

Synthesis and Analysis of an Industrial Embedded Microcontroller

Ing-Jer Huang, Li-Rong Wang, Yu-Min Wang
Institute of Computer and Information Engineering

National Sun Yat-Sen University
Kaohsiung, TAIWAN 804

R. O. C.
EMAIL:

{ijhuang,lrwang,ymwang}@cie.nsysu.edu.tw

Abstract

This paper presents a case study of synthesis and analysis
of the industrial embedded microcontroller HT48100,
using the hardware/software co-synthesis tool (PIPER-II)
for microcontrollers/microprocessors. The synthesis tool
accepts as input the instruction set architecture (behav-
ioral) specification, and produces as outputs the pipelined
RTL designs with their simulators, and the reordering con-
straints which guide the assembler how to generate code
for the synthesized designs. The study shows that the syn-
thesis approach was able to help the original design team
to evaluate their design quality, analyze the architectural
properties and explore possible architectural improve-
ments and their impacts in both hardware and software.
Feasible future upgrade for the microcontroller family is
identified by the study. Further cooperation with the design
team has been undertaken to integrate the synthesis meth-
odology into their design flow.

1. Introduction

Due to the time-to-market pressure and the lack of
appropriate CAD tools and design methodology, designers
of industrial embedded controllers often miss the opportu-
nity to systematically analyze the architectural properties
of their designs and explore hardware and software alterna-
tives for future upgrades. Therefore, cooperation with the
design team of the HT48100 embedded microcontroller [1]
has been established to investigate the adoption of our sys-
tem/high level synthesis tools and design methodology into
their design flow. In this paper, we will present the prelimi-
nary results of the case study of applying our synthesis sys-
tem PIPER-II to solve the following architectural issues
related to the HT48100 microcontroller:

•

How good is the current implementation?

 The answer
will help the designers and manager assess their design
skills and evaluate their product quality.

•

Is there any room for further improvement?

 How about
different pipeline organizations? How about using vari-
ous data path components?

•

Does the hardware change impact assembly code
(application software)?

 Should existing assembly code
be repaired/rewritten for hardware upgrades? If yes,
how?
The rest of the paper is organized as follows. Section 2

introduces the PIPER-II synthesis system. Section 3 pre-
sents the synthesis process of the microcontroller and the
results. Section 4 provides the simulation results. Section 5
discusses the architecture exploration. Section 6 provides
some concluding remarks.

2. Overview of the PIPER-II synthesis system

PIPER-II is the behavioral domain synthesis tool of
ADAS, a full-range design automation system for micro-
processors [9]. PIPER-II accepts the abstract specification
of an instruction set architecture (ISA), and produces pipe-
lined register-transfer level (RTL) designs, consisting of
both data and control paths. The tool also generates a reor-
dering table which guides the compiler back-end (

reor-
derer

), provided by the designers, to properly reorder the
instruction stream sequence in order to avoid possible pipe-
line hazards and improve the pipeline throughput. In addi-
tion, PIPER-II provides simulators for the synthesized
designs at the ISA, abstract finite state machine, and pipe-
lined RTL levels, respectively. Application benchmarks are
provided by the designer to verify and evaluate the synthe-
sized designs.

Figure 1 illustrates the conceptual structure of the
PIPER-II system. There are two major design flows in
PIPER-II. At the left side is the synthesis flow, and at the
right side is the simulation flow.

† The research is partially supported by Holtek Microelec-
tronic Inc., a semiconductor company in Taiwan specialized in
design and manufacturing of ASICs and microcontrollers.

This document was created with FrameMaker 4.0.4

ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

In the synthesis flow, the preliminary scheduling phase

translates the ISA specification in Prolog into an abstract

finite state machine. The abstract finite state machine is a

sequential implementation of the ISA specification, with

each state taking one clock cycle for execution. The hard-

ware resource hasn’t been allocated for the abstract finite

state machine yet. The abstract finite state machine is then

turned into a pipelined RTL design by going through the

following tasks: (1) pipeline scheduling, (2) pipeline haz-

ard resolution, and (3) resource allocation. The pipeline

scheduling phase assigns micro-operations into pipeline

stages. Pipeline hazards may be introduced by the pipeline

scheduler in highly pipelined cases. These hazards are

resolved in the hazard resolution phase by a combination of

hardware and software resolution strategies. In this phase

PIPER-II generates a reordering table consisting of reor-

dering constraints which instruct the reorderer to properly

organize the assembly code for the synthesized pipelines.

