Par-POPINS: A Timing-Driven Parallel Placement Method with the EImore Delay
Model for Row Based VL SIs

Tetsushi Koide Mitsuhiro Ono

Shin’ichi Wakabayashi

Yutaka Nishimaru

Faculty of Engineering, Hiroshima University
4-1, Kagamiyama 1 chome, Higashi-Hiroshima, 739 JAPAN
e-mail: {koidewakaba}@ecs.hiroshima-u.ac.jp

Abstract— In this paper, we present a parallel algorithm run-
ning on a shared memory multi-processor workstation for timing
driven standard cell layout. The proposed algorithm is based on
POPINS2.0[13] and consists of three phases. First, we get an ini-
tial placement by a hierarchical timing-driven mincut placement
algorithm. At thetop level of partitioning hierarchy, we perform
one step of bi-partitioning by several processors, and in the lower
levels of partitioning hierarchy, partitionings of each region in a
level are performed in parallel. Next, in phase 2, iterative im-
provement of the sub-circuit which contains critical pathsis per-
formed by nonlinear programming. Parallel processing is real-
ized by performing the nonlinear programming method to each
sub-circuit in parallel. Finally, in phase 3, the placement istrans-
formed to arow based layout style by atiming-driven row assign-
ment method. We have implemented the proposed method on a
4CPU multi-processor wor kstation and showed that the proposed
method is promising through experimental results.

I INTRODUCTICN

In recent years, performance of integrated circuits becomes
higher and operation speed of logic circuits becomes faster.
Hence, for high performance VLSI chips, the interconnection
delay is much longer than the gate delay, and it isamajor part
of whole signal delay of chips. Therefore timing-driven layout
methods which take interconnection delay into account explic-
itly, have been urged to be devel oped.

There have been many studies about timing-driven place-
ment, and they can be classified into the following four ap-
proaches, (1) the net weighting approach [1, 3,15, 17, 20], (2)
the net delay bounds approach [6, 9, 10, 16, 21], (3) the path
weighting approach [8, 22], and (4) the path delay bounds ap-
proach [2,7,11,12,19]. However, many of them have a dif-
ficulty of trade-off between the quality of the layout and the
computation time. Especially for interconnection delay, the
estimation of the interconnection delay is inaccurate because
of some simplified assumptions of the delay model. Then,
we have proposed a timing-driven placement method, called
POPINS2.0 [13], which is based on the path delay bounds ap-
proach and adopted the delay estimation model based on El-
more’'s delay model. Experimental results have showed the
effectiveness of POPINS2.0. However, in the case of VLSIs
which have so much cells in one chip, the computation time of

ASP-DAC'97
0-89791-851-7$5.00 [1997 IEEE

this placement method increased, because of the iterative im-
provement phase based on nonlinear programming and the row
assignment phase based on linear assignment.

In this paper, we propose a paralel algorithm for timing-
driven placement, which is an extension of POPINS2.0. To
obtain high efficiency of parallel processing, we restrict the
amount of communication among processors as much as pos-
sible by partitioning the placement problem into some sub-
problems which can be executed independently. The proposed
algorithm consistsof three phases. First, weget aninitial place-
ment by a hierarchical timing-driven mincut placement algo-
rithm. At the top level of partitioning hierarchy, we perform
bi-partitioning by several processors, and in the lower levels
of partitioning hierarchy, partitionings of each region in alevel
are performed in paralel. Next, in phase 2, we select a sub-
circuit, which contains critical paths violating the given timing
congtraints, and improve the placement of the sub-circuit by
nonlinear programming. Parallel processing is realized by per-
forming the nonlinear programming method to each sub-circuit
inparalel. Finally, in phase 3, the placement isformed to arow
based layout style by atiming-driven row assignment method.
From the experimental results comparing with POPINS2.0 and
RITUAL [19], the proposed parallel placement algorithm is
very promising.

The remainder of this paper is organized as follows. In
Section |1, we describe the interconnection delay model and
the timing constraint treated in this paper, and formulate the
timing-driven placement problem. In Section |11, we propose a
parallel algorithm for timing driven placement. Experimental
results and the evaluation of the proposed a gorithm are shown
in Section 1V. Finally, in Section V, we describethe conclusions
and future works.

II PRELIMINARES

A. Layout and Delay Models

In this paper, the row based design such asthe poly-cell type
standard cell or the gate array models is assumed. We assume
that the interconnections are realized by using two layers, the
first metal layer (M1) and the second meta layer (M2). The
M1 layer ismainly used for horizontal wiring and the M2 layer
ismainly for vertical wiring.

An equivalent circuit of an interconnection is originally

load 1

(a) Interconnection delay model (b) Estimation of the wire length of a net nj

Fig. 1. Delay model.

modeled as a distributed RC circuit, and the Elmore's de-
lay equation [4] is often used to represent the interconnection
delay(Fig.1(a)). When a multi-terminal net n; is implemented
by a Steiner tree, Kuh and Shih give an upper bound of the
Elmore delay from the source pin to the load pin j of the net
n; in Ref, [14]. Since, in our model, the wire capacitances are
different between M1 and M2, we compute the delay as the
sum of delay of M1 and M2. Furthermore, it is not practical
to construct Steiner trees during placement from the point of
computation time. We hence estimate the wire length of a net
n; by the half perimeter length of a bounding box of enclos-
ing the pins of the net and the wire length from the source to a
load j of the net n; by the half perimeter length of a bounding
box enclosing the source pin and the load pin j(Fig.1(b)). The
delay from the source pin to the load pin 5 of the net is thus
defined as,

dij(wi, hiy115,12;5) = (cl-w; +c2- h; + Z Cix;)
ki
X(R10+T1'llij +’I"2'121'j), (1)

wherew; and h; arethewidth and height of the bounding box of
thenetn,, [1;; and[2;; arethewidth and height of the bounding
box enclosing the source pin and load pin j of net n;, ¢1 and ¢2
arethe capacitanceof M1 and M2 per unit length, and »1 and 2
are the resistance of M1 and M2 per unit length, respectively.

