
Par-POPINS : A Timing-Driven Parallel Placement Method with the Elmore Delay
Model for Row Based VLSIs

Tetsushi Koide Mitsuhiro Ono Shin’ichi Wakabayashi Yutaka Nishimaru
Faculty of Engineering, Hiroshima University

4-1, Kagamiyama 1 chome, Higashi-Hiroshima, 739 JAPAN
e-mail: fkoide,wakabag@ecs.hiroshima-u.ac.jp

Abstract— In this paper, we present a parallel algorithm run-
ning on a shared memory multi-processor workstation for timing
driven standard cell layout. The proposed algorithm is based on
POPINS2.0 [13] and consists of three phases. First, we get an ini-
tial placement by a hierarchical timing-driven mincut placement
algorithm. At the top level of partitioning hierarchy, we perform
one step of bi-partitioning by several processors, and in the lower
levels of partitioning hierarchy, partitionings of each region in a
level are performed in parallel. Next, in phase 2, iterative im-
provement of the sub-circuit which contains critical paths is per-
formed by nonlinear programming. Parallel processing is real-
ized by performing the nonlinear programming method to each
sub-circuit in parallel. Finally, in phase 3, the placement is trans-
formed to a row based layout style by a timing-driven row assign-
ment method. We have implemented the proposed method on a
4CPU multi-processor workstation and showed that the proposed
method is promising through experimental results.

I Introduction

In recent years, performance of integrated circuits becomes
higher and operation speed of logic circuits becomes faster.
Hence, for high performance VLSI chips, the interconnection
delay is much longer than the gate delay, and it is a major part
of whole signal delay of chips. Therefore timing-driven layout
methods which take interconnection delay into account explic-
itly, have been urged to be developed.

There have been many studies about timing-driven place-
ment, and they can be classified into the following four ap-
proaches, (1) the net weighting approach [1, 3, 15, 17, 20], (2)
the net delay bounds approach [6, 9, 10, 16, 21], (3) the path
weighting approach [8, 22], and (4) the path delay bounds ap-
proach [2, 7, 11, 12, 19]. However, many of them have a dif-
ficulty of trade-off between the quality of the layout and the
computation time. Especially for interconnection delay, the
estimation of the interconnection delay is inaccurate because
of some simplified assumptions of the delay model. Then,
we have proposed a timing-driven placement method, called
POPINS2.0 [13], which is based on the path delay bounds ap-
proach and adopted the delay estimation model based on El-
more’s delay model. Experimental results have showed the
effectiveness of POPINS2.0. However, in the case of VLSIs
which have so much cells in one chip, the computation time of

this placement method increased, because of the iterative im-
provement phase based on nonlinear programming and the row
assignment phase based on linear assignment.

In this paper, we propose a parallel algorithm for timing-
driven placement, which is an extension of POPINS2.0. To
obtain high efficiency of parallel processing, we restrict the
amount of communication among processors as much as pos-
sible by partitioning the placement problem into some sub-
problems which can be executed independently. The proposed
algorithm consists of three phases. First, we get an initial place-
ment by a hierarchical timing-driven mincut placement algo-
rithm. At the top level of partitioning hierarchy, we perform
bi-partitioning by several processors, and in the lower levels
of partitioning hierarchy, partitionings of each region in a level
are performed in parallel. Next, in phase 2, we select a sub-
circuit, which contains critical paths violating the given timing
constraints, and improve the placement of the sub-circuit by
nonlinear programming. Parallel processing is realized by per-
forming the nonlinear programming method to each sub-circuit
in parallel. Finally, in phase 3, the placement is formed to a row
based layout style by a timing-driven row assignment method.
From the experimental results comparing with POPINS2.0 and
RITUAL [19], the proposed parallel placement algorithm is
very promising.

The remainder of this paper is organized as follows. In
Section II, we describe the interconnection delay model and
the timing constraint treated in this paper, and formulate the
timing-driven placement problem. In Section III, we propose a
parallel algorithm for timing driven placement. Experimental
results and the evaluation of the proposed algorithm are shown
in Section IV. Finally, in Section V, we describe the conclusions
and future works.

II Preliminaries

A. Layout and Delay Models

In this paper, the row based design such as the poly-cell type
standard cell or the gate array models is assumed. We assume
that the interconnections are realized by using two layers, the
first metal layer (M1) and the second metal layer (M2). The
M1 layer is mainly used for horizontal wiring and the M2 layer
is mainly for vertical wiring.

An equivalent circuit of an interconnection is originally

ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

source load 1

load 2

wi

ni
hi

l1i2

l2i2

(b) Estimation of the wire length of a net ni

source

load 1

load 2

Ri0

Cl1

Cl2

(a) Interconnection delay model

Fig. 1. Delay model.

modeled as a distributed RC circuit, and the Elmore’s de-
lay equation [4] is often used to represent the interconnection
delay(Fig.1(a)). When a multi-terminal net ni is implemented
by a Steiner tree, Kuh and Shih give an upper bound of the
Elmore delay from the source pin to the load pin j of the net
ni in Ref. [14]. Since, in our model, the wire capacitances are
different between M1 and M2, we compute the delay as the
sum of delay of M1 and M2. Furthermore, it is not practical
to construct Steiner trees during placement from the point of
computation time. We hence estimate the wire length of a net
ni by the half perimeter length of a bounding box of enclos-
ing the pins of the net and the wire length from the source to a
load j of the net ni by the half perimeter length of a bounding
box enclosing the source pin and the load pin j(Fig.1(b)). The
delay from the source pin to the load pin j of the net is thus
defined as,

dij(wi; hi; l1ij ; l2ij) = (c1 � wi + c2 � hi +
X

ki

Clki)

�(Ri0 + r1 � l1ij + r2 � l2ij); (1)

wherewi andhi are the width and height of the bounding box of
the netni, l1ij and l2ij are the width and height of the bounding
box enclosing the source pin and load pin j of net ni, c1 and c2
are the capacitance of M1 and M2 per unit length, and r1 and r2
are the resistance of M1 and M2 per unit length, respectively.