At the last phase, the hardware resources are allocated, pro-

ducing a pipelined RTL level design.

Parallel with the synthesis flow is the simulation flow.

Designs at various abstraction levels are simulated, using

the application benchmarks provided by the designer, to

verify the synthesis results and assess the performance/cost

tradeoff. In our current implementation, designs at the

architecture, abstract finite state machine (scheduled

CDFGs with sequential semantics), and pipelined RTL lev-

els are simulated.

PIPER-II is the extended version of our previous syn-

thesis system PIPER [5] [6]. The extensions include the

simulation flow and capability of synthesis for parallel pro-

cesses.

Figure 1. The structure of PIPER-II system

Preliminary Scheduling

FSM Simulator

Reordering Data Path Control Path

Benchmarks

Pipeline Scheduling

ISA Simulator

RTL Simulator

Synthesis Flow Simulation Flow

Hazard Resolution

Allocation

ISA

Table

3. Synthesis of the HT48100 embedded micro-
controller

3.1. The HT48100 system architecture

The HT48100 embedded microcontroller is an high per-
formance RISC-like microcontroler specifically designed
for I/O control applications, such as remote controller, fan/
light/washing machine controllers,

etc.

 [1] Figure 2 depicts
the system architecture. The microcontroller consists of an
instruction set processor, a time/event timer, and a watch-
dog timer. The instruction set processor has 64 instructions,
with the instruction word width of 14 bits. The instruction
fetch and execution phases both take four clock cycles. In
the current implementation, there are two pipeline stages,
corresponding to the fetch and execution phases, respec-
tively. The pipeline firing latency is four clock cycles.

The processor has embedded memories: one program
ROM and one data RAM. The processor communicates
with off-chip world with 18 I/O ports. The I/O ports are
mapped to specific data memory (RAM) locations. The
processors also communicates with the on-chip time/event
timer and watch-dog timer by reading/writing to specific
data memory locations as well. The two timers operate
autonomously and are responsible to monitoring the sys-
tem status. They may change the control flow of the
instruction set processor by generating interrupts to the
processor.

3.2. Specification and synthesis of the instruction
set processor

As depicted in Figure 2, there are three loosely coupled
concurrent components in the microcontroller, with the
instruction set processor as the major component that
determines most of the performance/cost tradeoffs of both
hardware and software. We began the investigation by first
synthesizing the instruction set processor, which are pre-
sented in the paper. Synthesis of the entire system, includ-
ing the two timers and their interfaces, will be reported in
our future publication.

Figure 2. HT48100 system architecture

Instruction
Set

Processor

Watch-dog
Timer

Time-Event
Timer

I/O Pins

ROM RAM

On-chip

Off-chip

Shown in Figure 4 is the instruction set architecture
specification of the microcontroller, written in Prolog. The
specification is purely behavioral, no timing information.
The clauses ht, fetch and execute are defined by the
designer. The clause ht specifies the major loop body for
instruction fetch-and-execution. The clauses fetch and exe-
cute specify the behavior of the instruction fetch phase and
the instruction execution phase, respectively. Note that the
‘_sim’ clause is a simulation directive and is not part of the
behavior specification. This directive instructs the simula-
tor to print out the required information. The built-in class
and attributed clauses are used by the designer to declare
the (library) types of registers and memory, and the type
assignment of the architected registers and memory,
respectively. The complete specification consists of about
400 lines of Prolog code.

The original HT48100 microcontroller has two pipeline
stages, with the pipeline firing latency of four. So we first
synthesized a pipelined RTL design with the same pipeline
firing latency and data path library, in order to compare it
with the original design. The results and comparisons are
highlighted as follows. Synthesized designs with other
pipeline firing latencies are reported in Section 5.

•

Data path

: Shown in Figure 3 is the block diagram of
the synthesized data path. There is one ROM (two-
cycled access), one RAM (single-cycled access), one
stack, and one ALU. It uses the same number of data
path modules as the original design.

•

Control path

: The control path has 135 states and 60
Boolean functions (controlling 60 signals). The pipeline
behavior and instruction timing are the same as the
original design.

