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Abstract—In current probability calculation algorithms for logic 1. Then the probability that the signal is measured as 1
power estimation, switching activity Esy of a node is calculated in a random clock cycle isvl, and we can denofé(x = 1) =
from its signal probability p by the following simple relation:  nvl. Obviously, there ara bits (h =1 - m) which are logic 0
Esw = 2p(1-p). It is generally understood that this simple in the sequence. Therefore, the probability that the signal is
relationship holds under the temporal independence assumption measured as 0 in a random clock cycleVis and we can
for the node. This paper however shows that the above equation denoteP(x = 0) =n/l. We haveP(x = 1) +P(x = 0) = 1.
also gives the expected value of the transition activity in any
sequence that satisfies the given signal probability (averaged
over all such sequences). Therefore, this equation can be used to
calculate the switching activity under more general conditions
than previously thought.

In Eq. (1) we need transition probability rather than the
signal probability for calculating the power dissipation. Thus
we need discuss changes in the signal value during a clock.
We refer to this as the behavior of the signal. For a sigimal
the circuit if we denote its logic values before and after a
clock transition asx(t) and x(t'), respectively, four value
combinations may occur as shown in Table 1, where a special
guaternary variableX denotes the behavior of the signal. Its

In the power estimation of CMOS circuits, the dominanfour values are (Oq, 3, 1), wherea and 3 represent two
term is the power required to charge or discharge thkinds of transition behaviors and 0,1 represent two kinds of

|. SIGNAL PROBABILITY AND TRANSITION PROBABILITY

capacitance is given by holding behaviors. (Note: although they have the same forms
) as signals 0 and 1, their meanings are different.)
P=05C, Vi feik Esw (1) TABLE 1
where C_ is the physical capacitance at the output of the FOUR BEHAVIORS OF ASIGNAL

node,Vpp is the supply voltagdc i is the clock frequency,

Esw (referred to as the average switching activity) is the 3 () - X(1) Behavior
average number of output transitions per clock cydigd/ }

[1]. For a node in a circuitC,, Vpp, andfek are usually 0 0 0 0-holding
given, butEsy is dependent on the input pattern and the a 0 1 a-transition
circuit structure. To estimate the power dissipation of a B 1 0 B-transition
circuit with high accuracy, a large number of input signal 1 1 1 1-holding

patterns should be simulated and the average vall®of
calculated.

Esw May be interpreted as the probability of having a Anl-bit signal sequence can be transformed asl an (
transition at the node in a clock cycle. It may be thust)Pit behavior sequence. Probability of various behaviors in

calculated by a probability propagation algorithm wherebyhiS sequence can be derived by dividing the number of
the transition probability of an internal circuit node isoccurrences of thf behavior of interest irlte @‘)-0(”' s
calculated from the signal probabilities of the primary inpuﬂar%e e”Olng”" 1= 1). They can be denoted B<), P(x'),
variables [2]. The signal probability, which was first used to”(X), P(x). The behavior probabilities are related to the
study circuit testability [3], can be represented as followsSignal probability as follows

There is a binary sequencéof lengthl ), wherem bits are & = 0) =P(x°) + P(xY), )
* This work was supported by DARPA under contract #F33615-95-C-
1627. PP d & = 1) =P(x") + P(). ()

** Xunwei Wu is presently on leave at Univ. of Southern California.. . .
Alternatively, we will have

ASP-DAC'97
0-89791-851-7$5.00 O 1997 |IEEE



= 0) =P(x") + P(x"), the numbers of rising and falling transitions in each sequence
0) =P P(® 4 h b f risi d falli iti i h
— 1) =Pyl a are equal. According to Eq.(8) we should h&¢e®) = P(x)
&= 1) =P(x) + P(X). ) = 0.25. So the number of rising and falling transitions is 6 if
From Egs.(2) -(4) we have we takel - 1 = | = 12. However, only the sequence in
Fig.1(a) has this many transitions. For this reason Eq.(10) is
B 1 — g y q
B) + POE) +POE) + Pix) = 1, 6) often criticized as being applicable only under the
= P(xX°). assumption of temporal independence.
PP 7 ion of |l independ

Equation (6) is obvious. Equation (7) is reasonable since the

number of rising and falling transitions must be equal. If we * f i

useP(x?) to represent the probability of both transitions, i.e.

Eswin Eq.(1), then we have o) + + + + + + * + f +

B = P(x") + P(x) = 2P(X") = 2P(x").

