
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

Polling-based Real-time Software for MPEG2 System Protocol LSIs

Jiro NAGANUMA and Makoto ENDO

NTT Sytem Electronics Laboratories

3-1, Morinosato Wakamiya, Atsugi, Kanagawa, 243-01 JAPAN

Tel: +81 462 40 f2139, 2127g Fax: +81 462 40 4322

E-mail: fjiro, endog@aecl.ntt.co.jp

Abstract| This paper proposes polling-based real-

time software for MPEG2 System protocol LSIs,

which is a typical embedded and real-time system on

a chip, and demonstrates its performance and use-

fulness. The polling-based real-time software is de-

signed and optimized by analyzing application speci�c

function requirements and deciding scheduling inter-

vals and the execution cycles of each task. It requires

neither hardware for multiple interrupt handling nor

software for heavy context switching. The polling-

based approach provides su�cient performance with-

out any hardware and software overhead for a real-

time application like the MPEG2 System protocol.

I. Introduction

Recently, the MPEG2 standard has emerged as a

method for e�ectively compressing video and audio

streams, while maintaining their quality. Since the

MPEG2 standard aims at retaining high quality, many

transmission and storage applications are being consid-

ered : satellite broadcasting or cable TV (transmission),

and CD-ROM (storage).

A typical MPEG2 environment consists of video and

audio encoders, video and audio decoders, a multiplexor

(MUX), and a de-multiplexor (DMUX). The \MPEG2

Video" standard [1] speci�es the coded representation of

video data and the decoding process, while the \MPEG2

Audio" standard [2] does the same for audio data. The

\MPEG2 Systems" standard [3] speci�es the system layer

of the coding, and de�nes two protocol levels : the Trans-

port Stream (TS) used in the environments where errors

may occur ; and the Program Stream (PS) used in the

error-free environments. The TS (resp. PS) speci�es the

format of a multiplexed stream consisting of several au-

dio and video MPEG2 streams over lossy (resp. lossless)

physical channels.

To implement the MPEG2 CODEC systems e�ciently,

the development of key component LSIs was desired.

Video encoder [4][5] and decoder LSIs [6][7] meeting the

\MPEG2 Video" standard, audio encoders [8] and de-

coders LSIs [9] meeting the \MPEG2 Audio" standard,

and TS DMUX LSI [10] meeting the \MPEG2 Systems"

standard have already been developed. We proposed

and developed a new memory-based architecture [11] for

MPEG2 MUX/DMUX LSIs implementing the MPEG2

System protocol. The architecture supports the full func-

tionality of the \MPEG2 Systems" standard, for both the

MUX and DMUX, and for both the TS and PS.

The MPEG2 MUX/DMUX LSI architecture consists

of a core CPU, memories, and dedicated application-

speci�c hardware, which is designed and optimized using

hardware/software (HW/SW) co-design techniques. The

MPEG2 MUX/DMUX LSI is a typical on-chip embedded

and real-time system with hardware (HW) and software

(SW) interactions. An embedded system [12] may pro-

vide su�cient exibility and performance, however the

software for real-time applications is especially di�cult

to develop.

There are two problems linked to the development of

real-time applications on an embedded system such as the

MPEG2 MUX/DMUX LSIs: hardware and software over-

head for handling the frequent and asynchronous interac-

tions between HW and SW via several dozen HW/SW

interface registers. A interrupt-based approach between

HW and SW is generally used for real-time applications

but requires following expensive resources from the stand-

points of both hardware and software:

� The hardware has to support the multiple and asyn-

chronous interruptions from some HW/SW inter-

face registers. A lot of gates are required for multi-

ple interrupt handling (priority control), which com-

plicates hardware design [13].

� The software has to support real-time kernels for

scheduling each task. A lot of memory and time

are required for heavy context switching. For in-

stance, at least several tens of kilo bytes of memory

is needed for most slight real-time kernel [14][15].

These requirements can be met in an on-board embedded

system, but it is ine�cient or impossible to do so as an on-

chip embedded system such as our MPEG2 MUX/DMUX

LSIs, which has only 4 kilo bytes of data memory.

To solve both problems (hardware and software over-

head), we propose a polling-based real-time software for

MPEG2 System protocol LSIs, and demonstrates its per-

formance and usefulness. The polling-based real-time

software is designed and optimized by analyzing applica-

tion speci�c function requirements and deciding schedul-

ing intervals and the execution cycles of each task. It

requires neither hardware for multiple interrupt han-

dling nor software for heavy context switching. The

polling-based approach provides su�cient performance

without any hardware and software overhead for a real-

time application like the MPEG2 system protocol. The

MUX/DMUX LSIs with their software are in use on

MPEG2 CODEC systems [16] [17] for several multime-

dia communication and storage services.