•

Software

: For the synthesized design, PIPER-II auto-
matically generated the requirement that the branch-
related instruction

sz

 (and another 12 branch-related
instructions) be separated from its (logically) next
instruction by one instruction cycle (one pipeline
stage), due to potential pipeline hazards. The require-
ment conforms to the original design. In the original
design, the requirement is satisfied by stalling the pipe-
line once the aforementioned instruction is decoded.
The stalled cycles result in performance degradation.
On the other hand, PIPER-II is able to generate two

Figure 3. Block diagram of the synthesized design fo
HT48100

stackInstruction

outport to

c

13-0 Register

MDRMAR

RAMROM

MAR MDR

controlReg1:[13-8] controlReg2:[13-0]

0

HT_ALU

Data Path

Control Path

AC PC

AC

4

Status
Registers

Figure 4. Instruction set architecture specification for HT48100 embedded controller

ht(PC, _, AC, TO, PD, OV, Z, ACF, C,STACK, Memory):-
fetch(PC, IR, Memory, Op), % Main loop body
P1 is PC + 1,
'_sim'(print, [PC, IR ,AC, TO, PD, OV, Z, ACF, C,STACK, Memory]),

% simulation directive:
% print out the system state

execute([Op], IR, AC, TO, PD, OV, Z, ACF, C, P1, STACK, Memory, IR_next,
AC_next, TO_next, PD_next, OV_next, Z_next, ACF_next, C_next, PC_next,
STACK_next, Memory_next),

ht(PC_next, IR_next, AC_next, TO_next, PD_next, OV_next, Z_next, ACF_next,
C_next, STACK_next, Memory_next).

% Loop implemented as a tail recursion

fetch(PC, [Op,Adr], Memory, Op):-
memory_read(PC, Memory, [Op,Adr]).

execute([adc], IR, AC, TO, PD, _, _, _, C, PC, STACK, Memory, IR, AC_next, TO, PD,
OV_next, Z_next, ACF_next, C_next, PC, STACK, Memory) :-%Actions of inst.

MemAR <- [constant(0)/10-7,IR/6-0],ADC
memory_read(MemAR, Memory, MemDR),
[AC_next,TO_next,PD_next,OV_next,Z_next,ACF_next,C_next] <~ AC +

MemDR + C.

execute([adcm], IR, AC, TO, PD, _, _, _, C, PC, STACK, Memory, IR, AC, TO, PD,
OV_next, Z_next, ACF_next, C_next, PC, STACK, Memory_next) :-%Actions of
inst.

MemAR <- [constant(0)/10-7,IR/6-0],ADCM

memory_read(MemAR, Memory, MemDR),
[MemDR_next,TO_next,PD_next,OV_next,Z_next,ACF_next,C_next] <~ AC +

MemDR + C,
memory_write(MemAR, MemDR_next, Memory, Memory_next).
:
:
:
:
:

% Define properties of module types.

class([shftreg, master_slave,r1,14]).
class([rsincreg,master_slave,r2,11]).
class([reg, master_slave,r3, 1]).
class([memory, ram, m1,[14,2048]]). % 14bit x 2K

% Assign the component types to architected registers and memory
attributed([r2,pc, r,ht,1]).
attributed([r1,ir, r,ht,2]).
attributed([r1,ac, r,ht,3]).
attributed([r3,to, r,ht,4]).
attributed([r3,pd, r,ht,5]).
attributed([r3,ov, r,ht,6]).
attributed([r3,z, r,ht,7]).
attributed([r3,acf,r,ht,8]).
attributed([r3,c, r,ht,9]).
attributed([r2,stack, r,ht,10]).
attributed([m1,m, m,ht,11]).

designs with different hardware/software tradeoffs: one
uses the same stalling approach, and the other uses the

reordering

 approach, in which the pipeline is not
stalled, but the compiler backend is responsible to reor-
der other independent instructions or

NOP

 instructions
into the slots between the aforementioned instructions
and their (logically) next instructions. The reordering
approach yields better performance, but may require the
recompilation of existing code and expand the code size
slightly.
In summary, for the given pipeline firing latency and

data path library, the original design can be considered as
being equivalent to the synthesized design in terms of data
path size, pipeline behavior and software compatibility.
Based on the observation that the synthesized design is the
best solution after numerous design points have been
explored by PIPER-II, we concluded that the design team
has done a fairly good job in implementing the HT48100
microcontroller. However, PIPER-II shows that perfor-
mance can be further improved if the reordering approach
is adopted.