B. Timing-Driven Placement Problem

In this paper, we consider the long path problem. As there
are many paths from a primary input(Pl) or an output of flip-
flops(FFs) to a primary output(PO) or inputs of FFs, they can
be specified by pairs of pins, source ones and sink ones. Thus
we specify atiming constraint ast¢, = (s, e,, Daiiow,), Where
s isasourcepin, e, isasink pin, and D ;... iSthemaximum
allowable delay from the sourceto the sink. We have to get the
layout satisfying all elements of the set of timing constraints 7.

We define some terminologies and symbols. Let £ =
(M, N) bealogiccircuit, where M = {m1, my,...,my } isa
set of cellsand V' = {ny,ny,...,ny} isaset of nets. A set N
isaset of nets connecting to acell m;, and aset M ; isaset of
cellsconnectingtoanetn ;. For every timing constraintt, € 7,
we define a constrained path, denoted by p, = (M, N;), as
any path whose source is s, and sink is e, where M, isa
set of cells which are on the constrained path and AV, is a set
of netswhich have connection to some cell on the constrained

path. Let P beaset of constrained pathsand let P, C Pisaset
of constrained paths specified by atiming constraint ¢, € 7.
Let D, ;. bethe actua propagation delay of p, € P..

For every timing constraint ¢, € 7, let £, = (M, N.) be
a constrained circuit, in which a set of cells and nets are de-
finedas M., = UVPWGPT M, and N, = UVPWGPT N If M,
are regarded as vertices and V.. as edges whose directions are
given by corresponding signal flows, a constrained circuit c..
is represented as a directed acyclic graph [13], in which the
source is s, and the destination is¢,. Let C be a set of con-
strained circuits, and let D¢, = MaXyp, ep, Doct, betheac-
tual propagation delay timefrom s, toe, .

Now, we formulate the performance driven placement prob-
lem. Given alogic circuit £ = (M, N), timing constraints 7,
and physical parameters of equation (1) of the EImore delay
model, the problem isto determine positions of M which min-
imize the estimated total wire length of nets under the layout
and the timing constraints. The estimated total wire length is
the sum of estimated wire length of all nets, and we estimate
the wire length of a net by the half perimeter of bounding box
of the pins of the net.

IIT THE PROPOSED PARALLEL PLACEMENT
ALGORITHM

In this section, to reduce the computation time furthermore,
we extend the algorithm to a parallel algorithm proposed in
[23] running on a shared memory multi-processor worksta-
tion. To obtain high efficiency of paralel processing, we
restrict the amount of communication among processors as
much as possible by dividing the placement problem into some
number of sub-problems which can be treated independently.
The proposed parallel algorithm for timing-driven placement
is based on the sequential algorithm for timing-driven place-
ment, POPINS2.0[13], which we have proposed previously. In
the following, first, we will describe the outline of POPINS2.0
and then we will propose the parallel algorithm running on a
shared memory multiprocessor workstations. The details of
POPINS2.0 aregivenin [13].

A. TheOutline of the Sequential Algorithm POPINS2.0

POPINS2.0 consists of three phases. In phase 1, it gener-
ates an initial placement so as to minimize the number of cuts
and the total wire length by a hierarchical timing-driven min-
cut placement algorithm in a comparatively short computation
time. Next, it iteratively improves the initial placement ob-
tained in phase 1 by the algorithm based on nonlinear program-
ming in phase 2. In each iteration, a placement of a sub-circuit
which contains critical paths violating their timing constraints
is improved. Finally, it assigns the cells in rows with linear
assignment considering the timing constraints.

In theinitial placement of phasel, in order to minimize the
total wire length, to distribute cells uniformly in the placement
region, and to reduce the violations of timing constraints, we
employ an extended version of the timing-driven mincut place-
ment algorithm, which we proposed in [22] as the agorithm

Proc.1 Proc.2
LITTTIT T 1 10 ollol| &l o
Jgoof oot L0
|-_[EI Iﬂ T 1711 .DID%.I'DDDD
D:I:DD:I:D N _|:|.___ _D_ED__ [n|[m] [m] i
E Eﬁl [T . oLj[om o|olo]o
- Proc3 Proc3 Procd
(@) input circuit (b) top level (c) lower levels
(a) Phase 1: (b) Phase 2: (c) Phase 3:
initial placement iterative improvement row assignment Fig. 3. The parallelization of phase 1.
Fig. 2. The outline of POPINS2.0.
entire circuit aninitial partition sepa}rator cells

of this phase. This algorithm is based on ordinary hierarchi-
cal quadratic partitioning. The quadratic partitioning is real-
ized by applying the well-known Fiducciaand Mattheyses' bi-
partitioning method, called the FM method [5], in three times
(Fig.2(a)). We extended the FM method so as to consider tim-
ing constraints. In addition to the original gain for minimizing
the cut size, called cut gain, we introduce the gain to handle
timing constraints, slack gain [13], the gain to consider termi-
nal positions of nets, terminal gain [13], and the gain to con-
sider thewire length of nets, wire gain [13]. Consequently, the
gain of a cell is defined as the sum of above four gains, that
is, gain = ax (cut gain) + Bx (slack gain) + yx (terminal
gain)+ éx (wire gain), and we can obtain an initial placement
that minimizesthe cut size and thetotal wire length, distributes
cells uniformly in the placement region, and reduces the viola-
tions of timing constraints as much as possible.