B. Timing-Driven Placement Problem

In this paper, we consider the long path problem. As there
are many paths from a primary input(PI) or an output of flip-
flops(FFs) to a primary output(PO) or inputs of FFs, they can
be specified by pairs of pins, source ones and sink ones. Thus
we specify a timing constraint as t� = (s� ; e� ; Dallow�

), where
s� is a source pin, e� is a sink pin, andDallow�

is the maximum
allowable delay from the source to the sink. We have to get the
layout satisfying all elements of the set of timing constraints T.

We define some terminologies and symbols. Let L =
(M;N) be a logic circuit, whereM = fm1;m2; . . . ;mMg is a
set of cells and N = fn1; n2; . . . ; nNg is a set of nets. A set Ni

is a set of nets connecting to a cell mi, and a set Mj is a set of
cells connecting to a netnj . For every timing constraint t� 2 T,
we define a constrained path, denoted by p� = (M�;N�), as
any path whose source is s� and sink is e� , where M� is a
set of cells which are on the constrained path and N� is a set
of nets which have connection to some cell on the constrained

path. LetP be a set of constrained paths and letP� � P is a set
of constrained paths specified by a timing constraint t� 2 T� .
Let Dact� be the actual propagation delay of p� 2 P� .

For every timing constraint t� 2 T, let L� = (M� ;N�) be
a constrained circuit, in which a set of cells and nets are de-
fined asM� =

S
8p�2P�

M�; andN� =
S
8p�2P�

N�. IfM�

are regarded as vertices and N� as edges whose directions are
given by corresponding signal flows, a constrained circuit c�
is represented as a directed acyclic graph [13], in which the
source is s� and the destination is t� . Let C be a set of con-
strained circuits, and let Dact� = max8p�2P�

Dact� be the ac-
tual propagation delay time from s� to e� .

Now, we formulate the performance driven placement prob-
lem. Given a logic circuit L = (M;N), timing constraints T,
and physical parameters of equation (1) of the Elmore delay
model, the problem is to determine positions ofM which min-
imize the estimated total wire length of nets under the layout
and the timing constraints. The estimated total wire length is
the sum of estimated wire length of all nets, and we estimate
the wire length of a net by the half perimeter of bounding box
of the pins of the net.

III The Proposed Parallel Placement

Algorithm

In this section, to reduce the computation time furthermore,
we extend the algorithm to a parallel algorithm proposed in
[13] running on a shared memory multi-processor worksta-
tion. To obtain high efficiency of parallel processing, we
restrict the amount of communication among processors as
much as possible by dividing the placement problem into some
number of sub-problems which can be treated independently.
The proposed parallel algorithm for timing-driven placement
is based on the sequential algorithm for timing-driven place-
ment, POPINS2.0 [13], which we have proposed previously. In
the following, first, we will describe the outline of POPINS2.0
and then we will propose the parallel algorithm running on a
shared memory multiprocessor workstations. The details of
POPINS2.0 are given in [13].

A. The Outline of the Sequential Algorithm POPINS2.0

POPINS2.0 consists of three phases. In phase 1, it gener-
ates an initial placement so as to minimize the number of cuts
and the total wire length by a hierarchical timing-driven min-
cut placement algorithm in a comparatively short computation
time. Next, it iteratively improves the initial placement ob-
tained in phase 1 by the algorithm based on nonlinear program-
ming in phase 2. In each iteration, a placement of a sub-circuit
which contains critical paths violating their timing constraints
is improved. Finally, it assigns the cells in rows with linear
assignment considering the timing constraints.

In the initial placement of phase1, in order to minimize the
total wire length, to distribute cells uniformly in the placement
region, and to reduce the violations of timing constraints, we
employ an extended version of the timing-driven mincut place-
ment algorithm, which we proposed in [22] as the algorithm

(a) Phase 1:
 initial placement

(b) Phase 2:
 iterative improvement

(c) Phase 3:
 row assignment

Fig. 2. The outline of POPINS2.0.

of this phase. This algorithm is based on ordinary hierarchi-
cal quadratic partitioning. The quadratic partitioning is real-
ized by applying the well-known Fiduccia and Mattheyses’ bi-
partitioning method, called the FM method [5], in three times
(Fig.2(a)). We extended the FM method so as to consider tim-
ing constraints. In addition to the original gain for minimizing
the cut size, called cut gain, we introduce the gain to handle
timing constraints, slack gain [13], the gain to consider termi-
nal positions of nets, terminal gain [13], and the gain to con-
sider the wire length of nets, wire gain [13]. Consequently, the
gain of a cell is defined as the sum of above four gains, that
is, gain = �� (cut gain) + �� (slack gain) +
� (terminal
gain)+ �� (wire gain), and we can obtain an initial placement
that minimizes the cut size and the total wire length, distributes
cells uniformly in the placement region, and reduces the viola-
tions of timing constraints as much as possible.