Note that the transition probabilities cannot be derived from © f +
Egs.(2) - (5). Therefore, we have to find other relationships
between signal probability and behavior probabilities if only
the input signal probability is known. Fig. 1. Signal sequencds(12,m = 6)

[l. FORMULA FOR CALCULATING TRANSITION PROBABILITY In this paper we will show that Eq.(10) in fact gives the
FROM SIGNAL PROBABILITY maximum likelihood estimate of the number of transitions in

Consider two consecutive clock cycles. Assuming that Y random sequence of lengthith m 1-bits.
signal values in the two cycles are independent of onBl. STATISTIC OF SEQUENCES WITH FIXED LENGTH AND
another, we can write: SIGNAL PROBABILITY

P(x°)= (x=0)OR x=0)=[ B x= 0]° (8) There is a sequeng®f lengthl , in whichm bits are 1's

1y _ _ o 2 andn bits are 0'sm + n = |. Therefore we have(x = 1) =
POC) = RX=DER =D =[ R =] ©) m/l andP(x = 0) =n/l. For convenience we assume that the
P(x%) =P+ R®)=2R x=)OP x 0 (10) first and the last bits are the same, ther inl{ behaviors of

In the above equations Eq.(10) provides the transformatiothe sequence, the numbér of unidirectional (rising or

: S e . . I%Iling) transitions are equal. Thus, the number of the
from signal probability into transition probability. Since the - . ! .
o : ' transitions in the sequence ik. Now we will answer the
use of probabilities to estimate power was first proposed 0L owing questions:
[4], we consider the transformation formula in Eq.(10) is a g4 '

development of this earlier work. (1) For the sequences with giverand m (n), how manyk
A stationary relationship between signal probability an alues can be observed, that is, what is the raggeand

transition probability is given by Eq.(10). It implies that as "’ fork?
long asm bits are 1 in ar-bit sequence, the number of (2) Givenl andm (n), how many different sequences with
transitions will be given by Eq.(8). If the number of (rising or exactlyk transitions can be found?

falling) unidirectional transitions is denoted ky we can If we denote this number ISy we can calculatéd, the

write total number of sequences with the giteand m (n), and

2 m, _|l-m kave the average of unidirectional transitions, as

PO = 20 = oM L= .

-1 I I Koo

If the lengthl is large enough, we will have H = k_% Sk (12)
ko = XI=M) (11) -
I Z kB,

However, the stationary relationship is difficult to accept kavezm (13)
since eqn.(10) does not hold for an arbitrary sequence. For H

example, consider a 12-bit sequence with six 1's and six O'?B) Is there any difference betwedm,. as calculated in
The signal probability will bé(x = 1) =P(x = 0) =0.5. The Eq.(13) andk, as calculated in Eq.(11)?

three sequences shown in Fig.1 are examples of such a

sequence. Their first and last bits have the same value, that is,



For convenience we suppose the first bit and the last bit TABLE 2

of the sequences are 0, as in Fig.1. Then we move all 1- NUMBER OF SEQUENCES S, FORL = 100AND M = 30
cycles with their falling transitions together, and move all 0-
cycles with 'their' rising transitions together. For' example, the K humber of SJH (%)
sequence in Fig.1(a) can be decomposed into two parts
shown as Fig.2(a) and (b). In Fig.2(a) we can at most arrange sequences
m falling transitions in the logic-1 zone, including the right 1 69 0.00 %
most transition. However, in Fig.2(b) we can at most arrange 2 6.80e+4 0.00 %
(n - 1) rising transitions in the logic-0 zone. Therefore, 3 2.13e+7 0.00 %
ngmber of the unidirectional transitiorks,can be from 0 to 4 3.16e+9 0.00 %
min(m, n-1). For example, for = 100,m = 30,n = 70,k can 5 2 67e+11 0.00 %
take 1,2, ...... 30.
6 1.42e+13 0.00 %
@ m 7 5.12e+14 0.00 %
' ' ' + 8 1.31e+16 0.00 %
9 2.43e+17 0.00 %
A . 10 3.41e+18 0.00 %
(®) . 11 3.65e+19 0.00 %
12 3.05e+20 0.00 %
Fig. 2. Decomposition of signal sequence in Fig.1(a) 13 2.0le+21 0.01 %
. 14 1.05e+22 0.07 %
For the second question, we can analyze how many
different sequences can be found for gilien (n) andk by 15 4.40e+22 0.31%
using the example in Fig.2. For Fig.2(a) this is the question 16 1.48e+23 1.04 %
about how many patterns can contiaih falling transitions at 17 4.05e+23 2.82%
m - 1 positions in the logic-1 zone. (The last falling 18 8.94e+23 6.24 %
transition is fixed at the end of the zone.) The answer is 19 1.60e+24 11.17 %
ckto (MDY 1 ihe other hand, for fig.2(b) the 20 2.32e+24 16.16 %
(M= 1)1 k=1) 21 2.70e+24 *18.86 %
quesFign is how many pa’Fterns we can contaimising 22 2 53e+24 17.63 %
transitions atn _i Iposmons in the logic-0 zone. The answer 23 1880424 13.10 %
is C,f_l = ﬁ . Therefore, for the givelh m (n) and 24 1.10e+24 7.64 %
k we can findS, different sequences: 25 4.93e+23 3.44 %
a 26 1.67e+23 1.16 %
S = Gri Gy (14) 27 4.09e+22 0.28 %
Based on Egs.(10),(11) we have 28 6.81e+21 0.05 %
min(m,n-1) 1 min(m,n-1) 29 6.88e+20 0.00 %
H= Z S and  Kg. = Zktsk 30 3.16e+19 0.00 %
= = Total H=SS =1.43e+25 100 %