In phase 2, we iteratively improve the initial placement ob-
tained by phase 1. The objective of phase 2 isto eliminate all
the violations of timing constraints and to minimize the total
wire length of the placement. To achieve this, we transform
the placement problem under the timing constraints to a set of
nonlinear programming(NLP) problems and solve them. NLP
tends to require much computation time and memory space.
We hence apply NLP to sub-circuits, for which the formulated
problem can be solved in a practical computation time and
with practical size of memory space. The sub-circuit to beim-
proved, called target sub-circuit, is selected in such away that
the target sub-circuit includes a critical path for which the vio-
lation of thetiming constraint islarge (Fig.2(b)). Thisimprove-
ment based on NLP are applied iteratively until all the timing
constraints are satisfied or iteration count reaches to some pre-
set upper bound value.

In phase 3, the cells, which are distributed on the chip in
phase 2, are assigned to cell rows(Fig.2(c)). In the proposed
row assignment algorithm, first, the cells between each two
consecutive cell rows are grouped, and next for each group,
the cellsin it are assigned to dots in the two consecutive cell
rows by linear assignment considering the wire length and the
timing constraints (row assignment of y-direction). Next, cell
groups are constructed based on x-coordinates of cellsfrom | eft
toright of the chip, and the cellsin each group arereassigned to
slots of the improved region by linear assignment in asimilar
way of y-direction (row assignment of x-direction). The above
operations areiteratively carried out whilethe placement isim-
proved.

Proc.]]

’ Proc.2] o

Proc.3]

of cells

x

Proc.]]

. proco| C_ > D

Proc.3]

marge results of all
processors, and perform|
partitioning of a

set of separator cells

]
(d) perform partitionings
independently

Fig. 4. The paralel agorithm of abi-partitioning at top level.
B. Paralldization of Phase 1

In the parallelization of phase 1, at the top level of hierar-
chy, we perform bi-partitioning by severa processors, and at
thelower levels, carry out partitionings of each region at alevel
in parallel(Fig. 3). Since the bi-partitioning algorithm used in
the parallel agorithm isthe same as POPINS2.0, in the follow-
ing, wewill explain the detail of parall€elization of top level and
lower levels, respectively.

1. Partitioning at Top Level of Hierarchy

At thetop level of hierarchy, since we have to handle the en-
tire circuit as well as to reduce the computation time, we per-
form bi-partitioning by using several processorsin parallel. In
genera, it isdifficult to parallelize the FM method directly be-
cause it consists of a set of sequential operations intrinsically.
In the proposed agorithm, we hence divide the entire set of
cellsinto the sets of cells and perform partitioning of each set
of cellsindependently. AsshowninFig. 4, firstly, weassign ev-
ery cell to each processor based on aninitial partition(Fig.4(c)).
Next, each processor performsthe partitioning of cellsassigned
to it with the bi-partitioning method independently(Fig.4(d)).
To obtain a bi-partition of whole cells, we merge the partition-
ing results of each processors(Fig.4(e)) and then we reassign
cells to each processor based on the current bi-partition. These
operations are iteratively performed while the bi-partition is
improved.

However, if the cells which are connected to each other are
assigned to the different processors, the gain of those cells

would not be calculated correctly. Thus, in the proposed algo-
rithm, we introduce a set of separator cells that divide the en-
tire set of cellsinto the sets of cells which have no connection.
Since the separator cells are not assigned to any processors, the
positions of separator cells are fixed while each processor is
performing the partitioning(Fig.4(d)). In order to improve the
partition, after each processor’s partitioning, the partitioning
of the set of separator cells are done(Fig.4(e)). However, the
movement of cells which improves the whole partitioning are
hard to realize because of other fixed cells. We hence add some
cellsto the set of the separator cells in the breadth-first-search
manner from the set of the separator cells, then the partition-
ing method is applied to the set of both the separator cells and
added cells. Introducing separator cells makes it possible to
calculate the cut, terminal, and wire gains correctly. However,
itisimpossibleto calculate the slack gain correctly, becausethe
calculation of slack gain needs to calculate a delay of a path,
and it isdifficult to separate cellsin each path with no connec-
tion. Moreover, the terminal and wire gains are not useful for
thetop level partition, becausethereisonly one partitioning re-
gion, i.e., whole chip area, and these gains are used to consider
the outside of partitioning region. In the top level partitioning,
we therefore perform the partitioning considering mainly the
cut gain, and other gains are only used as auxiliary gains.

In the assignment of cells to processors(Fig.4(c)), we need
to minimize the number of separator cells and to equalize the
number of cellsassigned to each processor as much aspossible.
Wetherefore perform acell assignment to processorsin thefol-
lowing way. Firstly, apair of seed cellsfor all processorswhich
has a connection and crosses the cut line of the current parti-
tion israndomly selected and is assigned to a processor. Next,
expand each set of cellsassigned to a processor by adding cells
one by one considering the balance of each set of cells. The
added cell should have large connectivity, which is the num-
ber of connections to the present set of cells assigned to each
processor. If the added cell is connected to a cell which has
already been assigned to other processor then the cell becomes
a separator cell and is added to the set of separator cells. This
operation is repeated until al cells have been added to some
sets of cellsassigned to a processor or a set of separator cells.

2. Partitioning at Lower Levels of Hierarchy

At the lower levels of hierarchy, there are many partitioning
regions, and we have to perform the partitioning of many small
sized sets of circuits(Fig.3(c)). So, in the proposed algorithm,
we apply the partitioning agorithm independently to perform
partitioning of each region at alevel.