In phase 2, we iteratively improve the initial placement ob-
tained by phase 1. The objective of phase 2 is to eliminate all
the violations of timing constraints and to minimize the total
wire length of the placement. To achieve this, we transform
the placement problem under the timing constraints to a set of
nonlinear programming(NLP) problems and solve them. NLP
tends to require much computation time and memory space.
We hence apply NLP to sub-circuits, for which the formulated
problem can be solved in a practical computation time and
with practical size of memory space. The sub-circuit to be im-
proved, called target sub-circuit, is selected in such a way that
the target sub-circuit includes a critical path for which the vio-
lation of the timing constraint is large (Fig.2(b)). This improve-
ment based on NLP are applied iteratively until all the timing
constraints are satisfied or iteration count reaches to some pre-
set upper bound value.

In phase 3, the cells, which are distributed on the chip in
phase 2, are assigned to cell rows(Fig.2(c)). In the proposed
row assignment algorithm, first, the cells between each two
consecutive cell rows are grouped, and next for each group,
the cells in it are assigned to slots in the two consecutive cell
rows by linear assignment considering the wire length and the
timing constraints (row assignment of y-direction). Next, cell
groups are constructed based on x-coordinates of cells from left
to right of the chip, and the cells in each group are reassigned to
slots of the improved region by linear assignment in a similar
way of y-direction (row assignment of x-direction). The above
operations are iteratively carried out while the placement is im-
proved.

Proc.1

Proc.2

Proc.3

(b) top level (c) lower levels(a) input circuit

Proc.1 Proc.2

Proc.3 Proc.4

Fig. 3. The parallelization of phase 1.

marge results of all
processors, and perform
partitioning of a
set of separator cells

perform partitionings
independently

(d)

Proc.1

Proc.2

Proc.3

(e)

Proc.1

Proc.2

Proc.3

separator cells

processor assignment
of cells

(c)

an initial partition

(b)

entire circuit

(a)

Fig. 4. The parallel algorithm of a bi-partitioning at top level.

B. Parallelization of Phase 1

In the parallelization of phase 1, at the top level of hierar-
chy, we perform bi-partitioning by several processors, and at
the lower levels, carry out partitionings of each region at a level
in parallel(Fig. 3). Since the bi-partitioning algorithm used in
the parallel algorithm is the same as POPINS2.0, in the follow-
ing, we will explain the detail of parallelization of top level and
lower levels, respectively.

1. Partitioning at Top Level of Hierarchy

At the top level of hierarchy, since we have to handle the en-
tire circuit as well as to reduce the computation time, we per-
form bi-partitioning by using several processors in parallel. In
general, it is difficult to parallelize the FM method directly be-
cause it consists of a set of sequential operations intrinsically.
In the proposed algorithm, we hence divide the entire set of
cells into the sets of cells and perform partitioning of each set
of cells independently. As shown in Fig. 4, firstly, we assign ev-
ery cell to each processor based on an initial partition(Fig.4(c)).
Next, each processor performs the partitioning of cells assigned
to it with the bi-partitioning method independently(Fig.4(d)).
To obtain a bi-partition of whole cells, we merge the partition-
ing results of each processors(Fig.4(e)) and then we reassign
cells to each processor based on the current bi-partition. These
operations are iteratively performed while the bi-partition is
improved.

However, if the cells which are connected to each other are
assigned to the different processors, the gain of those cells

would not be calculated correctly. Thus, in the proposed algo-
rithm, we introduce a set of separator cells that divide the en-
tire set of cells into the sets of cells which have no connection.
Since the separator cells are not assigned to any processors, the
positions of separator cells are fixed while each processor is
performing the partitioning(Fig.4(d)). In order to improve the
partition, after each processor’s partitioning, the partitioning
of the set of separator cells are done(Fig.4(e)). However, the
movement of cells which improves the whole partitioning are
hard to realize because of other fixed cells. We hence add some
cells to the set of the separator cells in the breadth-first-search
manner from the set of the separator cells, then the partition-
ing method is applied to the set of both the separator cells and
added cells. Introducing separator cells makes it possible to
calculate the cut, terminal, and wire gains correctly. However,
it is impossible to calculate the slack gain correctly, because the
calculation of slack gain needs to calculate a delay of a path,
and it is difficult to separate cells in each path with no connec-
tion. Moreover, the terminal and wire gains are not useful for
the top level partition, because there is only one partitioning re-
gion, i.e., whole chip area, and these gains are used to consider
the outside of partitioning region. In the top level partitioning,
we therefore perform the partitioning considering mainly the
cut gain, and other gains are only used as auxiliary gains.

In the assignment of cells to processors(Fig.4(c)), we need
to minimize the number of separator cells and to equalize the
number of cells assigned to each processor as much as possible.
We therefore perform a cell assignment to processors in the fol-
lowing way. Firstly, a pair of seed cells for all processors which
has a connection and crosses the cut line of the current parti-
tion is randomly selected and is assigned to a processor. Next,
expand each set of cells assigned to a processor by adding cells
one by one considering the balance of each set of cells. The
added cell should have large connectivity, which is the num-
ber of connections to the present set of cells assigned to each
processor. If the added cell is connected to a cell which has
already been assigned to other processor then the cell becomes
a separator cell and is added to the set of separator cells. This
operation is repeated until all cells have been added to some
sets of cells assigned to a processor or a set of separator cells.

2. Partitioning at Lower Levels of Hierarchy

At the lower levels of hierarchy, there are many partitioning
regions, and we have to perform the partitioning of many small
sized sets of circuits(Fig.3(c)). So, in the proposed algorithm,
we apply the partitioning algorithm independently to perform
partitioning of each region at a level.

