
Java in Electronic Design Automation

Peter Denyer
Technical Market Development

Sun Microsystems
Mountain View, CA 94043-1100

Tel: 415-786-3744
Fax: 415 786-3763

e-mail: peter.denyer@sun.com

Jean Brouwers
Java & EDA Consultant

Sun Microsystems
Mountain View, CA 94043-1100

Tel: 415-786-4979
Fax: 415 786-3763

e-mail: mrjean@best.com

AbstractÐ Increasing design complexity and the
need for multi-disciplinary / multi-national design
collaboration is causing a paradigm shift in the
EDA appl icat ion environment. This shif t i s
necessary in order that time-to-profit goals are met
in increasingly compressed market windows. The
envisioned paradigm shift is enabled through Sun's
J a v a technology. This technology will impact
significantly the development, deployment, use and
support of Electronic Design Automation (EDA)
applications. This paper will examine some of the
f a c t o r s i n f l u e n c i n g t h i s f o r t h c o m i n g E D A
revolution and review some of the challenges yet to
be resolved.

I. Introduction

Since it's introduction barely 600 days ago, nothing has
captured the imagination and mind-share of the "high-tech"
industry as Java. Already, Java-enabled applications are being
deployed in Global Fortune 1000 companies; providing
capabilities in a cost-effective manner never before seen in the
corporate workplace.

These applications are not just simple Java applets for
enhancing Web pages; rather, they are robust, mission-critical
applications providing significant competitive advantage.
National Semiconductor, for example, is using a Java
application to keep the entire company, and its customers, on-
line and up -to-date on its latest parts inventory status.

Significantly absent from this Java deployment is the EDA
industry. Developers and consumers of EDA applications have
yet to benefit in any significant way from this computing
revolution. Why is this, and what are the prospects for
change?

II. EDA Application Architectures

Before delving into how Java can impact the EDA
community, it is instructive to view the current state of
affairs in EDA application delivery and understand the driving
forces that can make Java as ubiquitous in EDA as it is today
in other industries.

A . Desktop-centric

Current EDA applications tend towards large, monolithic
tool suites running on fast desktop workstations with
networked file systems. A significant proportion of the
applications used on a daily basis consume the resources of
even the highest-end engineering desktop hardware.
Applications requiring the fastest processors and 64
Megabytes of physical memory are not unusual. Systems

configured with 128 to 256 Megabytes of memory are
becoming commonplace.

This need for higher capability systems is especially evident
in the IC design segment. The challenges brought about by
deep sub-micron design are straining the limits of
conventional desktop hardware. Applications such as deep
sub-micron technology CAD, signal integrity analysis, chip
and board-level simulation, design rule checking and layout
fracturing are requiring multi-processor systems with
Gigabytes of real memory for timely computation.

Clearly, desktop hardware is not the most cost effective way
to deliver EDA computation cycles to the individual engineer.
Even with the continually increasing price/performance
rations for today's hardware, robustly configured hardware on
each designers desk is not a preferred option.

B. Islands of Competence

Additionally, in this desktop-centric environment users and
applications have remained in relative isolation on their own
local networks. With this comes the attendant overheads of
updating applications, managing data and other administrative
tasks which compound the design task.

This relative isolation constrains design collaboration to the
immediate workgroup. Members of the design team must
know the status of the latest design data, the location and
revision dates of the necessary applications, and have the
ability to access easily the tools and data. This can occur with
reasonable facility in the immediate workgroup. Design
collaboration over widespread geographies is significantly
more difficult.

This isolation leaves the design project vulnerable to
single-point system failures. Unscheduled system down-time,
disk crashes, power failures and the like can severely impact
critical path design processes.

C. Client-server

The requirement for ever increasingly powerful hardware in
support of the EDA function is fueling the move to a client-
server paradigm. In this paradigm, engineering workgroups are
supported by powerful compute servers, configured for the
most demanding applications.

A classic two-tier client-server application environment is
evolving into the environment of choice at many of today's
leading electronic product manufacturers. The server becomes
the central repository of core design content and distributed
computing becomes the model of choice. Compute intensive
tasks are performed on the server. Less intensive tasks are

ASP-DAC '97
0-89791-851-7$5.00 1997 IEEE

relegated to the desktop hardware; tasks such as supporting the
application frameworks, data preparation, smaller
applications, and data analysis tasks. The spiral of ever
increasing compute power and its attendant cost at the desktop
is diminished significantly as hardware funding is increasingly
focused on the server configuration.