Figure 5 shows an example of processing flow which ob-
tains the 4 by 4 partitioning from the 2 by 2 partitioning. In
order to obtain high efficiency in parallel processing, updating
the cell positions to calculate slack, terminal and wire gainsis
performed asynchronously by each processor during cell mov-
ing in the partitioning algorithm. Moreover, in order to reduce
the inconsistency of cell positions caused by moving cells by
other processors, we perform the partitioning, in which the di-
rections of the cut lines of the partitioning regions abutted on

Proc.1 Proc.2 Proc.1 Proc. Proc.1
oo || oo oo pool 100l oo [0jlo OOl
oo DD.D:EI DD.DDLU.DDDD
ool|[an] -foal][oio niojofo] 7 (8ot
o || @o oc1 | D oigfof o i [=H=} &
(a) after 2by 2 Proc3 _ Proc4 Proc.3 Proc.4 Proc.2
partitioning (b) (© (d) -
Proc.1
olo)Slo] lollof9fo] [o]ofolo] [ofoio|c]
i = == ol[o]oio oo olo]
. ojfc . oig g__l:_l_‘ oo} oj[o
oOjojo| 0fO)oio] oiofjo o o[ofolo]
fEEE o|[ojo|o] o[olo]o oolla [o
(h) after 4by 4 Procl Proc2 Procl Proc.2 Proc.2
partitioning (@ ® C]

Fig. 5. Partitioning at lower levels.

each other are different from each other as shown in Fig. 5
(b)(c). The effect of the inconsistency of cell positions is de-
creased inthelower levelsof partitioning hierarchy becausethe
regions to be partitioned are apart from each other. We hence
changethe parameters(«, 3, v, and 6) of gain dynamically dur-
ing the hierarchy of partitioning so that firstly, the cut gain is
mainly considered, and the effect of other gains are increas-
ing as the hierarchy of partitioning goes down to lower levels.
In addition to above consideration, in the proposed algorithm,
the bi-partitioning method is hierarchically applied by shifting
the partitioned region as shown in Fig. 5 (d) ~ (g). Since the
precise cell positions are already determined after the 4 x 4
partitioning as shown in Fig. 5 (¢), the terminal and wire gains
can be accurately calculated and a good initial placement can
be obtained.

C. Parallédlization of Phase 2
1. Sdection of a Target Sub-circuit

As mentioned in Section A., in phase 2, iterative improve-
ment based on NLP is performed to improve the placement ob-
tained by phase 1. The paralelization of phase 2 is achieved
by solving the NL P problems[13] for each target sub-circuit by
several processorsin parallel (Fig. 6). However, if each target
sub-circuit has connectionswith the other target sub-circuit and
isimproved concurrently, errors of wire length estimation and
path delay estimation have occurred. We therefore construct
atarget sub-circuit which has no connection with other target
sub-circuit which isimproved concurrently by introducing sep-
arator cells as shown in Fig. 6. The paths which are included
in several target sub-circuits are also divided into severa paths
by the separator cells and considered independently.

Now, leta Loy = (Mmov, Nmov) betarget sub-circuit, where
Mmov isthe set of cells, called movable cells, of thetarget sub-
circuit and Ny is the set of nets, called movable nets, con-
necting to at least one movable cells, respectively. The cells
other than movable cells are called fixed cells and denoted as
Miix. The netsother than movable netsare called fixed netsand
denoted as Nsyx. And let M/, represent a set of cells which
belongsto other target sub-circuit to beimproved by other pro-
CEssOrs.

The construction of a set of target sub-circuitsis asfollows.

target sub-circuits

oSl

selection of critical paths

/
separator cell
solve NLPsin parallel

Fig. 6. The parallelization of phase 2.

First, we find one of constrained paths with a large violation
ratio, and let the constrained path be the initial sub-circuit. Vi-
olation ratio is the value of actual delay time of a constrained
path (or a constrained circuit) divided by the maximum allow-
abledelay timeof it, i.e., Dagt, / Daiow, - The candidatesfor the
constrained path are selected from constrained circuits which
are the largest 10 ~ 20 percent in al constrained circuits in
terms of the violation ratio. But, to improve the placement in
small number of iteration, we don’t select any constrained cir-
cuits which have been selected in the last k(> 0) iterations!
of phase 2. Moreover, to perform the improvement to the sets
of the target sub-circuits in parallel, we select the constrained
path so asto have no connection with any other sub-circuitsim-
proved by other processors. Asincreasing the number of cells,
it may become easy, because the placement areais very large,
and wecan select apath in which cellsare placed at the position
apart fromany other sub-circuitsimproved by other processors.
Next, expand the sub-circuit by adding cells one by one. The
added cell should have large connectivity, which is the num-
ber of connections to the present sub-circuit. In order to avoid
repeatedly selecting the same cell to be added to the target sub-
circuit in each iteration of phase 2, we introduce a randomness
in the selecting step and determine whether the cell isincluded.
Furthermore, to solve the problem in a practical computation
time, we must limit the number of variables in the NLP and
hence the growing process of the target sub-circuit continues
until the number of variables of the NLP problem reachesto a
given constant.

2. TheAlgorithm of Phase 2

The agorithm of phase 2 consists of one master process
and some dave processes, and improves a placement itera-
tively. Ineach iteration, firstly, the master process performsthe
timing verification and calculates violation ratios for all con-
strained circuits. Next, the master process constructs a target
sub-circuit, and forks a slave process. This loop is repeated
until the maximum violation ratio islessthan a pre-determined
permissible violation ratio or the loop count reaches to some
preset value. The slave process receives a target sub-circuit
from the master process, formulates aNL P problem and solves
it. And it sends the result of NLP problem to the master pro-
cess. The outline of the algorithm of phase 2 is shown below.

1In the current implementation, we set k to three.