4. Automatic simulation

The instruction set architecture specification in Figure 4
is an executable specification, which can serve as the
instruction level simulator. The instruction level simulation
observes the system status, including architected registers
and memory image, change after the execution of each
instruction in the application benchmark. Figure 5 (a) is an
“insertion sort” benchmark in HT48100’s assembly code.
The simulation is invoked by instantiating the initial values
of architected registers and memory image in the

ht

clause, as in Figure 5 (a). Figure 5 (b) lists the simulation
trace of the first few executed instruction of the bench-
mark.

The next level of simulation is for the abstract finite
state machine, a sequential (microoperation-level) imple-
mentation of the given instruction set architecture. The
simulator shows the cycle-by-cycle execution of the micro-
operations. For HT48100, the instruction fetch phase takes
four clock cycles, and the instruction execution phase takes
from one to four cycles.

The last level of simulation is for the synthesized pipe-
lined data path and control path. In simulation, designers
can observe state activities in pipeline stages, registers and
memory values and status of functional units’ input/output
ports, all at the cycle-by-cycle level. Figure 6 shows a seg-
ment of simulation trace for the synthesized design. Here
we show the first eight clock cycles of the “insertion sort”
benchmark. Since each pipeline stage takes four clock
cycles, there is a sequence counter (counting from zero to
three) in the control path in order to sequence through the

four cycles. In the first four cycles (clock = 0 ~ 3), the pro-
cessor is fetching its first instruction

move

. There is only
one instruction in the pipeline. So there is only one active
state during each clock; e.g., the state

bc(4)

 is active in

stage(1)

 at clock = 3. In the next four cycles (clock =
4~ 7), the processor has filled the pipeline, so there may be
two active states during each clock (one active state for
each pipeline stage). For example, during clock = 5, the
states

bc(2)

 and

bc(96)

 are active in

stage(1)

 and

stage(2)

, respectively.

In summary, the simulators have been found very help-
ful in debugging and verifying the behavior and timing of
the synthesized design. In addition, the simulators can be
delivered to the potential customers of the processor to
evaluate the processor or integrate the simulators into their
system simulation for the system they are going to build
around the processor.

5. Architecture exploration

In Section 3 we showed that performance can be
improved if the reordering approach is adopted into the
original design. In this section we examine more interest-
ing architecture alternatives by synthesizing the processor
with different pipeline firing latencies and library compo-
nents.

Figure 7 lists the pipeline performance/cost and instruc-
tion pair reordering constraints of the these architecture
alternatives. HT_8 is the non-pipelined implementation of
the processor and can be regarded as a lowest cost design.
HT_4 is the synthesized design reported in Section 3,
which is equivalent to the original design in terms of hard-
ware size and software compatibility. HT_3 and HT_2 are
synthesized with the pipeline firing latencies of three and
two (using the same library as the original design), respec-
tively. HT_RD_3 is synthesized with the same latency as
HT_3’s, but with a faster ROM with one-cycle assess time
(the original design used a two-cycled ROM), and a manu-
ally performed optimization technique which sets the data
memory address register during the decode stage, regard-
less of the result of the decoding. Comparisons between
these designs are summarized as the following.

• Compared with HT_8, HT_4 uses the same number of
resources of major data path components and has a
slightly larger control path (with five extra boolean
functions). With the same data path size and a few extra
control signals in the control path, HT_4 provides
almost two times faster of pipeline throughput. The
two-fold performance improvement come at the cost of
software: thirteen dependent instructions need stalling
(in which case, performance will be slightly degraded)
or reordering.

• HT_3 operates 33% faster than HT_4, with the same
data path resource numbers and 38% larger in the con-
trol path. The performance improvement also comes at
the cost of software: two more instruction pairs need
hardware stalling or software reordering, and the reor-
dering distances grow from one to two for eight of the
original instruction pairs. If the reordering approach is
adopted, then some moderate amount of recompilation
of the existing code is necessary. If the stalling
approach is adopted, then recompilation is unnecessary.