Figure 5 shows an example of processing flow which ob-
tains the 4 by 4 partitioning from the 2 by 2 partitioning. In
order to obtain high efficiency in parallel processing, updating
the cell positions to calculate slack, terminal and wire gains is
performed asynchronously by each processor during cell mov-
ing in the partitioning algorithm. Moreover, in order to reduce
the inconsistency of cell positions caused by moving cells by
other processors, we perform the partitioning, in which the di-
rections of the cut lines of the partitioning regions abutted on

Proc.1 Proc.2

Proc.3 Proc.4

Proc.1 Proc.2

Proc.3 Proc.4 Proc.2

Proc.1 Proc.2 Proc.1 Proc.2

Proc.1

Proc.2

Proc.1

(b) (c) (d)

(e)(f)(g)
(h) after 4 by 4
 partitioning

(a) after 2 by 2
 partitioning

Fig. 5. Partitioning at lower levels.

each other are different from each other as shown in Fig. 5
(b)(c). The effect of the inconsistency of cell positions is de-
creased in the lower levels of partitioning hierarchy because the
regions to be partitioned are apart from each other. We hence
change the parameters (�; �;
; and �) of gain dynamically dur-
ing the hierarchy of partitioning so that firstly, the cut gain is
mainly considered, and the effect of other gains are increas-
ing as the hierarchy of partitioning goes down to lower levels.
In addition to above consideration, in the proposed algorithm,
the bi-partitioning method is hierarchically applied by shifting
the partitioned region as shown in Fig. 5 (d) � (g). Since the
precise cell positions are already determined after the 4 � 4
partitioning as shown in Fig. 5 (c), the terminal and wire gains
can be accurately calculated and a good initial placement can
be obtained.

C. Parallelization of Phase 2

1. Selection of a Target Sub-circuit

As mentioned in Section A., in phase 2, iterative improve-
ment based on NLP is performed to improve the placement ob-
tained by phase 1. The parallelization of phase 2 is achieved
by solving the NLP problems [13] for each target sub-circuit by
several processors in parallel (Fig. 6). However, if each target
sub-circuit has connections with the other target sub-circuit and
is improved concurrently, errors of wire length estimation and
path delay estimation have occurred. We therefore construct
a target sub-circuit which has no connection with other target
sub-circuit which is improved concurrently by introducing sep-
arator cells as shown in Fig. 6. The paths which are included
in several target sub-circuits are also divided into several paths
by the separator cells and considered independently.

Now, let aLmov = (Mmov;Nmov) be target sub-circuit, where
Mmov is the set of cells, called movable cells, of the target sub-
circuit and Nmov is the set of nets, called movable nets, con-
necting to at least one movable cells, respectively. The cells
other than movable cells are called fixed cells and denoted as
Mfix. The nets other than movable nets are called fixed nets and
denoted as Nfix. And let M0

mov represent a set of cells which
belongs to other target sub-circuit to be improved by other pro-
cessors.

The construction of a set of target sub-circuits is as follows.

selection of critical paths solve NLPs in parallel

Proc. 1
Proc. 2

Proc. 3

separator cell

target sub-circuits

Fig. 6. The parallelization of phase 2.

First, we find one of constrained paths with a large violation
ratio, and let the constrained path be the initial sub-circuit. Vi-
olation ratio is the value of actual delay time of a constrained
path (or a constrained circuit) divided by the maximum allow-
able delay time of it, i.e., Dact�=Dallow� . The candidates for the
constrained path are selected from constrained circuits which
are the largest 10 � 20 percent in all constrained circuits in
terms of the violation ratio. But, to improve the placement in
small number of iteration, we don’t select any constrained cir-
cuits which have been selected in the last k(> 0) iterations1

of phase 2. Moreover, to perform the improvement to the sets
of the target sub-circuits in parallel, we select the constrained
path so as to have no connection with any other sub-circuits im-
proved by other processors. As increasing the number of cells,
it may become easy, because the placement area is very large,
and we can select a path in which cells are placed at the position
apart from any other sub-circuits improved by other processors.
Next, expand the sub-circuit by adding cells one by one. The
added cell should have large connectivity, which is the num-
ber of connections to the present sub-circuit. In order to avoid
repeatedly selecting the same cell to be added to the target sub-
circuit in each iteration of phase 2, we introduce a randomness
in the selecting step and determine whether the cell is included.
Furthermore, to solve the problem in a practical computation
time, we must limit the number of variables in the NLP and
hence the growing process of the target sub-circuit continues
until the number of variables of the NLP problem reaches to a
given constant.

2. The Algorithm of Phase 2

The algorithm of phase 2 consists of one master process
and some slave processes, and improves a placement itera-
tively. In each iteration, firstly, the master process performs the
timing verification and calculates violation ratios for all con-
strained circuits. Next, the master process constructs a target
sub-circuit, and forks a slave process. This loop is repeated
until the maximum violation ratio is less than a pre-determined
permissible violation ratio or the loop count reaches to some
preset value. The slave process receives a target sub-circuit
from the master process, formulates a NLP problem and solves
it. And it sends the result of NLP problem to the master pro-
cess. The outline of the algorithm of phase 2 is shown below.

1In the current implementation, we set k to three.

[Iterative Improvement Based on NLP]
Master process :
Step 1: Perform timing verification to all constrained circuits,

and
LoopNumber = 1.

Step 2: If the maximum violation ratio is less than a pre-
determined permissible violation ratio or LoopNumber >
(preset value), then wait for the termination of all slave
processes, receive results from the slave processes, and
exit.

Step 3: Select a target sub-circuit Lmov to be improved, and
start a slave process.