[Iterative Improvement Based on NLP]

Master process:

Step 1: Perform timing verification to all constrained circuits,
and
LoopNumber = 1.

Step 2: If the maximum violation ratio is less than a pre-
determined permissible violation ratio or LoopNumber >
(preset value), then wait for the termination of al save
processes, receive results from the slave processes, and
exit.

Step 3: Select atarget sub-circuit £, to be improved, and
start a slave process.

Step 4. If thereis a dlave process which have terminated then
receive aresult fromthe slave process, and performtiming
verification to the constrained circuits which has M pgy. If
it cannot increase a slave process any more, then wait for
ending aslave process.

Step 5: LoopNumber = LoopNumber + 1, go to Step 2

Slave process:

Step 1: Find all constrained paths which have the cells of
Moy

Step 2: Formulate the nonlinear programming problem and
solveit.

Step 3: Send theresult of the nonlinear programming problem
to the master process.

D. Paralldization of Phase3

In phase 3, we introduce parallel processing to the assign-
ments of some consecutive groups of cells to each processor,
and perform each linear assignment independently by each pro-
cessor as shown in Fig. 7. Now, let R be the number of cell
rows. All cell rows are numbered from the top of the chip and
letR1, Ry, - - -, Ry betheset of cellsassigned to each cell row.
Areaisgiven to each cell, and let a(M) be the sum of area of
the cellsin M. The width of the chip is determined by the
width of the longest cell row, and if the width of all rows are
same, then the width of the chip is minimized. Thus we give
the same capacity, denoted A, to al cell rows, and the sum of
area of cells assigned to each cell row a(R;) must be satisfied
a(Ri) < Aaizla"'aR'

First, in order to solve a set of linear assignment problems
independently by each processor, we equally assign each pro-
cessor P;, j = 1,2,---, P to aset of consecutive cell rows
{Repn Respez - Rexgan) (B = 0,1,---, P = 1),
which is processed by the processor P;, as shown in Fig.8.

Next, in order to split a set of linear assignment problems, a
set of pairs (G;,S;) are constructed where S;,7 = 1,2,---, R
isaset of dlotsinwhich all cellsin G; areassignedand G, ¢ =
1,2,---, R isaset of groups of cells, respectively. For each
Gi,i1=1,2,---, R, they have capacities a(G;), which are,

3. ..
EA (fi=f xk+1,(k=0,1,---,P—1))
agi = 1 r -
)70 24 @seifi=Exk(k=12,P))
A

(otherwise)

o o
-

Proc. 1

Proc.1 Proc.2

Proc.1 Proc.2
(b) Assignment of x-direction

Proc.1 Proc.2

Fig. 7. Paralelization of phase 3.

o e
92<: Ryl SIS 0N
3 N NN 5]
Js— Y R;| IEEESEIIToT ISR Froc. 1y
9 | R4 y s s
L
= [lRS Proc.
Y |9%6—> YR,

(b) First loop (c) Next loop

(a) Grouping

Fig. 8. Shifting of the group boundaries.

where P and R are the number of processors and cell rows,
respectively. We construct the each cell group as follows.
All cells are sorted by their y-coordinates, and the first cells,
of which the sum of the area is equal to the capacity of the
first group a(G,), are assigned to the first group. Similarly,
the remaining cells are divided into the groups. Then, each
cell group is assigned to the corresponding processor as fol-
lows. Groups Gy, - - -, G r areassigned to processor P;, groups
Gry, . Gon areassig]ﬁedto processor P,, and soon (Fig. 8).

"Next, the cells of each cell group G, are assigned to slots
in each cell row R; by the timing-driven linear assignment
method proposed in [13] in parallel, that is, the cells of groups
G1,Gn.41, -+, Gr(p_1) are assigned to each slots concur-
rently. Inthelarge circuits, these groups assigned concurrently
are apart from each other, then we can reduce the effect of other
processorsin the cost matrix calculation 2. Becausea(G;) > A,
if the cellsin G; which are not assigned to slots of the cell row ¢
but slots of the cell row ¢ +1, then the cellsin R ;41 are added to
thenext group G,+1 and reassigned in the next linear assignment
problem.

After the row assignment of y-direction, the row assignment
of z-direction is performed in the similar way of y-direction.
These assignments of = and y-directions are iteratively per-
formed until there is no more improvement of placement or
LoopNumber is reached to some preset value, and we obtain a
final placement. In each iteration of outer loop, we shift sets
of cell groups for processor P; as shown in Fig. 8, because, in
each iteration, if we use same sets of cell groups, then the cells
in the last cell group of the set of cell group for processor P;
will be only placed at the same cell row in the further loops,
resulting that these cells cannot move to the next cell row and

2This cost matrix calculation is performed before solving linear assignment
problems.

this degrades the quality of the placement. The timing-driven
row assignment algorithm is as follows.

[The Timing-Driven Row Assignment Algorithm]
Step 1: LoopNumber = 0.
/* Row assignment of y-direction */
Step 2: Construct cell groups G1, Go, - -+, Gr
Step 3: Assign cell groups to processors.
Step 4: For each processor P; in parallel
Step 4.1: j =theindex of thefirst cell group assigned to
processor P;.
Step 4.2: For all cellsmy, € Gj, s; € S;, compute ¢y
and solve the linear assignment problem LAP(5) 2.
Step 4.3: For all cells m;, € R;, update their coordi-
nates.
Step 4.4: gj+1 = gj+1 u 72j+1-
Step 4.5: If j < theindex of the last cell group assigned
to processor P;, then j = j + 1 goto Step 4.2.
/* Row assignment of z-direction */
Step 5: Construct cell groups G1, G5, - -+, G
Step 6: Assign cell groups to processors.
Step 7: For each processor P; in parallel
Step 7.1 j =theindex of thefirst cell group assigned to
processor P;.
Step 7.2 For all cellsmy, € G}, s; € S, compute cy;
and solve the linear assignment problem LAP(j).
Step 7.3 For all cellsm;, € R’, update their coordinates.
Step 7.4 gjl‘+1 = g§'+1 U 723‘+l'
Step 7.5 If j < theindex of the last cell group assigned
to processor P;, then j = j + 1 goto Step 7.2.
Step 8: If there is no improvement or LoopNumber = (pre-
set number), then terminate, else Shift the cell groups of
the both directions and LoopNumber = LoopNumber + 1
goto Step 2.