• HT_2 operates 100% faster than HT_4, at the cost of
much larger data path and control path. Furthermore,
the number of instruction pairs that need stalling or
reordering grows to 315, and the reordering distances
also increase significantly. Tremendous amount of
recompilation is necessary to retarget the original code
to HT_2.

• HT_RD_3 offers the same performance improvement
as HT_3 (33% faster than HT_4), but with a 22%
smaller control path. The best advantage offers by
HT_RD_3 is the full software compatibility with the
original design.
In summary, the exploration suggests that the best

upgrade path of the processor for the company is to adopt
the HT_RD_3 design (faster ROM + earlier MAR setting +
pipeline firing latency of three) which offers 33% faster
pipeline throughput and full software compatibility. If the
faster ROM can not be used, then HT_3 with hardware
stalling can be considered as the performance upgrade can-
didate. However, HT_2 is by no means an ideal upgrade
candidate since too many dependent instruction pairs need
attention.

6. Conclusions

We have presented the industry’s need for an appropri-
ate design tools and environment for embedded controller
design, which consists of hardware and software compo-
nents. A pipeline synthesis system PIPER-II has been out-
lined and its application in the synthesis and exploration
for the industrial embedded microcontroller HT48100 has
been demonstrated. The study shows that the synthesis
approach was able to help the original design team to eval-
uate the design quality, analyze the architectural properties
and explore possible architectural improvements and their
impacts in both hardware and software. Feasible upgrade
path for the microcontroller family has been identified in
the experiment. In addition, simulators are automatically
generated for the synthesized designs, which are very help-
ful for debugging (for the designer) and system develop-
ment (for the system developers who build their systems
with the microcontrollers). Further cooperation with the

design team has been undertaken to integrate the synthesis
methodology into their design flow.

Reference

[1] HT48100 Development Data Book, Holtek Mi-
croelectronics Inc., Dec. 1994

[2] Mauricio Breternitz Jr. and John Paul Shen, “Ar-
chitecture Synthesis of High-Performance Appli-
cation-Specific Processors”,

Proc. 27th DAC,

1990

[3] Richard Cloutier,

Synthesis of Pipelined Instruc-
tion Set Processors

, Ph.D. dissertation, Dept. of
Electrical and Computer Engineering, Carnegie
Mellon University, 1993. Also available as a Re-
search Report No. CMUCAD-93-03.

[4] John Hennessy and Thomas Gross, “Postpass
Code Optimization of Pipeline Constraints,”

ACM
Tran. on Programming Languages and Systems

,
July 1983, pp. 422-448

[5] Ing-Jer Huang and Alvin Despain, “High Level
Synthesis of Pipelined Instruction Set Processors
and Back-End Compilers,”

Proc. of 29th DAC

,
June, 1992

[6] Ing-Jer Huang,

Co-Synthesis of Instruction Sets
and Microarchitectures

, Ph.D. dissertation, Dept.
of Electrical Engineering - System Division, Uni-
versity of Southern California, 1994.

[7] Peter M. Kogge,

The Architecture of Pipelined
Computers

, MacGraw-Hill, 1981

[8] Nohbyung Park and Alice C. Parker, “Sehwa: A
Software Package for Synthesis of Pipelines from
Behavioral Specifications,”

Trans. on CAD, Vol 7.
No. 3

, March 1988

[9] Iksoo Pyo, et al., “Application-Driven Design Au-
tomation for Microprocessor Design,”

Proc. 29th
DAC

, June, 1992

[10] R. G. G. Cattell, “Automatic Derivation of Code
Generators from Machine Description,”

ACM
Trans. on Programming Languages and Systems

,
Vol. 2, No. 2, April 1980

[11] S. L. Graham, “Table-Driven Code Generation,”

IEEE Computer,

August 1980

[12] Robert Giegerich, “A Formal Framework for the
Derivation of Machine-Specific Optimizers,”

ACM Trans. on Programming Languages and
Systems

, Vol. 25 No. 3, July 1983

Figure 5. (a) An “insertion sort” benchmark for the instruciton level simulator;
(b) Instruction level simulation trace

run:-
ht(100,[],0,0,0,0,0,0,0,0,
% Initial values for architected registers

[(iar,0), % Initial memory image
 (mp,0),
 (start,1),
 (count,11),
 (idx1,1),
 (idx2,0),
 (temp,0),
 (zero,0),
 (99,0),
 (0,10),
 (1,9),
 (2,8),
 (3,7),
 (4,6),
 (5,5),