Table 2 shows the sequence numisrdor| = 100, m=

30 and differenk, k= 1,2, ...... 30. The percentages in total
sequences fol = 100, m = 30 are also given. The
distribution curve is shown in Fig.3, where we find the peal
appears ak = 21. Therefore we denokge..«= 21. Based on
Table 2, we can -calculate the average number OE
unidirectional transitions as,. = 21.12 = 21. Besides, for
given| = 100, m = 30 we get,= 21 again! Note that we
obtainkpeak and kaye Without any assumption about temporal
independence.

Apart fromm = 30, we also investigata = 10, 20, 40, 50,
I§O, 70, 80, 90 and 100. For= 100, the situation is similar

to the case ofn = 30, and the statistical results are listed in
able 3. Therefore, the transition probability derived from
d.(8) has a new explanation: the calculated probability from
given signal probability?(x = 1) expresses not only the peak
in the distribution of transitions, but also the average number
of transitions. In fact we can replag¥x*?) in Eq.(8) by

PavdX"):



Pave(x%) =2 x=1)0OR x= 0 probabilities. When some characteristic input sequences are
Since the probability represents the average number given. the t.)eSt way to estimate power is 10 input these
i . . Sequences into a simulator and calculate the power by
transitions in any sequence of length can be reliably used . : -
. - ; averaging results. If we extract the signal probability from the
to calculate the transition probability without any concern for

N o sgquence and execute the probability algorithm to estimate
presence or absence “temporal correlations”. The calculate ; :
ower by using Eq.(10), the accuracy may be lost since

gﬁgst';'gr;\g?;gibl[lrlg]:::%#ig[?virtia“md as the most probab Eq.(lO) may not mgtc'h the behavior of the .given seguence.
' Therefore the deviation of results by using the SPICE
simulator and the probabilistic simulator can be understood.
10 However, as long as the loss is within a tolerable range, then
3 the probability simulator may be used since it is significantly
faster than actual simulation.

257 ° 7 On the other hand, if the input signal probabilities are
given we should take all sequences that satisfy the probability
oL profile into account. Then we can use Eq.(10) to calculate the
° corresponding transition probability without being restrained
o by any temporal independence assumption. The calculated
15¢ ] transition probability represents the average and the most
probable value, which conforms to statistical principles.
1k , However, we should point out that it will be impossible to
accurately compare the results with SPICE unless we
simulate all sequences that have the signal probability profile

=30)

Sk, number of sequences (m

058 o ¢ | and average them out.
0 o o 6" ‘ ‘ °. Finally, if the input transition probabilities are given, we
0 5 10 15 20 25 30 can bypass the signal probability propagation algorithm and

k, number of unidirectional transitions

use these transition probability directly.
Fig. 3. Distribution curve o%¢
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IV. DISCUSSIONS

To estimate the power dissipation in VLSI circuits with
high accuracy, it is necessary to know the actual input
pattern, which may be represented by detailed input
sequences, by input signal probabilities, or by input transition
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