IV EXPERIMENTAL RESULTS

We have implemented the proposed algorithm called Par-
POPINS on a SPARC server 1000 of Sun Microsystems Inc.
(135MIPS x 4CPU, 256MBYyte main memory) in C language
with SunOS5.4 multi-thread library, and performed some ex-
periments. In Table |, we show the example data of the experi-
ments. Data“ primary2”, “avgs’ and “avql” arethe benchmark
datadistributed from MCNC and others are ISCA S benchmark
data. For ISCAS benchmarks, logic synthesis and technology
mapping were performed by SIS1.2[18]. Inthistable, “#cons”
is the number of timing constraints. As the timing constraints,
wegaveaclock cycletimefor each data, which was determined
by that of the placement produced without timing constraints
multiplied by 0.8 ~ 0.9.

SLAP(j) is a linear assignment problem of the G; which is to
determine the slot assignment of al cells in G; which minimizes

ijeg,- ZSL‘E& ¢jrzjr Subject to ZSL‘E& zjr = 1¥Ym; € G),
ZmJ'GQi Zjk = 1(Vs, € S;), and Zjk > O,ij € Gi, Vs, € S; where
S; isaset of slotsin which dl cellsin G; are assigned, and c;;, isacost with
which the cell m; isassigned to the ot s,.

TABLEI
CHARACTERISTICS OF EXPERIMENTAL DATA.

TABLEII
THE RESULTS OF PHASE2 FOR PAR-POPINS anD POPINS.

| Data | #cells [#nets | #/O | #rows | #cons | [Data| Method fVid Diae | length[A] T time[sec] |
C5 T08T | 1560 | 301 13| 334 co | PA-POPTOT 096 127143550.97; 109&0 37;
o | 1087 Lo L) 4] =4 Par-POP | 0 | 0.05 | T0B3641(0.90) | 1147029
C7 2150 | 2678 | 315| 18| 405 - : :
aS B BB oap B c7 | oS | 0| 097 | iesodealion) | avaico
s38417 | /572 | 7734) 134 37| 2619 38584 pOPINS | 0| 0.82 8143268%1'003 2979%1 oo;
$38584 || 8964 | 9344 | 342 46 | 2729 Pa-POP [16] 110 | 25936044(1.01) | 1250(2.47
avgs || 21854 | 22124 | 64 80 | 6064 avgs | POPINS| 0| 0.98 25737577&1.003 506%1 oog
avgl || 25114 | 25384 | 64 86 | 6064 Par-POP [1| 1.00 2846111251.00; 753&0 55;
#cons : the number of timing constraints. avdl | POPINS | 1| 1.00 | 28457150(1.00) | 1368(1.00
TABLEII TABLE IV
THE RESULTS OF PHASE]l FOR PAR-POPINS anp POPINS. THE RESULTS OF PHASE3 FOR PAR-POPINS anp POPINS.
[Data| Method VI Dias | length[A] | timefsec] |
Par-POP | 4 | 1.02 | 1311166(0.98 15(1.36 [Data | M&hod Wi Dma, | length[\] | time[seq] |
C6 | pOPINS| 2| 1.03 133881051 003 11%1.00; PaPOP T 0 1099 T T023204(1.02 597030
Par-POP | 31 1.28 200855521 23; 46%1.53; C6 POPINS | O 0.90 100329151 00; 19621 00;
C7 |POPINS| 1| 1.00 | 1679436(1.00 30(1.00 Pa-POP 0 0.94 | T406502(0.98 189(0.37
Par-POP | 22 1.08 8073146(0.98 790(0.72 C7 POPINS | 0 0.91 1428595(1.0! 0; 60l£l 00;
S38584 POPINS [16| 1.10 | 8245132(1.00) | 1102(1.00 Pa-POP 0 1082 T 7239664(L T869(0.39
Par-POP [42 1.26 | 25493801(0.98 6934(0.41 s38584 | POPINS | 0 0.82 7168711%1 0; 4820%1 00;
ags | POPINS | 33| 1.17 | 26014083(1.00) | 17069(1.00 Par-POP T 0 084 T 22812721(0.94) T 28139(0.20
aval Par-POP [30| 1.21 | 2618057 /EO 92; M91é0.45; avg-small popINS | 0 0.77 24221879&1 ; 13870251 00;
9 |POPINS| 1| 100 | 28457150(1.00) | 18954(1.00 Par-POP | 0| 0.94 | 27856918(L. 103992(0.41
avg-largel pOPINS| 0 | 0.83 22551201&1 00; 24799921.00;

In order to evaluate the parallelization of each phase, we
compare the results of each phase of Par-POPINS with that
of POPINS. First, we compared the results of phase 1 of
Par-POPINS with that of POPINS. Table Il shows the re-
sults for typical data. In Table Il, “#vi0” is the number of
violated timing constraints. “D,,,.", defined as D,pq, =
MaXvt, aueT Dact. / Dallow, , 1S called the maximal violation ra-
tio, and if it is less than or equal to 1.0, the placement sat-
isfies al timing constraints. “length” is the total wire length
estimated by the Manhattern distance (\). “time” is the run-
ning time by SPARCserver1000 (seconds). From Table I,
the average total wire length of Par-POPINS is comparable to
that of POPINS, but the number of timing violations of Par-
POPINS s larger than that of POPINS. For computation time,
Par-POPINS was 1.2 times faster on average and 2.4 times
faster in maximum than POPINS. We can therefore show that
the parallelization of phase 1 is suitable for the large scale cir-
cuits.