Less common, but perhaps more interesting in large-scale
EDA environments, is a three-tier EDA client-server
environment. In this scenario, the desktop hardware,
communicates with an intermediate server which performs a
load balancing function, distributing the request for
computational resource out to specialized machines, or to
other available computer hardware in the network.

The client-server paradigm goes a long way in addressing
the underlying factors that can impact EDA productivity and
overall time-to-profit goals. Overall hardware cost can be
better contained. Acquisition and on-going maintenance of
mission critical applications is easier as only one location,
the server, needs to be updated. Additionally, the server, is
configured as a mission-critical resource, protected in climate
controlled rooms, configured for maximum up-time, and
managed by professional Information Technology (IT) staff.

However, even in this client-server paradigm, nothing
substantial has changed in the way that designers get their
work done. Disparate EDA applications still have their unique
user interfaces and data formats. Engineers still need to know
where the latest version of the necessary applications reside.
New application software releases are needed to correct the
inevitable software bugs found during the design process. New
mechanisms are needed to foster geographic collaboration.
Herein lies the promise of Java and the Java Computing
paradigm.

III. A Vision for the Future

The current EDA computation paradigm—whether
supported by powerful networked desktop hardware, or the
evolving client-server hardware configuration—must evolve to
a new level if corporate time-to-profit goals are to be
achieved. The evolution of the Internet, the prevalence of
corporate Intranets and the growing influence of Java-based
computing provides the infrastructure for this new paradigm.

A. Web-aware Applications

The first step in this new wave of EDA computation will
be the evolution of Web-centric applications. Here, the power
of the client-server configuration will be extended to take
advantage of the expanding Inter/Intranet infrastructure.

Looking at EDA applications in the abstract, they can be
decomposed into three components - the core algorithms, a
communication channel and a user interface. There is no
immediate purpose for expending effort on the core
algorithms. These algorithms have been written, optimized
for maximum performance and put to the test in countless
design iterations. The compute intensive nature of these
components require them to remain on the server. One change
is that they will now be encapsulated by a Java shell. This
encapsulation provides the mechanism by which users can
access the application easily from anywhere in the network
using any machine supporting the Java Virtual Machine
(JVM) specification.

The communication channel is simply part of the existing
Inter/Intranet infrastructure. The application user interface will
co-exist with today's web browsers, and tomorrow's "web-top"
user environments such as HotJava Views. Browser plug-
ins and Java applets will understand the unique data structures
for design capture and navigation, application input, run-time
control and results viewing. The web browser now becomes
the application framework, which helps promote standardized
and universal interfaces for both algorithms and design data.

This shift to a Web-centric view of EDA tools and tool
usage further evolves the new-wave EDA paradigm.
Collaborative design over diverse geographies is simplified as
design team members access applications and project as
commonly understood URL's as opposed to absolute locations
which could easily change.

This shift also has a collateral benefit. The usefulness of
legacy software can be expand by Java encapsulation. Such
encapsulation can allow application access from any Java-
enabled "web-top".

B. Web-centric Applications

The longer-term evolution of EDA applications in the
network-centric environment will completely change the way
these tools are used. The tools will be built from the ground
up as distributed applications. The trend will be to smaller
functional components interacting through clearly defined
application program interfaces (API's) instead of the
traditional monolithic EDA application. The ability to "mix-
n-match" applications from multiple vendors will be
facilitated and enhanced through these API's.

The main interface to this envisioned EDA design system is
through Web-browsers or custom Web-oriented desktops with
hyper-links to both data and applications. The notion of
"hyper-spreadsheet" or forms-based data specification that will
enable designers to access and manipulate information based
on what it is, and not where it resides, may become the norm
for such applications.

IV. Java Computing

Currently, the main focus of Java is on client-server
computing within larger corporations. Java Computing
proposes an open computing model consisting of networks of
"thin" client stations and central servers. Tailored, single
function applications are downloaded from the central server
and run on the client desktop stations.

Java Computing is particularly attractive for enterprise
applications like banking, on-line service centers, help desks,
where a limited number of tasks are performed by a large
number of users. In such environments personal computers
are too costly to maintain and often too hard to use. Java
Computing promises to significantly reduce the total cost of
ownership per seat, mainly due to centralized system
administration and zero client-side attendance.

The client-server model of Java Computing encourages
smaller, single function applications which are easier to learn
and use. This and the "write once, run anywhere" benefit of
Java decreases the development and deployment effort for new
applications. Java Computing combines the advantages of
scalable network computing with the economics of mainframe
computing. The Java Computing model is very attractive

across all departments of an organization including
Engineering.