Step 4: If there is a slave process which have terminated then
receive a result from the slave process, and perform timing
verification to the constrained circuits which hasMmov. If
it cannot increase a slave process any more, then wait for
ending a slave process.

Step 5: LoopNumber = LoopNumber + 1, go to Step 2
Slave process :
Step 1: Find all constrained paths which have the cells of

Mmov.
Step 2: Formulate the nonlinear programming problem and

solve it.
Step 3: Send the result of the nonlinear programming problem

to the master process.

D. Parallelization of Phase 3

In phase 3, we introduce parallel processing to the assign-
ments of some consecutive groups of cells to each processor,
and perform each linear assignment independently by each pro-
cessor as shown in Fig. 7. Now, let R be the number of cell
rows. All cell rows are numbered from the top of the chip and
letR1;R2; � � � ;RR be the set of cells assigned to each cell row.
Area is given to each cell, and let a(M) be the sum of area of
the cells in M. The width of the chip is determined by the
width of the longest cell row, and if the width of all rows are
same, then the width of the chip is minimized. Thus we give
the same capacity, denoted A, to all cell rows, and the sum of
area of cells assigned to each cell row a(Ri) must be satisfied
a(Ri) � A; i = 1; � � � ; R.

First, in order to solve a set of linear assignment problems
independently by each processor, we equally assign each pro-
cessor Pj , j = 1; 2; � � � ; P to a set of consecutive cell rows
fRR

P
�k+1, RR

P
�k+2, � � � ; RR

P
�(k+1)g, (k = 0; 1; � � � ; P � 1),

which is processed by the processor Pj , as shown in Fig.8.
Next, in order to split a set of linear assignment problems, a

set of pairs (Gi;Si) are constructed where Si; i = 1; 2; � � � ; R
is a set of slots in which all cells in Gi are assigned and Gi; i =
1; 2; � � � ; R is a set of groups of cells, respectively. For each
Gi; i = 1; 2; � � � ; R, they have capacities a(Gi), which are,

a(Gi) =

8>>>><
>>>>:

3
2
A (if i = R

P
� k + 1; (k = 0; 1; � � � ; P � 1))

1
2
A (else if i = R

P
� k; (k = 1; 2; � � � ; P))

A (otherwise)

Proc. 1 Proc.2Proc. 1Proc. 1 Proc.2Proc.2

Proc. 1

Proc.2

Proc. 1

Proc.2

Proc. 1

Proc.2

(a) Assignment of y-direction

(b) Assignment of x-direction

Fig. 7. Parallelization of phase 3.

R1

R2

R3

R4

R5

R6

(b) First loop (c) Next loop

Proc.1

Proc.2

Proc.1

Proc.2

g1

g2

g3

g4

g5

g6

(a) Grouping

Fig. 8. Shifting of the group boundaries.

where P and R are the number of processors and cell rows,
respectively. We construct the each cell group as follows.
All cells are sorted by their y-coordinates, and the first cells,
of which the sum of the area is equal to the capacity of the
first group a(G1), are assigned to the first group. Similarly,
the remaining cells are divided into the groups. Then, each
cell group is assigned to the corresponding processor as fol-
lows. Groups G1; � � � ;GR

P
are assigned to processor P1, groups

GR
P

+1; � � � ;G2R
P

are assigned to processorP2, and so on (Fig. 8).
Next, the cells of each cell group Gi are assigned to slots

in each cell row Ri by the timing-driven linear assignment
method proposed in [13] in parallel, that is, the cells of groups
G1;GR

P
+1; � � � ;GR

P
(P�1)+1 are assigned to each slots concur-

rently. In the large circuits, these groups assigned concurrently
are apart from each other, then we can reduce the effect of other
processors in the cost matrix calculation 2. Because a(Gi) � A,
if the cells in Gi which are not assigned to slots of the cell row i

but slots of the cell row i+1, then the cells inRi+1 are added to
the next group Gi+1 and reassigned in the next linear assignment
problem.

After the row assignment of y-direction, the row assignment
of x-direction is performed in the similar way of y-direction.
These assignments of x and y-directions are iteratively per-
formed until there is no more improvement of placement or
LoopNumber is reached to some preset value, and we obtain a
final placement. In each iteration of outer loop, we shift sets
of cell groups for processor Pi as shown in Fig. 8, because, in
each iteration, if we use same sets of cell groups, then the cells
in the last cell group of the set of cell group for processor Pi

will be only placed at the same cell row in the further loops,
resulting that these cells cannot move to the next cell row and

2This cost matrix calculation is performed before solving linear assignment
problems.

this degrades the quality of the placement. The timing-driven
row assignment algorithm is as follows.

[The Timing-Driven Row Assignment Algorithm]
Step 1: LoopNumber = 0.

/* Row assignment of y-direction */
Step 2: Construct cell groups G1;G2; � � � ;GR

Step 3: Assign cell groups to processors.
Step 4: For each processor Pi in parallel

Step 4.1: j = the index of the first cell group assigned to
processor Pi.

Step 4.2: For all cells mk 2 Gj ; sl 2 Sj , compute ckl

and solve the linear assignment problem LAP(j) 3.
Step 4.3: For all cells mk 2 Rj , update their coordi-

nates.
Step 4.4: Gj+1 = Gj+1 [Rj+1.
Step 4.5: If j < the index of the last cell group assigned

to processor Pi, then j = j + 1 go to Step 4.2.
/* Row assignment of x-direction */

Step 5: Construct cell groups G01;G
0

2; � � � ;G
0

R

Step 6: Assign cell groups to processors.
Step 7: For each processor Pi in parallel

Step 7.1 j = the index of the first cell group assigned to
processor Pi.