Next, Table 111 shows the results of phase 2 of Par-POPINS
and POPINS for typical data. In these experiments, we used
the results of phase 1 of POPINS as the inputs of phase 2 of
Par-POPINS and POPINS. From Table |11, Par-POPINS pro-
duces the comparable results to the results of POPINS for the
total wirelength. For the computation time, Par-POPINS takes
longer than that of POPINS for “avgs’. Since Par-POPINS
were not able to remove 16 timing violations in “avqgs’ effi-
ciently, Par-POPINS tried to improve the placement repeatedly
and the computation time was hence longer than POPINS. For
all data, Par-POPINS is 1.7 times faster on average and 4.7
times faster in maximum than POPINS, but Par-POPINS is
2.6 times faster on average except for “avgs’. We can there-
fore show that the paralléelization of phase 2, which solves the
nonlinear programming problemsfor each target sub-circuit by
several processorsin parallel, is effective to reduce the compu-
tation time without degradation of results.

Next, we show the results of phase 3 of Par-POPINS and
POPINS in Table IV. We aso used the results of phase 2 of
POPINS as the inputs of phase 3 of Par-POPINS and POPINS.
From Table 1V, Par-POPINS can satisfy al timing constraints
for al benchmark data. For computation time, Par-POPINS
is 3.4 times faster on average and 5.0 times faster in maxi-
mum than POPINS. For thetotal wirelength, the results of Par-
POPINS is 4.0% longer on average than that of POPINS. For
“avql”, Par-POPINS were not able to produce the comparable
result to POPINS. We have not yet completely analyzed this
case, but the reason may be as follows. Although the groups
assigned concurrently are apart from each other, the case may
occur that the cells have connection with other cells that be-
longs to other groups assigned concurrently. In this case, since
the errors of estimating the wire length of nets have occurred,
this degrades the quality of the placement. We believe that this
can be improved by decreasing the number of cells which are
assigned in arow simultaneously.

Finally, we compared Par-POPINS with POPINS and RIT-
UAL [19]. RITUAL isone of the most powerful performance
driven placement algorithms which can satisfy a given clock
cycle. The interconnection delay model is similar to ours, ex-
cept that the wire resistance is not assumed. But to compare
with our results, we evaluated the results of RITUAL by our
model. Table V shows the results of Par-POPINS, POPINS,
and RITUAL. For “s15850" and “s38584”, RITUAL was not
able to produce the placement due to errors. Moreover, since
RITUAL which we used can not permit a cell which has more
than one output pins, we could not test “avgs’ and “avgl”. In
these experiments, the results of phases 1 and 2 of Par-POPINS
were used for the inputs of phases 2 and 3 of Par-POPINS, re-
spectively. From Table V, Par-POPINS is 2.2 times faster on
average and 3.3 times faster in maximum than POPINS within
13.9% degradation of the total wire length on average. More-

TABLEV
THE PLACEMENT RESULTS OF PAR-POPINS, POPINS2.0, AND
RITUAL.

[Dafa | Method PVid Dma. | length[\] | time[seq]
Pa-POP| 0| 0094 | 21237113 T78(0.30
C5 |POPINS| 0| 0.89 1074034§1 ooé 60151 ooé
RITUAL| 6| 1.03| 1450583(1.35 1255(2.09
Pa-POP | O | 095 | 1213599(1.71 191(0.38
C6 |POPINS| 0| 0.90 1003291§ é 50551 ooé
RITUAL| 0| 0095 | 1303082(1.30 1362(2.70
Pa-POP | O | 0.96 | 1890354(1.32 1612(0.35
C7 |pPOPINS| 0| 001 1428595%10(% 4600?1.00§
RITUAL| 2| 1.01| 1957200(13 1755(0.38
Pa-POP | O | 0.89 | 2602893(1.17 3114(0.38
s15850 | pOPINS| 0 | 0.88 221636221 ooé 826021.00§
RITUALY| - R e N (---
Pa-POP [O | 096 | 7165758(L02 2405(0.47
s38417 | pOPINS | 0 | 0.86 7058243§1 ooé 5094§1.oo§
RITUAL | 16| 1.53 | 8002986(1.13) | 14426(2.83
Pa-POP | O | 0.85 | 9209736(1.28 6115(0.69
$38584 | POPINS| 0 | 0.82 716871121 ooé 890121.00§
RITUALY| - R N (---
Par-POP [O | 0.77 | 22983II9(0.95) | 64296(0.41
avg-smalll popINS | 0 | 0.77 24221879%1 00 15627721 oo%
RITUALY| - e O N (---
Par-POP | 0 | 0.88 | 28375840(1.26) | 107222(0.39
avg-large pOPINS| 0 | 0.83 22551201&1 oog 268321&1 oog
RITUAL{| - ceeo(---) ceeo(---)

tNo results obtained.

over, Par-POPINS improved the total wirelength by a9.3% on
average and a 16.4% in maximum compared with RITUAL.
For computation time, Par-POPINS is 2.9 times faster on aver-
agethan RITUAL.