Structure of the paper. Section 2 describes the

memory-based architecture for MPEG2 System protocol

LSIs and the hardware and software interaction. Section

3 presents the concept and behavior of the polling-based

real-time software for MPEG2 MUX and DMUX appli-

cations. Section 4 presents the results of an actual im-

plementation and an evaluation of the polling-based real-

time software implemented in the MUX and DMUX ap-

plications.

II. Memory-based Architecture

A. MPEG2 System Protocol Processing

Hierarchical Packetizing and Data Dependency: A

hierarchical packetizing scheme is used in the MPEG2

System protocol. First, the Elementary Stream (ES)

from the encoder is packetized to the Packetized Ele-

mentary Stream (PES). Next, the PES is further pack-

etized to the TS or PS, depending on the application.

As shown in Figures 1(a) and (b), the elementary stream

from the encoder is written down in the PES payload

(PES packet data bytes), and the PES itself is written

down in the TS or PS payload. Some values in the PES

header are determined through the analysis of the ele-

mentary stream. Presentation Time Stamp (PTS) and

Decoding Time Stamp (DTS) [3] which are used to syn-

chronize the video with the audio, are examples of these

values. The TS/PS syntax depends on the elementary

stream, which complicates the packetization process.

Required Performance of MPEG2 System: The

\MPEG2 Systems" standard does not specify the bit

rates of video, audio and user data. In our design

(MP@ML [1]), the maximum bit rates of video, audio

and user data are respectively set to 15 Mbps, 384kbps,

192kbps, which are decided on the basis of the real-time

use of MUX and DMUX. The hierarchical packetizing and

the analysis of the elementary stream, whichmust be done

in real-time, increase the complexity of the MUX/DMUX

software.

B. Memory-based Architecture

The memory-based architecture [11] for LSIs imple-

menting MPEG2 System Protocol consists of a core CPU,

memories, and dedicated application-speci�c hardware as

shown in Figure 2. It is designed and optimized by hard-

ware/software co-design techniques. This architecture

features the good performance of the hardware-oriented

Elementary
Stream

PES

Transport
Stream

payload

PES-header

TS-header

output

output input

input

188[byte]

PSI

PTS
DTS

MUX DMUX

payload

(a) Composition of Transport Stream

Elementary
Stream

PES

Program
Stream

PES-header

pack-header

PESPES

input

input output

outputdirectory_PES_packet

PES

PTS

DTS

MUX DMUX

payload

(b) Composition of Program Stream

Fig. 1. Hierarchical Packetizing and Data Dependency

Read
Cont.

Core
CPU

Buffer
(2-port)

Memory

(2-port)
Syntax Cont.
-Packetizing
-Analysis

m

n
data
out

data
 in

Write
Cont.

m n

Fig. 2. Memory-based Architecture for MPEG2 Systems

model and the high exibility of the software-oriented

model. Our MPEG2 MUX/DMUX LSIs based on this

architecture provide su�cient performance and exibility

for real-time applications of the MPEG2 System protocol.

The main functions and features of our MPEG2

MUX/DMUX LSIs are listed in Table I. The MUX and

DMUX LSIs support the full functionality of the MPEG2

System protocol. These LSIs were fabricated using a 0.5

TABLE I
Functions and Features of MUX/DMUX LSIs

MUX DMUX

Pro�le & Level MP@ML

Input Stream Video/Audio/User TS or PS

Output Stream TS or PS Video/Audio/User

Sync. of STC PCR or SCR

Sync. of Video/Audio PTS and DTS

Technology 0.5�m CMOS Embedded Gate Array

Clock 27MHz

Register Files 32b�32

Memories 8kB Dual-port RAM

Area Size 14 � 14mm2

Power 1.85W @ 3.3V

Package 304-lead CQFP

�m CMOS Embedded Gate Array technology. A photo-

graph of the MUX LSI is shown in Figure 3. The oorplan

of the DMUX LSI is the same and the commonality rate

between the MUX and DMUX reaches 60% in terms of

chip area.

C. HW/SW Interactions

All of the interactions between hardware and software

are modeled as shown in Figure 4. There are three kinds

of interactions:

� Hardware to Software
{ External interrupts
{ Writing to registers or I/O ports

� Software to Hardware
{ Issuing special instructions
{ Writing to registers or I/O ports

� CPU to Software
{ Internal interrupts when software error occurs
{ Internal interrupts in the debug mode

Basically, a memory mapped I/O technique as almost all

interactions between hardware and software is used for

implementing MPEG2 MUX/DMUX real-time applica-

tion. Interruptions are only used when a external inter-

ruption from a external port is needed in real-time.