Step 7.2 For all cells mk 2 G
0

j ; sl 2 S
0

j , compute ckl

and solve the linear assignment problem LAP(j).
Step 7.3 For all cellsmk 2 R

0

j , update their coordinates.
Step 7.4 G

0

j+1 = G 0j+1 [R
0

j+1.
Step 7.5 If j < the index of the last cell group assigned

to processor Pi, then j = j + 1 go to Step 7.2.
Step 8: If there is no improvement or LoopNumber = (pre-

set number), then terminate, else Shift the cell groups of
the both directions and LoopNumber = LoopNumber + 1
go to Step 2.

IV Experimental Results

We have implemented the proposed algorithm called Par-
POPINS on a SPARC server 1000 of Sun Microsystems Inc.
(135MIPS � 4CPU, 256MByte main memory) in C language
with SunOS5.4 multi-thread library, and performed some ex-
periments. In Table I, we show the example data of the experi-
ments. Data “primary2”, “avqs” and “avql” are the benchmark
data distributed from MCNC and others are ISCAS benchmark
data. For ISCAS benchmarks, logic synthesis and technology
mapping were performed by SIS1.2 [18]. In this table, “#cons”
is the number of timing constraints. As the timing constraints,
we gave a clock cycle time for each data, which was determined
by that of the placement produced without timing constraints
multiplied by 0:8 � 0:9.

3LAP(j) is a linear assignment problem of the Gj which is to
determine the slot assignment of all cells in Gj which minimizesP

mj2Gi

P
sk2Si

cjkzjk subject to
P

sk2Si
zjk = 1(8mj 2 Gi),

P
mj2Gi

zjk = 1(8sk 2 Si), and zjk � 0;8mj 2 Gi; 8sk 2 Si where

Si is a set of slots in which all cells in Gi are assigned, and cjk is a cost with
which the cell mj is assigned to the slot sk .

TABLE I
Characteristics of experimental data.

Data #cells #nets #I/O #rows #cons
C5 1081 1560 301 13 334
C6 1037 1516 301 14 334
C7 2150 2678 315 18 405

s15850 3228 3332 227 22 1105
s38417 7572 7734 134 37 2619
s38584 8964 9344 342 46 2729

avqs 21854 22124 64 80 6064
avql 25114 25384 64 86 6064

#cons : the number of timing constraints.

TABLE II
The results of phase1 for Par-POPINS and POPINS.

Data Method #vio Dmax length[�] time[sec]

C6
Par-POP 4 1.02 1311166(0.98) 15(1.36)
POPINS 2 1.03 1338810(1.00) 11(1.00)

C7
Par-POP 31 1.28 2068333(1.23) 46(1.53)
POPINS 1 1.00 1679436(1.00) 30(1.00)

s38584
Par-POP 22 1.08 8073146(0.98) 790(0.72)
POPINS 16 1.10 8245132(1.00) 1102(1.00)

avqs
Par-POP 42 1.26 25493801(0.98) 6934(0.41)
POPINS 33 1.17 26014083(1.00) 17069(1.00)

avql
Par-POP 30 1.21 26180577(0.92) 8491(0.45)
POPINS 1 1.00 28457150(1.00) 18954(1.00)

In order to evaluate the parallelization of each phase, we
compare the results of each phase of Par-POPINS with that
of POPINS. First, we compared the results of phase 1 of
Par-POPINS with that of POPINS. Table II shows the re-
sults for typical data. In Table II, “#vio” is the number of
violated timing constraints. “Dmax”, defined as Dmax =
max8ttau2T Dact� =Dallow�

, is called the maximal violation ra-
tio, and if it is less than or equal to 1.0, the placement sat-
isfies all timing constraints. “length” is the total wire length
estimated by the Manhattern distance (�). “time” is the run-
ning time by SPARCserver1000 (seconds). From Table II,
the average total wire length of Par-POPINS is comparable to
that of POPINS, but the number of timing violations of Par-
POPINS is larger than that of POPINS. For computation time,
Par-POPINS was 1.2 times faster on average and 2.4 times
faster in maximum than POPINS. We can therefore show that
the parallelization of phase 1 is suitable for the large scale cir-
cuits.

Next, Table III shows the results of phase 2 of Par-POPINS
and POPINS for typical data. In these experiments, we used
the results of phase 1 of POPINS as the inputs of phase 2 of
Par-POPINS and POPINS. From Table III, Par-POPINS pro-
duces the comparable results to the results of POPINS for the
total wire length. For the computation time, Par-POPINS takes
longer than that of POPINS for “avqs”. Since Par-POPINS
were not able to remove 16 timing violations in “avqs” effi-
ciently, Par-POPINS tried to improve the placement repeatedly
and the computation time was hence longer than POPINS. For
all data, Par-POPINS is 1.7 times faster on average and 4.7
times faster in maximum than POPINS, but Par-POPINS is
2.6 times faster on average except for “avqs”. We can there-
fore show that the parallelization of phase 2, which solves the
nonlinear programming problems for each target sub-circuit by
several processors in parallel, is effective to reduce the compu-
tation time without degradation of results.

TABLE III
The results of phase2 for Par-POPINS and POPINS.