V CONCLUSIONS

In this paper, we proposed a parallel algorithm for timing-
driven standard cell placement based on POPINS2.0 [13]. The
proposed al gorithm can satisfy the performance requirement of
the circuit by satisfying the timing constraints. And in the pro-
posed method, to estimate the interconnection delay accurately
we adopted the delay estimation model based on Elmore’s de-
lay model. To obtain high efficiency of parallel processing, we
restrict communication among processors as much as possible
by partitioning the placement problem to some sub-problems
which can be executed independently. From the experimental
results comparing with POPINS2.0, the proposed paralel al-
gorithm, Par-POPINS, produces a placement 2.2 times faster
on average and 3.3 times faster in maximum on 4 processors
within small degradation of the total wire length. Future re-
search includes the further reduction of computation time and
theimprovement of quality of placement results. Devel opment
of parallel placement algorithmsfor other parallel architectures
is another interesting topic.

REFERENCES

[1] M. Burstein and M. N. Youssef: “Timing influenced layout de-
sign,” Proc. of 22nd Design Automation Conference, pp. 124—
130 (1985).

[2] W. E. Donath, R. J. Norman, B. K. Agrawal, S. E. Bello, S. .
Han, J. M. Kurtzberg, P. Lowy and R. I. MeMillan: “Timing
driven placement using compl ete path delays,” Proc. of 27th De-
sign Automation Conference, pp. 84-89 (1990).

[3] A.E.Dunlop,V.D.Agrawal, D. N. Deutsh, M. F. Jukl, P. Kozak
and M. Wiesel: “Chip layout optimization using critical path
weighting,” Proc. of 21st Design Automation Conference, pp.
133-136 (1984).

W. C. Elmore: “The transient response of damped linear net-
works with particular regard to wideband amplifiers,” J. Appl.
Phys., Vol.19, pp. 55-63 (1948).

C. M. Fiduccia and R. M. Mattheyses: “A linear-time heuris-
tic for improving network partitions,” Proc. of 19th Design Au-
tomation Conference, pp. 175-181 (1982).

T. Gao, P. M. Vaidya and C. L. Liu: “A new performance
driven placement algorithm,” Proc. of International Conference
on Computer-Aided Design, pp. 44-47 (1991).

T. Hamada, C.-. K. Cheng and P. M. Chau: “Prime: A timing-
driven placement tool using a piecewise linear resistive network
approach,” Proc. of 30th Design Automation Conference, pp.
531-536 (1993).

T. Hasegawa: “A new placement algorithm minimizing path de-
lay,” Proc. of International Symposium on Circuits and Systems,
pp. 2052—2055 (1991).

P. S. Hauge, R. Nair and E. J. Yoffa: “Circuit placement for
predictable performance,” Proc. of International Conference on
Computer-Aided Design, pp. 88-91 (1987).

[10] M. Igusa, M. Beardslee and S. Sangiovanni-Vincentelli:
“ORCA: A sea-of-gates place and route system,” Proc. of 26th
Design Automation Conference, pp. 122—-127 (1989).

M. A. B. Jackson and E. S. Kuh: “Performance-driven place-
ment of cell based IC’s,” Proc. of 27th Design Automation Con-
ference, pp. 370-375 (1989).

J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich:
“GORDIAN: VLS placement by quadratic programming and
slicing optimization,” |EEE Trans. Comput.-Aided Design of In-
tegrated Circuits & Syst., Vol. 10, No. 3, pp. 356365 (1991).

T. Koide, M. Ono, S. Wakabayashi, Y. Nishimaru and
N. Yoshida: “A new performance driven placement method with
the EImore delay model for row based VLSIs,” Proc. of Asia
and South Pacific Design Automation Conference, pp. 405412
(1995).

E. S. Kuhand M. Shih: “Recent advancesin timing-driven phys-
ical design,” Proc. of Asia-Pecific Conference on Circuits and
Systems, pp. 23-28 (1992).

M. Marek-Sadowskaand S. P. Lin: “Timing driven placement,”
Proc. of International Conference on Computer-Aided Design,
pp. 94-97 (1989).

Y. Ogawa, M. Pedram and E. S. Kuh: “Timing-driven placement
for general cell layout,” Proc. of International Symposium on
Circuits and Systems, pp. 872-875 (1990).

B. M. Riess and G. G. Ettelt: “SPEED: Fast and efficient tim-
ing driven placement,” Proc. of International Conference on
Computer-Aided Design, pp. 377-380 (1995).

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldabha, H. Savoj, P. R. Stephan, R. K. Brayton and
A. Sangiovanni-Vincentelli: “SIS: A system for sequential cir-
cuit synthesis,” Technical Report No. UCB/ERL M92/41, Uni-
versity of California, Berkeley (1992).

A. Srinivasan, K. Chaudhary and E. S. Kuh: “RITUAL: A
performance-driven placement algorithm,” |EEE Trans. on Cir-
cuitsand Systems 11, Vol. 39, No. 11, pp. 825-839 (1992).

S. Sutanthavibul and E. Shragowitz: “An adaptivetiming-driven
placement for high performance VLSI’s,” |EEE Trans. Compuit.-
Aided Design of Integrated Circuits& Syst., Vol. 12, No. 10, pp.
1488-1498 (1993).

M. Terai, K. Takahashi and K. Sato: “A new min-cut placement
algorithm for timing assurance layout design meeting net length
constraint,” Proc. of 27th Design Automation Conference, pp.
96-102 (1990).

S. Wakabayashi, H. Kusumoto, H. Mishima, T. Koide and
N. Yoshida: “Gate array placement based on mincut partitioning
with path delay constraints,” Proc. of International Symposium
on Circuits and Systems, pp. 2059-2062 (1993).

(4]

(5]

(6]

(8]

(9]

[11]

(12]

(13]

(14]

(19]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