III. Polling-based Real-time Software

A. Real-time Application of MPEG2 MUX

TheMPEG2 MUX multiplexes in real-time one or more

elementary streams (ES) of video, audio and user data

into one program and transmits them on the network as

a transport stream. Moreover, Program Clock Reference

(PCR), which is used for the time management of MPEG2

system, Program Speci�c Information (PSI), which is the

environmental information of MPEG2 system, and Null

packet, which carries no information, are also multiplexed

on a transport stream.

MUX/DMUX

CoreCPU
RF

 Local
Host IF

 Buffer
DPRAM

 Data
DPRAM

CLK

Fig. 3. Photograph of MUX LSI

Program
Memory

Data
Memory

Register

I/O
Register

I/O
Port

I/O
Port

External
Interrupt

External
Interrupt

Internal
Interrupt

Hardware

LSI

Data Bus

CPU

Special
Instruction

Fig. 4. Hardware/Software Interactions

START

END

NO

YES

NO

NO

YES

YES

VIDEO

AUDIO

USER

Initialize

PCR? Generate PCR

PSI? Generate PSI

ES Check

Gen. Video Hdr.

Gen. Audio Hdr.

Gen. User

Continue?

Basic

Polling Loop

(BPL)

Fig. 5. Flowchart of MPEG2 Multiplexing for Transport Stream

The basic owchart of MPEG2 Multiplexing for trans-

port stream processing is shown in Figure 5. Each packet

mixing on a transport stream has to keep each elementary

stream's required bit rate; i. e. 5 Mbps for Video, 256 kbps

for Audio, and 64 kbps for User, with PCR of more than

10 times per second, PSI of once per second, and a to-

tal transport stream rate of 6.144 Mbps. Therefore, each

task (rectangles), which generates each packet, included

in the basic polling loop (BPL) in Figure 5 should be

scheduled and invoked in real-time in order to maintain

each elementary stream's required bit rate.

B. Concept of Polling-based Real-time Software

Each task in the Basic Polling Loop (BPL) in Fig-

ure 5, which is iteratively invoked and executed, requires

variable execution time (execution cycles) to �nish them-

selves. For example, the \Gen. Video Hdr" task generates

the video header of the PES when the ES data is bu�ered

enough as the next TS packet and the picture header data

is searched for in the ES bu�ered. The number of execu-

tion cycles (CoreCPU cycles) vary from several to several

hundred depending on the conditions of bu�er and the re-

sults of header search. On the other hand, the number of

possible cycles for one transport stream packet (188 bytes)

processing is given from the total bit rate. For example,

for a total transport stream rate of 15 Mbps (�2MB/sec)

and a system clock of 27 MHz, the number of possible

Scheduling
Tasks

Video

Audio

User

PSI

Basic Polling Loop (BPL)

PCR

Constant Time : Tconst Constant Time : Tconst

(a) Non-optimized and Failure Scheduling

Scheduling
Tasks

Video

Audio

User

PSI

Basic Polling Loop (BPL)

PCR

NBPL=4

NBPL Number of Basic Polling Loop

T? : Maximum Cycles (Execution Time) of Each Task

TV

TA

TU

TP

Constant Time : Tconst Constant Time : Tconst

NBPL=6

(b) Optimized and Successful Scheduling

Fig. 6. Concept of Polling-based Real-time Software

execution cycles is about 2500 (27� 106 � 188=2� 106).

To invoke each task in real-time, the original task is

split into subtasks and the number of schedulings of each

task is increased in one transport stream packet process-

ing. The basic idea and the behavior of splitting an orig-

inal task into subtasks are described in the Appendix.

Each split subtask execution cycle can be modi�ed and

�tted to the suitable execution cycle that is less than the

original task one.

The concept of polling-based real-time software is show

in Figure 6. The Polling-based real-time scheduler is de-

sign and optimized carefully in order to guarantee the

following constraints:

� suppress the longest execution cycles of each task,

i. e. video, audio, user, PCR, and PSI, by splitting

each task into suitable subtasks, and

� increase and maintain the number of minimum

schedulings for the basic polling loop (BPL) in one

transport stream packet processing at more than a

proper constant value. In other words, the maxi-

mum scheduling interval of the BPL (or each task)

is kept at less than a proper constant time (cycles).