Data Method #vio Dmax length[�] time[sec]

C6
Par-POP 0 0.96 1271435(0.97) 109(0.37)
POPINS 0 0.96 1313270(1.00) 298(1.00)

C7
Par-POP 0 0.95 1665541(0.99) 1147(0.29)
POPINS 0 0.97 1680488(1.00) 3969(1.00)

s38584
Par-POP 0 0.98 8101144(0.99) 624(0.21)
POPINS 0 0.82 8143268(1.00) 2979(1.00)

avqs
Par-POP 16 1.10 25936044(1.01) 1250(2.47)
POPINS 0 0.98 25737577(1.00) 506(1.00)

avql
Par-POP 1 1.00 28461112(1.00) 753(0.55)
POPINS 1 1.00 28457150(1.00) 1368(1.00)

TABLE IV
The results of phase3 for Par-POPINS and POPINS.

Data Method #vio Dmax length[�] time[sec]

C6
Par-POP 0 0.99 1023204(1.02) 59(0.30)
POPINS 0 0.90 1003291(1.00) 196(1.00)

C7
Par-POP 0 0.94 1406502(0.98) 189(0.32)
POPINS 0 0.91 1428595(1.00) 601(1.00)

s38584
Par-POP 0 0.82 7439664(1.04) 1869(0.39)
POPINS 0 0.82 7168711(1.00) 4820(1.00)

avq-small
Par-POP 0 0.84 22812721(0.94) 28139(0.20)
POPINS 0 0.77 24221879(1.00) 138702(1.00)

avq-large
Par-POP 0 0.94 27856918(1.23) 103992(0.41)
POPINS 0 0.83 22551201(1.00) 247999(1.00)

Next, we show the results of phase 3 of Par-POPINS and
POPINS in Table IV. We also used the results of phase 2 of
POPINS as the inputs of phase 3 of Par-POPINS and POPINS.
From Table IV, Par-POPINS can satisfy all timing constraints
for all benchmark data. For computation time, Par-POPINS
is 3.4 times faster on average and 5.0 times faster in maxi-
mum than POPINS. For the total wire length, the results of Par-
POPINS is 4.0% longer on average than that of POPINS. For
“avql”, Par-POPINS were not able to produce the comparable
result to POPINS. We have not yet completely analyzed this
case, but the reason may be as follows. Although the groups
assigned concurrently are apart from each other, the case may
occur that the cells have connection with other cells that be-
longs to other groups assigned concurrently. In this case, since
the errors of estimating the wire length of nets have occurred,
this degrades the quality of the placement. We believe that this
can be improved by decreasing the number of cells which are
assigned in a row simultaneously.

Finally, we compared Par-POPINS with POPINS and RIT-
UAL [19]. RITUAL is one of the most powerful performance
driven placement algorithms which can satisfy a given clock
cycle. The interconnection delay model is similar to ours, ex-
cept that the wire resistance is not assumed. But to compare
with our results, we evaluated the results of RITUAL by our
model. Table V shows the results of Par-POPINS, POPINS,
and RITUAL. For “s15850” and “s38584”, RITUAL was not
able to produce the placement due to errors. Moreover, since
RITUAL which we used can not permit a cell which has more
than one output pins, we could not test “avqs” and “avql”. In
these experiments, the results of phases 1 and 2 of Par-POPINS
were used for the inputs of phases 2 and 3 of Par-POPINS, re-
spectively. From Table V, Par-POPINS is 2.2 times faster on
average and 3.3 times faster in maximum than POPINS within
13.9% degradation of the total wire length on average. More-

TABLE V
The placement results of Par-POPINS, POPINS2.0, and

RITUAL.

Data Method #vio Dmax length[�] time[sec]

C5
Par-POP 0 0.94 1212371(1.13) 178(0.30)
POPINS 0 0.89 1074034(1.00) 601(1.00)
RITUAL 6 1.03 1450583(1.35) 1255(2.09)

C6
Par-POP 0 0.95 1213599(1.21) 191(0.38)
POPINS 0 0.90 1003291(1.00) 505(1.00)
RITUAL 0 0.95 1303082(1.30) 1362(2.70)

C7
Par-POP 0 0.96 1890354(1.32) 1612(0.35)
POPINS 0 0.91 1428595(1.00) 4600(1.00)
RITUAL 2 1.01 1957200(1.37) 1755(0.38)

s15850
Par-POP 0 0.89 2602893(1.17) 3114(0.38)
POPINS 0 0.88 2216362(1.00) 8260(1.00)

RITUALy - - - - - - - - (- - -) - - - - (- - -)

s38417
Par-POP 0 0.96 7165758(1.02) 2405(0.47)
POPINS 0 0.86 7058243(1.00) 5094(1.00)
RITUAL 16 1.53 8002986(1.13) 14426(2.83)

s38584
Par-POP 0 0.85 9209736(1.28) 6115(0.69)
POPINS 0 0.82 7168711(1.00) 8901(1.00)

RITUALy - - - - - - - - (- - -) - - - - (- - -)

avq-small
Par-POP 0 0.77 22983119(0.95) 64296(0.41)
POPINS 0 0.77 24221879(1.00) 156277(1.00)

RITUALy - - - - - - - - (- - -) - - - - (- - -)

avq-large
Par-POP 0 0.88 28375840(1.26) 107222(0.39)
POPINS 0 0.83 22551201(1.00) 268321(1.00)

RITUALy - - - - - - - - (- - -) - - - - (- - -)
yNo results obtained.

over, Par-POPINS improved the total wire length by a 9.3% on
average and a 16.4% in maximum compared with RITUAL.
For computation time, Par-POPINS is 2.9 times faster on aver-
age than RITUAL.

