�� ��
� �(�&(��

�

��&!*�&

� $'(&��

� �$���

$!(

�#%�"

��

���

�$��

%)$(

� �$���&!(

� ���

�(�&(���

�(�&(����

�)�
� ��'�(

ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ

� ��������

����������

�
�

�
�

�
�

�)�

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

�
������

�)�

� ���

�)�

ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

�
����	��
�

�)�

������

	��
�� ��

Fig. 3. Structural simpli�cation of the protocol involving Control
Block #1.

available RAM components, testability issues and so on.
The process of partitioning ('design-capture' phase) ends
when all the blocks of all the levels are de�ned in forms
suitable for logic synthesis or speci�ed as netlists of com-
ponents belonging to a reference CAD library.

IV. Design Properties

Properties consist of assumptions and commitments.
Assumptions are meant to model a 'good behavior' from
the environment. For instance in �gure3, they concern the
activation of the algorithm, which is constrained by two
events (external signals' edges): the Reset signal must
go down (after having gone high, meaning that the reset
phase is terminated) and the CClock signal must go high
(meaning that a ATM cell has arrived and the computa-
tion can start). Other assumptions are necessary from the
point of view of the logic representation, but are usually
'assumed' so by designers. So the system automatically
takes into account the latter, without explicit mentioning.
On the contrary commitments are user de�ned and rep-
resent the properties to be checked. To make the task of
property selection and speci�cation easier to the average
designer, we introduced a taxonomy of hardware proper-
ties, which is more user-oriented than the usual division in
liveness or safety properties. This taxonomy mainly ap-
plies to control-dominated applications, and includes six
main classes:

1. required sequences of events or states;

2. prohibited conditions involving multiple signals;

3. requirements of the behavior on reset;

4. application-speci�c requirements on behavior;

5. actions performed in a state of the FSM;

6. stability in basic states.

Each class generally includes both liveness and safety
properties. This taxonomy helps the user in the de�ni-
tion of the properties, because they belong to the usual

background of a hardware designer and provides a bet-
ter framework to support the speci�cation of the selected
properties. Some examples of properties are given in the
following (names are self explaining).

ReadtoWriteseq (Group 1). This property expresses
the requirement for correct READ/WRITE sequencing.
The output instruction signal Instr IO contains the se-
quence of values READ and WRITE, and the transition
to the WRITE value is triggered by the falling edge of
the incoming enabling signal (control signal indicating the
end of computation). This property is based on two as-
sumptions (in addition to the standard ones): that a cell
arrives and the algorithm is activated.

NeverEnd ArithandInstrIOeqwrite (Group 2).
This property expresses the requirement that a WRITE
value on the output instruction signal Instr IO must
never occur when the incoming enabling signal is high.
This condition is expressed using a probe in which
the boolean expression not(En = '1' and Instr IO =

WRITE) is always set to true.

GoingtoR1onReset1 (Group 3). This property ex-
presses the fact that from any state, the rising edge of the
reset signal will bring the system to state R1 . Also in
the VHDL model the asynchronous reset signal is treated
di�erently from the others.

Cell accepted (Group 4). This property expresses the
requirement that the signal specifying that a cell arrived
and was accepted goes high after some other signals went
high.

EventsfromI0 (Group 5). This property expresses the
requirements on the behavior speci�ed in the correspond-
ing FSM when the system is in a state and evolves to the
next state. Also in this case, these properties are com-
pletely dependent on the de�nition of the FSM, so on the
application.

GoingtoRR1onInitdown (Group 6). This property
expresses the requirement for the system to go back to a
fundamental state RR1 when an input signal has a tran-
sition. The property is similar to the one for the reset,
but in this case no asynchronous behavior is present. In
the test-bench this case is veri�ed each time the initial-
ization signal is activated by the microprocessor to store
the reference value in registers and memory.

A large set of properties were described as timing dia-
grams, automatically translated into Temporal Logic For-
mulas and tested on SparcStation 10 with 32Mb of RAM
([14]).

Execution times are not too large and in average com-
parable with simulation times for the same models. The
advantage of the approach lies in the automatic de�nition
of the debugging sequence. Anyway designers have to se-
lect properties with some care. In fact execution times
strongly depend on the type of properties. Then, for the
same property, the execution time depends on the size of
the model, i.e., the number and range of IO ports and the
number of the internal states of the �nite state machine.

The model of the previous example is manageable because
all the IO ports are control signal, i.e., bits.