\Non-optimized and Failure Scheduling," which does not

satisfy these constraints, and \Optimized and Success-

ful Scheduling," which satis�es them, are show in Fig-

ures 6(a) and (b), respectively.

C. Behavior of Polling-based Real-time Software

The behavior of polling-based real-time software in a

MPEG2 multiplexing application is shown in Figure 7.

The timing of the polling in one transport stream packet

processing changes with every loop as depicted by the ran-

dom interval spiral line in the Figure. In one transport

stream packet processing (a constant interval), Tconst, the

basic polling loop (BPL) or each task is scheduled sev-

eral times,NBPL. The polling-based scheduler guarantees

the minimum NBPL will be more than a proper constant

value (Min. NBPL). Therefore, the maximum scheduling

interval of the BPL (or each task) in Tconst is given as

dividing Tconst by Min. NBPL.

IV. Implementation and Evaluation Results

A. Implemented Polling-based Software

In implementing MPEG2 MUX/DMUX applications

such as (1) MUX in the TS (mentioned as the previous

section), (2) DMUX in the TS, and (3) MUX/DMUX

in the PS, the proposed polling-based real-time soft-

ware is used as the basic programming technique in our

MPEG2 MUX/DMUX LSIs. The software is written in

C-language. Table II shows the size of the C-language

code for the BPL (Basic Polling Loop) of TS/PS and

the common parts of MUX/DMUX. The coding size of

each BPL is a small part of the total, but the BPLs work

well and e�ciently. The sophisticated BPL by consid-

ering polling-based scheduler makes it possible to invoke

each task in real-time without any interruptions between

hardware and software.

AAAAAAAAAA

AAAAAAAAAAA
A
A

A
A
A

Transport Stream (188byte)

Number of Basic Polling Loops: NBPL

Constant Time: Tconst

Transport Stream (188byte)
AAA

AAAA
A
A

NBPL=4 NBPL=6

Fig. 7. Behavior of Polling-based Real-time Software

PSI

PCR

Null

User

Audio

Video

Packets

4000 4050 4100 4150 4200 4250 4300 4350 4400 4450 4500
Number of Transport Stream (Time)

Fig. 8. Transition of Output Packets in Transport Stream Processing (� 120 msec.)

B. Validation and Evaluation Results

To validate and evaluate the polling-based real-time

software, we developed MPEG2 CODEC Systems [16]

[17] using our MPEG2 MUX/DMUX LSIs with the

polling-based real-time software and extracted the real

transport streams. The streams were then analyzed using

an MPEG2 transport analyzer [18]. The each elemen-

tary stream's required bit rates are 5 Mbps for Video,

256 kbps for Audio, 64 kbps for User, and 6.144 Mbps

of total transport stream. This parameter set is a digital

CATV application in Japan [16].

The transition of output packets, which are generated

by each scheduled task, in actual transport stream is

shown in Figure 8. Each task such as video, audio, user,

PCR, PSI is scheduled based on the polling-based sched-

uler within each elementary stream's required bit rate

in real-time. The statistics on the transport stream are

shown in Table III. The actual (extracted) bit rate of

each packet in the transport stream agrees with that of

the required bit rate speci�cations.

These results demonstrate the su�cient performance

and usefulness of the polling-based real-time software in

implementing the full functionality of the MPEG2 System

protocol. The MUX/DMUX LSIs with their software are

in use on MPEG2 CODEC systems [16] [17] for several

multimedia communication and storage services.

TABLE II

Lines of Polling-based Real-time Software (C-Language)

BPL(TS) BPL(PS) Common Total

MUX 2.9k 1.6k 7.1k 11.6k

DMUX 1.5k 1.5k 6.3k 9.3k

TABLE III
Statistics on Transport Stream Processing (� 4.5 sec.)

TS Packets # of TS (Percentage) Req. Bit Rate

Video TS 15458 (83.59 %) � 5 Mbps

Audio TS 1225 (6.62 %) � 256 kbps

User TS 490 (2.65 %) � 64 kbps

Null TS 1265 (6.84 %) |

PCR 46 (0.25 %) |

PSI 8 (0.04 %) |

Total TS 18492 (100.00 %) = 6.144 Mbps

V. Conclusion

This paper has proposed polling-based real-time soft-

ware for MPEG2 System protocol LSIs which are a typical

on-chip embedded and real-time systems. It demonstrates

the performance and usefulness of the polling-based real-

time software, which was designed and optimized by ana-

lyzing application speci�c function requirements and de-

ciding scheduling intervals and the execution cycles of

each task. The polling-based approach provides su�cient

performance without any hardware and software overhead

for a real-time application like the MPEG2 System pro-

tocol. The MUX/DMUX LSIs with their software are in

use on MPEG2 CODEC systems [16] [17] for several mul-

timedia communication and storage services. In the near

future, we will study an automatic task splitting, and in-

vestigate ways to expand it to very light weight real-time

kernels for an on-chip embedded and real-time system.