A . Key Java Language Features

Java is a programming language like C or C++ but
different by design. The Java language is less complex and
more robust than C++ but syntactically similar. By removing
complexity (like memory management, multiple inheritance)
it is easier and less error prone to write Java software.
Rigorous typing (like string, objects, no pointers) makes Java
applications more robust and allows programming errors to be
detected early in the development cycle. Java encourages more
modular and smaller programs (through classes, packages,
interfaces). In addition, the Java language includes built-in
support for multi-threading, synchronization, exception
handling, network programming, security, graphical user
interface and a wide range of standard Application
Programming Interfaces across all Java platforms.

Probably the most significant feature of Java is the "write
once, run anywhere" concept which removes the need for
porting and maintaining different platform versions of
applications. The Java compiler generates a single, neutral,
binary format (Java bytecodes). The single binary runs on all
Java environments, either inside Java-capable browsers,
standalone Java Virtual Machines (JVM) on a host operating
systems or on top of special Java devices based the JavaChip

and JavaOS.

The modularity, compactness and security of the Java
language facilitate distribution across the Inter/Intranet—
unlike any other language. Once written, Java applications
run everywhere. Not only developing but in particular
deploying and supporting applications written in Java is
quicker and less costly than conventional methods.

B. Why Develop Software in Java?

Apart from network and web-based programming, there are
several other compelling benefits to develop software in Java.

— Software developers are more productive in Java. Due to
the single, uniform Java environment and the unambiguous
language definitions across all platforms, developers spend
less time debugging and dealing with low level details. Early
experience with Java indicates development times cut by more
than half.

— Java yields better quality and better documented software
since it promotes good software engineering practices and
imposes stricter "design rules" for software development.
Rigorous typing allows detection of programming errors
earlier in the development cycle. Automatic memory
management (with garbage collection) and absence of pointers
remove the most common cause of problems. Robust
exception handling highlights unexpected and otherwise
undetected conditions. Java includes conventions and tools to
generate developer's documentation from the source code.

— Java lowers the software deployment and manitenance
cost. "write once, run anywhere" eliminates repetitive porting
of the software to various target platforms. Because of the
single binary format, software can be delivered earlier and
simultaneously for all platforms. Conversely, Java opens any
hardware platform up to a larger range of available software.

— Java allows a gradual, incremental transition from stand-
alone to multi-tier web-based applications. Existing C/C++
applications need not be re-implemented entirely in Java.
Instead, application suites can be pure Java based or a mixture
of Java and C/C++ code.

— Since web-centric applications provide universal access,
Java-based design tools integrate and interoperate better with
other applications on the desktop. In addition, Java is an ideal
extension language to provide user-specific functionality since
it is both platform and tool vendor neutral.

C. Java Development Tools

There are a number of Java development tools available
from different vendors and for various platforms. Although the
functionality of Java tools may vary substantially, all
generate the standard Java bytecodes.

Individual Java tools are Integrated Development
Environments similar to those for C and C++. The most
common Java IDE's are Cafe and Visual Cafe (Symantec),
J++ and Visual J++ (Microsoft), Latte (Borland), CodeWarrior
(Metrowerks) and SuperCede (Asymmetrix).

JavaWorkshop and Visual Java (Sun) address larger-scale
Java development projects. Java Workshop is written entirely
in Java and is based on a web-centric user interface.

The Java development kit (JDK), from Sun, is available for
several platforms. It includes the basic Java development tools
like the Java Compiler, Java Debugger, Java Virtual Machine,
AppletViewer and JavaDoc.

Unique to Java are so called Just-In-Time (JIT) compilers
which convert neutral Java bytecodes in native machine
instruction. JIT compiled Java runs more than an order of
magnitude faster than interpreted Java. Typically, JIT
compilers are included in the web-browser or the Java
environment on the client-side.

Just like regular compilers, Java Native Compilers (Sun,
Asymmetrix) translate and optimize Java programs directly to
machine code for a specific platform. Natively compiled Java
offers the best performance and is attractive where portability
is not needed like server-based Java applications.

In addition to Java development tools, Java Components
and Java Class Libraries are available from vendors such as
RogueWave and the KL Group.

V. Issues Affection Java in EDA

At this time, there are a number of issues which hinder
wide spread adoption of Java as primary development language
for applications like EDA design tools.

The immaturity of the Java language, development tools,
training and support are a temporary obstacle. The number of
vendors offering Java tools and services is increasing rapidly
and this situation is likely to improve further at a fast pace in
the near future. As the Java language and Java API's are still
evolving, major improvements and changes are still being
made. Access to design specifications and early developer
releases over the net address this issue to some extent.