V. From the user's point of view

A. Good practice in properties de�nition

A large percentage of properties tested on the device re-
sulted false. Even if it is expected that industrial designs
contain errors in the speci�cation and in the implemen-
tation the number of failures is higher than expected. In
fact, a closer analysis of these cases has allowed to correct
errors in the properties de�nition. Let us consider some
examples.
The property NeverEnd ArithandInstrIOeqwrite has

been proved False. A counter-example has been gen-
erated by the system in which the input enabling signal
switches to '1' and Instr IO switches to WRITE. The se-
quence involves 142 steps from the initial state to the state
that contradicts the commitment. This result depends on
the fact that the designer is testing a relationship involv-
ing an input signal and an output signal. This is not
correct because, while the output signals are constrained
by the behavior under test, the input signals are allowed
(by de�nition) to cover exhaustively the range of values
allowed by their type de�nition. So the property is not
False, but only badly formulated.
Also the property ReadtoWriteSeqSafe has been proved

False. The execution time is high because the timing
diagram is rather complex. A counter-example has been
generated by the system in which the signal assessing the
end of computation switches to '0' while the instruction
signal Instr IO did not switch to WRITE. In fact this
behavior is forbidden in the operative phase, but it is al-
lowed in one case of the initialization phase. So, in this
case the property has been stated without correctly re-
stricting the model to which it applies (too general as-
sumptions). In fact the initialization phase should have
been excluded by the model under test for this property
checking. The counter-example is very complex and in-
volves 106 steps from the initial state to the state that
contradicts the commitment.
In general, from the analysis of the properties consid-

ered during the veri�cation of our application the follow-
ing rules can be assessed:

� Better state a relationship between output signals
only, or directly constrain (with assumptions) the val-
ues of the input signals.

� Split a complex property into several simpler ones,
otherwise, execution time grows exponentially.

� Avoid relationships holding only in some states of the
FSM, or restrict the model with further assumptions.

Finally some other properties, well de�ned in terms of
application domain in the model, proved false. In these

cases the model was not compatible with the assessed
property. This does not mean that the VHDL code rep-
resenting the model must be changed. On the contrary,
it shows clearly a contradiction in terms of requirements
for the device to be designed. In this way a better under-
standing of the functionality required by the application
was highlighted. In some cases it resulted that the prop-
erty, even if stated correctly from the syntactical point of
view, was not correct 'semantically' for the functionality
to be designed. In this case the property was dropped
and another one speci�ed in its place. In other cases
the model was found defective, or wrong, and then mod-
i�ed accordingly. The following rule can be generalized:
when a property is false, �rst verify the application do-
main, to make sure it is correct syntactically, second re-
examine the speci�cation, to check why a contradiction
exists, third modify the property or the model according
to the results obtained by the analysis.

B. Simulation vs properties veri�cation

Some of the property veri�cations were compared with
the results obtained by the simulation of the model (Men-
tor Graphics QuicksimII). Observing the simulation re-
sults the following conclusions can be derived:

� Simulation clearly identi�es local relationships be-
tween the various signals.

� Properties express relationships which are proved
correct over the whole behavior of the model.

� Simulation results are strongly dependent on the cor-
rect sequence of the input signals given by the de-
signer, which is not exhaustive by construction. As
a consequence it is not possible to guarantee that an
unexpected but possible sequence of events may gen-
erate a misbehavior.

� On the contrary, when a property has been proved
True by the model checking technique, it is so for all
the possible sequences of input events.

Another advantage over simulation, which is allowed by
the described tool-set, is the Error path generated when
a property is not veri�ed. In fact, by following the indi-
cations of the error path, the designer can identify and
correct the inconsistencies among high-level descriptions
and speci�cations. Simulation is still a necessary step in
the design veri�cation process, because the technique we
described is not covering all the possible functionalities of
the model. The �nal goal of the joint application of simu-
lation and properties veri�cation is to better understand
the speci�cation and get an enhanced assessment on the
global results of functional veri�cation.

C. Impact of properties veri�cation on design practice

Local variables and states are almost always present in
the behavioral code representing the model to be veri-

�ed. Properties are very often dependent on these inter-
nal signals (local variables) and states. In order to verify
properties addressing this kind of signals, they must be
explicitly referenced in the VHDL entity of the model.
Basically they are declared as output ports, in order to
be observable (probes). This implies a modi�cation of the
VHDL model to accommodate this feature.

As one can see, the changes to the code are not dra-
matic. Anyway it is evident that inserting them prior
to the veri�cation phase, and deleting them afterwards
implies a manipulation of the speci�cation which is not
guaranteed to be error free.