 (6,4),
 (7,3),
 (8,2),
 (9,1),
 (10,0),
 (100,[mov,idx1]),
 (101,[sub,count]),
 (102,[snzi,99]),
 (103,[jmp,129]),
 (104,[deca,idx1]),
 (105,[movm,idx2]),
 (106,[sub,zero]),
 (107,[szi,99]),
 (108,[jmp,127]),
 (109,[mov,idx2]),
 (110,[movm,mp]),
 (111,[mov,iar]),
 (112,[movm,temp]),
 (113,[inc,mp]),

Current State :
 PC(100), IR([mov,idx1]), AC(0), TO(0), PD(0), OV(0),

Z(0), ACF(0), C(0), /* AC <- idx1 = 1 */
 STACK(0), Memory(

[(iar,0),(mp,0),(count,11),(idx1,1),(idx2,0),(temp,0),(zero,0
),(99,0),

(0,10),(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,0
),...])

Current State :
 PC(101), IR([sub,count]), AC(1), TO(0), PD(0), OV(0),

Z(0), ACF(0), C(0), /* AC <- AC - count = 11
*/

 STACK(0), Memory([...])

Current State :
 PC(102), IR([snzi,99]), AC(-10), TO(0), PD(0), OV(0),

Z(0), ACF(1), C(1), /* if C != 0 then pc++ */
 STACK(0), Memory([...])

(a) (b)

 (114,[mov,iar]),
 (115,[sub,temp]),
 (116,[snzi,99]),
 (117,[jmp,127]),
 (118,[mov,iar]),
 (119,[dec,mp]),
 (120,[movm,iar]),
 (121,[mov,temp]),
 (122,[inc,mp]),
 (123,[movm,iar]),
 (124,[dec,idx2]),
 (125,[mov,idx2]),
 (126,[jmp,106]),
 (127,[inc,idx1]),
 (128,[jmp,100]),
 (129,[halt,0])]).

Figure 6. Cycle-by-cycle simulation of the synthesized pipelined RTL design

Clock 0 1 2 3 4 5 6 7

Sequence Counter 0 1 2 3 0 1 2 3

Active State bc(1),stage(1) bc(2),stage(1) bc(3),stage(1) bc(4),stage(1) bc(1),stage(1) bc(2),stage(1) bc(3),stage(1) bc(4),stage(1)

bc(109),stage(2) bc(110),stage(2) bc(111),stage(2)

pc 101 101 101 101 102 102 102 102

ir X X X [mov,idx1] [mov,idx1] [mov,idx1] [sub,count] [sub,count]

memAR(1) 100 100 100 100 101 101 101 101

memDR(1) X X [mov,idx1] [mov,idx1] [mov,idx1] [mov,idx1] [mov,idx1] [mov,idx1]

memAR(2) X X X X idx1 idx1 idx1 idx1

memDR(2) X X X X X 1 1 1

ac X X X X X X 1 1

: : : : : : : : :

Figure 7. Architecture exploration for HT48100 embedded microcontroller

Design HT_8 HT_4 HT_3 HT_2 HT_RD_3 (1 cycle ROM, ear-
lier MAR setting)

Instruction Firing latency 8 4 3 2 3

Pipeline stages 1 2 3 4 2

ALU # 1 1 1 2 1

Memory Port # 2 2 2 3 2

Boolean function # 63 68 94 100 73

state # 170 170 170 171 129

Reordered Instruction Pair #
<proceeding inst.,
succeeding inst.,

reodering instruction distance
(the # of instructions to be

inserted between the proceeding
and succeeding instructions>

†: “all” means all instructions in
the instruction set.

<sdza,all†,1>
<siza,all,1>
<reti,all,1>
<reta,all,1>

:
Total = 13 pairs

<sdza,all,2>
<siza,all,2>
<reti,all,1>
<reta,all,1>

:
Total = 15 pairs

<sdza,all,3>
<siza,all,3>
<reti,all,2>
<reta,all,2>

:
(swap,xorimm,1)

:
Total = 315 pairs

same as the HT_4 case
(Total = 13 pairs)

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