Acknowledgments

The authors would like to thank Dr. Osamu Karatsu

of the NTT System Electronics Laboratories and Tamio

Hoshino of the NTTMultimedia Service Promotion Head-

quarters for supporting this work. Thanks are also due

to Takaaki Izuoka of the NTT Human Interface Labo-

ratories, Minoru Inamori of the NTT Optical Network

Systems Laboratories, and the members of the Advanced

LSI Laboratory for useful discussions.

References

[1] Video - Generic Coding of Moving Pictures and Associated
Audio ISO/IEC 13818-2 International Standard. 11, Novem-
ber, 1994.

[2] Audio - Generic Coding of Moving Pictures and Associ-
ated Audio - ISO/IEC 13818-3 International Standard. 11,
November, 1994.

[3] Systems - Generic Coding of Moving Pictures and Associ-
ated Audio - ISO/IEC 13818-1 International Standard. 11,
November, 1994.

[4] K. Ishihara et al. A Half-pel Precision MPEG2 Motion-
Estimation Processor with Concurrent Three-Vector Search.
IEEE International Solid-State Circuits Conference digest of
technical papers, pp. 288{289, 1995.

[5] T. Kondo et al. A Two-Chip Realtime MPEG2 Video Encoder
with wide range motion estimation. Symposium Record HOT
Chips VII, pp. 95{101, 1995.

[6] T. Demura et al. A Single-Chip MPEG2 Video Decoder LSI.
IEEE International Solid-State Circuit Conference, pp. 72{
73, 1994.

[7] M. Toyokura et al. A Video DSP with a Macroblock-Level-
Pipeline and a SIMD Type Vector-Pipeline Architecture for
MPEG2 CODEC. IEEE International Solid-State Circuit,
pp. 74{75, 1994.

[8] Texas Instruments. TMS320C3x Users Manual. 1994.

[9] Texas Instruments. TMS320AVX users Manual. 1993.

[10] C-Cube Microsystems. Data sheet of CL9110 - Transport
Layer Demultiplexer. 1994.

[11] M. Inamori, J. Naganuma, H. Wakabayashi, and M. Endo.
A Memory-based Architecture for MPEG2 System Protocol
LSIs. European Design & Test Conference, 1996.

[12] Daniel D. Gaiski, Frank Vahid, Sanjiv Narayan, and Jie Gong.
Speci�cation and Design of Embedded Systems. Prentice Hall,
1994.

[13] J. L. Hennessy and D. A. Patterson. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann Publish-
ers, Inc., 1990.

[14] M. Accetta et al. Mach: A New Kernel Foundation for UNIX
Development. Proc. Summer 1986 USENIX, pp. 93{112,
1986.

[15] J. K. Ousterhout et al. The Sprite Network Operating System.
IEEE Computer, Vol. 21, No. 2, pp. 23{36, 1988.

[16] N. Terada et al. A MPEG2-Based Digital CATV and VOD
System using ATM-PON Architecture. Proc. of IEEE MUL-
TIMEDIA'96 Conference, pp. 522{531, 1996.

[17] Yutaka Tashiro et al. MPEG2 Video and Audio CODEC
Board Set for a Personal Computer. IEEE Global Telecom-
munications Conference, Vol. 1, pp. 483{487, 1995.

[18] Software MUX/DMUX System (Ver 1.0). NTT Internal Re-
ports, 1994.

Appendix: Splitting Task into Subtasks

The basic idea and its behavior of splitting original task

into subtasks are described here.

An original task can be split into subtasks as shown

in Figure 9. The variable \part ag n" has to be con-

trolled exclusively. The variables between each part has

to maintain globally.

START

END

NO

YESpart_flag_1? Execute Part 1

NO

YES

NO

YES

Control part_flag_n

part_flag_2?

part_flag_n?

Execute Part 2

Execute Part n

Fig. 9. Basic Idea of Splitting Task into Subtasks

Each split subtask execution cycle can be modi�ed and

�tted to the suitable execution cycle that is less than the

original task one as shown in Figure 10.

Original
Task

Split
Subtasks

call return

call return

call return

part 1

part 2

part n

part 1 part 2 part n

call return

Fig. 10. Subtask Execution Behavior

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