V Conclusions

In this paper, we proposed a parallel algorithm for timing-
driven standard cell placement based on POPINS2.0 [13]. The
proposed algorithm can satisfy the performance requirement of
the circuit by satisfying the timing constraints. And in the pro-
posed method, to estimate the interconnection delay accurately
we adopted the delay estimation model based on Elmore’s de-
lay model. To obtain high efficiency of parallel processing, we
restrict communication among processors as much as possible
by partitioning the placement problem to some sub-problems
which can be executed independently. From the experimental
results comparing with POPINS2.0, the proposed parallel al-
gorithm, Par-POPINS, produces a placement 2.2 times faster
on average and 3.3 times faster in maximum on 4 processors
within small degradation of the total wire length. Future re-
search includes the further reduction of computation time and
the improvement of quality of placement results. Development
of parallel placement algorithms for other parallel architectures
is another interesting topic.

References

[1] M. Burstein and M. N. Youssef: “Timing influenced layout de-
sign,” Proc. of 22nd Design Automation Conference, pp. 124–
130 (1985).

[2] W. E. Donath, R. J. Norman, B. K. Agrawal, S. E. Bello, S. Y.
Han, J. M. Kurtzberg, P. Lowy and R. I. MeMillan: “Timing
driven placement using complete path delays,” Proc. of 27th De-
sign Automation Conference, pp. 84–89 (1990).

[3] A. E. Dunlop, V. D. Agrawal, D. N. Deutsh, M. F. Jukl, P. Kozak
and M. Wiesel: “Chip layout optimization using critical path
weighting,” Proc. of 21st Design Automation Conference, pp.
133–136 (1984).

[4] W. C. Elmore: “The transient response of damped linear net-
works with particular regard to wideband amplifiers,” J. Appl.
Phys., Vol.19, pp. 55–63 (1948).

[5] C. M. Fiduccia and R. M. Mattheyses: “A linear-time heuris-
tic for improving network partitions,” Proc. of 19th Design Au-
tomation Conference, pp. 175–181 (1982).

[6] T. Gao, P. M. Vaidya and C. L. Liu: “A new performance
driven placement algorithm,” Proc. of International Conference
on Computer-Aided Design, pp. 44–47 (1991).

[7] T. Hamada, C.-. K. Cheng and P. M. Chau: “Prime: A timing-
driven placement tool using a piecewise linear resistive network
approach,” Proc. of 30th Design Automation Conference, pp.
531–536 (1993).

[8] T. Hasegawa: “A new placement algorithm minimizing path de-
lay,” Proc. of International Symposium on Circuits and Systems,
pp. 2052–2055 (1991).

[9] P. S. Hauge, R. Nair and E. J. Yoffa: “Circuit placement for
predictable performance,” Proc. of International Conference on
Computer-Aided Design, pp. 88–91 (1987).

[10] M. Igusa, M. Beardslee and S. Sangiovanni-Vincentelli:
“ORCA: A sea-of-gates place and route system,” Proc. of 26th
Design Automation Conference, pp. 122–127 (1989).

[11] M. A. B. Jackson and E. S. Kuh: “Performance-driven place-
ment of cell based IC’s,” Proc. of 27th Design Automation Con-
ference, pp. 370–375 (1989).

[12] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich:
“GORDIAN: VLSI placement by quadratic programming and
slicing optimization,” IEEE Trans. Comput.-Aided Design of In-
tegrated Circuits & Syst., Vol. 10, No. 3, pp. 356–365 (1991).

[13] T. Koide, M. Ono, S. Wakabayashi, Y. Nishimaru and
N. Yoshida: “A new performance driven placement method with
the Elmore delay model for row based VLSIs,” Proc. of Asia
and South Pacific Design Automation Conference, pp. 405–412
(1995).

[14] E. S. Kuh and M. Shih: “Recent advances in timing-driven phys-
ical design,” Proc. of Asia-Pacific Conference on Circuits and
Systems, pp. 23–28 (1992).

[15] M. Marek-Sadowska and S. P. Lin: “Timing driven placement,”
Proc. of International Conference on Computer-Aided Design,
pp. 94–97 (1989).

[16] Y. Ogawa, M. Pedram and E. S. Kuh: “Timing-driven placement
for general cell layout,” Proc. of International Symposium on
Circuits and Systems, pp. 872–875 (1990).

[17] B. M. Riess and G. G. Ettelt: “SPEED: Fast and efficient tim-
ing driven placement,” Proc. of International Conference on
Computer-Aided Design, pp. 377–380 (1995).

[18] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldabha, H. Savoj, P. R. Stephan, R. K. Brayton and
A. Sangiovanni-Vincentelli: “SIS: A system for sequential cir-
cuit synthesis,” Technical Report No. UCB/ERL M92/41, Uni-
versity of California, Berkeley (1992).

[19] A. Srinivasan, K. Chaudhary and E. S. Kuh: “RITUAL: A
performance-driven placement algorithm,” IEEE Trans. on Cir-
cuits and Systems II, Vol. 39, No. 11, pp. 825–839 (1992).

[20] S. Sutanthavibul and E. Shragowitz: “An adaptive timing-driven
placement for high performance VLSI’s,” IEEE Trans. Comput.-
Aided Design of Integrated Circuits & Syst., Vol. 12, No. 10, pp.
1488–1498 (1993).

[21] M. Terai, K. Takahashi and K. Sato: “A new min-cut placement
algorithm for timing assurance layout design meeting net length
constraint,” Proc. of 27th Design Automation Conference, pp.
96–102 (1990).

[22] S. Wakabayashi, H. Kusumoto, H. Mishima, T. Koide and
N. Yoshida: “Gate array placement based on mincut partitioning
with path delay constraints,” Proc. of International Symposium
on Circuits and Systems, pp. 2059–2062 (1993).

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