The execution times, quite acceptable for the control
part of the device, increase considerably when the data
path is involved, or when the model of top entity (in-
cluding control and data path prior to partitioning) is
veri�ed. This observation proves that the model checking
technique well suited to control-dominated applications,
has still some limitations when the data path is involved.

For example, the description of the package for our ap-
plication presents declarations of local variables with a
rather great range of data. This feature is often shared by
applications in the telecom domain. In fact, all the func-
tions performed in the data path (arithmetic operations,
including multiplication) apply to data with a large range.
The top level architecture presents many local variables
with wide range of data. In this situation the generation
of the BDD representation is unmanageable, because of
the sizing problem. So, the module cannot be veri�ed,
unless the range of the data is arti�cially reduced. With
this limitation, many properties of the data path can be
veri�ed. From the users' point of view, this step is criti-
cal: �rst because it implies a manual modi�cation of the
speci�cation, so increasing the possibility of introducing
errors; second, the speci�cation with decreased values of
the range is almost often not equivalent to the initial one.
So, one looses the soundness claimed by the proof. In the
telecom applications paths are always present, so the best
technique is to apply partitioning and verify the control
part alone, where most of the behavior complexity of the
application is involved. When data path also must be
veri�ed, ad hoc techniques must be de�ned on the base of
heuristics and design practice.

VI. Conclusions

We have presented in this paper some guidelines for
good practice in the application of property checking at
the behavioral level for complex VHDL speci�cations.
This research was motivated by the need to enhance the
quality assessment of functional veri�cation required by
manufacturers. The results are positive, considering the
possibility to include the tool presented in the paper into
proprietary design ows and ESDA frameworks. Even if
very promising, the technique must be improved to cope
with the growing complexity of designs. Partitioning into

data path and control modules is not enough: new users
driven strategies must be thought and formalized to re-
duce the complexity and allow the performing of the com-
putations in a reasonable time. These issues will be the
core of the next step of this research.

References

[1] L. Claesen, M. Genoe, E. Verlind, F. Proesmans, H. De Man,
\SFG-Tracing: a methodology of design for Veri�ability",Proc.
Adv. Res. Workshop on Correct Hardware Design Methodolo-

gies, Turin, 1991.

[2] AHL: Lambda Reference Manual Version 4.1, London (1992)

[3] G. Gorla, M. Bombana, \A di�erent approach to ipr sharing",
Proc. of 1996 OMI Conference, Berlin Sept., 1996.

[4] R. Schl�or, W. Damm, \Speci�cation and veri�cation of system-
level hardware designs using timing diagrams", EDAC '93:

IEEE European Conference on Design Automation, 1993.

[5] S. Olcoz, J. M. Colom, \Toward a Formal semantics of IEEE
Std. VHDL 1076",EURO-DAC '93: European Design Automa-

tion Conference, Hamburg 1993.

[6] C. Bolchini, M. Bombana, P. Cavalloro, C. Costi, F. Fummi,

G. Zaza, \A design methodology for the correct speci�cation of
VLSI systems", Euromicro '93, Barcelona, 1993.

[7] T. Robles Valladares, A. Mar�en L�opez, C. Delgado Kloos, T.
de Miguel Moro, G. Rabay Filho, \Automatic Hardware Imple-

mentation of Formal Speci�cations", III Jornadas de Concur-

rencia, Gand�ea, 1993.

[8] CLSI Solutions, VFormal, 1993.

[9] LEDA - VHDL System, Meylan 1993.

[10] J. Bormann, J. Lohse, M. Payer, G. Venzl, \Model Checking

in Industrial Hardware Design", DAC '95: ACM/IEEE Design

Automation Conference, San Francisco 1995.

[11] W. Grass, M. Mutz, W.D. Tiedemann, \High Level Synthesis
Based on Formal Methods", Euromicro '94, 1994.

[12] K. L. McMillan, \Fitting Formal methods into the Design Cy-
cle", DAC '94: ACM/IEEE Design Automation Conference,

San Diego 1994.

[13] R. B. Hughes, \Design-ow graph partitioning for formal hard-

ware/software codesign", chapter in HW/SW Codesign, IEEE
Press 1994.

[14] To appear in The FORMAT Approach to correct Hardware

Design, C.D. Kloos and W. Damm (Editors), Ed. Springer-

Verlang, in press.

[15] K. L. McMillan, Symbolic Model Checking, Kluwer Academic

Publishers, 1993.

[16] E. M. Clarke, E.A. Emerson, \Characterizing properties of par-

allel programs as �xpoints", Seventh International Colloquium

on Automata, Languages, and Programming, vol. 85 of LNCS,
1981.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