Probably the main issue with Java is performance.
Interpreting Java bytecodes is too slow for demanding
applications like EDA tools. JIT and Java Native compilers
will address the performance issue in the near future and are

expected to run Java applications at nearly the same speed as
native code. In addition, Java hardware support like JavaChips
will provide another performance boost.

Java includes a set of base API's and an increasing number
of standard extension API's. Most of the extensions provide
enterprise and network computing functionality. Some of the
extension API's address design application requirements, for
example the Java Media API will include better and faster 2D
and 3D graphics support.

Missing at this time a licensing API. Newer licensing,
metering and "pay-per-view" schemes are being discussed for
Java. Until these licensing mechanisms are available and
accepted, Java applications need to interface to existing
licensing managers, such as FlexLM from Globetrotter
Software.

VI. Java in EDA Today

While Java-based applications are not yet mainstream in the
EDA community, a lot of research and development work
taking place—demonstration application platforms being
presented and small-to-medium scale commercial applications
being announced.

A . PPP Project - Stanford

PPP is a web-based environment for Low-Power Design. Its
graphical user interface is a set of dynamically generated
HTML pages that can be accessed through any web-browser.
Three sets of tools are available: Synthesis for low-power,
Power Optimization and Power Simulation. File Transfer
utilities are also available to upload input files and download
results.

B. WELD Project - U.C. Berkeley

The WELD project aims to construct the first operational
prototype of a national-scale CAD design environment
enabling Internet-wide IC design for the U.S. electronics
industry. WELD's goals are dual. In the small, WELD will
empower individual American electronics designers by
affording them efficient desktop access to, and seamless
interoperability of, the numerous, heterogeneous resources
forming a national scale electronics design system built upon
the National Information Infrastructure.

In the large, WELD will reduce electronics industry market
entry barriers to new entrepreneurs by providing a streamlined
pay-per-use design development environment and a robust
software distribution infrastructure. In reducing the costs, and
shortening the time-to-market of new intellectual content,
theWELD project expects to stimulate the U.S. electronics
industry to dramatic new growth.

C. EDA Browser - Concurrent CAE Solutions

The EDA Browser from Concurrent CAE Solutions is the
industry's first Java-based application for distribution of
electronic design information. It utilizes standard Web based
browsing technologies including Netscape 3.0 and
HotJava . The software is based on a client/server
architecture, which allows for concurrent users to
simultaneous visualize and distribute electronic design
information across a local area network or the World Wide
Web.

D. ProjectXView - Mentor Graphics

The ProjectXView application is an innovative new product
that takes advantage of the network-aware and platform-
independent computing paradigm made possible by Java.

The ProjectXView application compliments Mentor's
WorkXpert Technical Project Management software. It
provides web access to project status information, including
roll-up reports across multiple projects, and also provides
scheduling information that passes to and from commercially
available scheduling tools.

VII. Conclusions

A paradigm shift in the EDA application environment as
we know it today will happen. This shift is driven by the
requirement for profitably addressing market windows with
innovative new products. It is fueled by the pervasive
Inter/Intranet infrastructure and the amazing market acceptance
of the Java language and the Java Computing paradigm. The
result of this shift will be an EDA environment that promotes
a more collaborative, performance-oriented and cost-effective
design capability. Mass deployment of the underlying Java
technology in the EDA community is not without its own set
of problems and issues that must be resolved. However, as we
can see in the formative work from academia and the
commercial world, it is only a matter of time.

References

A white paper on Java Computing is available from:
http://www.sun.com/961029/JES/whitepapers/

A brief summary of the Java language and some introductory
Java examples can be found at:
http://www.sun.com/Solaris/products/javavm/prod_spec.html

The current set of Java API's together with the schedule and
recent status is available at:
http://www.javasoft.com/products/apiOverview.html

For more information on the PPP synthesis tools, see:
http://akebono.stanford.edu/users/PPP/

For more information on the WELD project, see:
http://www-cad.EECS.Berkeley.EDU/Respep/Research/weld/

For more information on the EDA Browser from Concurrent
CAE Systems, see:
http://www.ccaes.com

For more information on Mentor Graphics' WorkXpert
product, see:
http://www.workxpert.com

Trademarks

Java, HotJava, HotJava Views, JavaChip, JavaOS, Java
Workshop, and Visual Java are trademarks of Sun
Microsystems, Inc.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

