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      Abstract—In current probability calculation algorithms for
power estimation, switching activity ESW of a node is calculated
from its signal probability p by the following simple relation:
ESW = 2p(1-p). It is generally understood that this simple
relationship holds under the temporal independence assumption
for the node. This paper however shows that the above equation
also gives the expected value of the transition activity in any
sequence that satisfies the given signal probability (averaged
over all such sequences). Therefore, this equation can be used to
calculate the switching activity under more general conditions
than previously thought.

I. SIGNAL PROBABILITY AND TRANSITION PROBABILITY

      In the power estimation of CMOS circuits, the dominant
term is the power required to charge or discharge the
capacitance is given by

                   P C V f EL DD CLK SW= 05 2.                                (1)

where CL is the physical capacitance at the output of the
node, VDD is the supply voltage, fCLK is the clock frequency,
ESW (referred to as the average switching activity) is the
average number of output transitions per clock cycle 1/fCLK

[1]. For a node in a circuit, CL, VDD, and fCLK are usually
given, but ESW is dependent on the input pattern and the
circuit structure. To estimate the power dissipation of a
circuit with high accuracy, a large number of input signal
patterns should be simulated and the average value of ESW

calculated.

ESW may be interpreted as the probability of having a
transition at the node in a clock cycle. It may be thus
calculated by a probability propagation algorithm whereby
the transition probability of an internal circuit node is
calculated from the signal probabilities of the primary input
variables [2]. The signal probability, which was first used to
study circuit testability [3], can  be  represented  as  follows:
There  is  a  binary sequence x (of length l ), where m bits are
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logic 1. Then the probability that the signal is measured as 1
in a random clock cycle is m/l, and we can denote P(x = 1) =
m/l. Obviously, there are n bits (n = l - m) which are logic 0
in the sequence. Therefore, the probability that the signal is
measured as 0 in a random clock cycle is n/l, and we can
denote P(x = 0) = n/l. We have P(x = 1) + P(x = 0) = 1.

      In Eq. (1) we need transition probability rather than the
signal probability for calculating the power dissipation. Thus
we need discuss changes in the signal value during a clock.
We refer to this as the behavior of the signal. For a signal x in
the circuit if we denote its logic values before and after a
clock transition as x(t) and x(t’ ), respectively, four value
combinations may occur as shown in Table 1, where a special
quaternary variable 

*

x denotes the behavior of the signal. Its
four values are (0, α, β, 1), where α and β represent two
kinds of transition behaviors and 0,1 represent two kinds of
holding behaviors. (Note: although they have the same forms
as signals 0 and 1, their meanings are different.)

TABLE 1

FOUR BEHAVIORS OF A SIGNAL

*

x x t x t( ) ( )→ ′ Behavior

0 0          0 0-holding

α 0          1 α-transition

β 1          0 β-transition

1 1          1 1-holding

      An l-bit signal sequence can be transformed as an (l -
1)bit behavior sequence. Probability of various behaviors in
this sequence can be derived by dividing the number of
occurrences of the behavior of interest into (l - 1). (If l  is
large enough, l - 1 ≈  l). They can be denoted as P(x0), P(xα),
P(xβ), P(x1). The behavior probabilities are related to the
signal probability as follows

                        P(x = 0) = P(x0) + P(xα),                      (2)

                        P(x = 1) = P(x1) + P(xβ).                      (3)

Alternatively, we will have
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                        P(x = 0) = P(x0) + P(xβ),                      (4)

                        P(x = 1) = P(x1) + P(xα).                      (5)

From Eqs.(2) -(4) we have

                       P(x0) + P(xα) + P(xβ) + P(x1) = 1,          (6)

                       P(xα) = P(xβ).                                        (7)

Equation (6) is obvious. Equation (7) is reasonable since the
number of rising and falling transitions must be equal. If we
use P(x1/2) to represent the probability of both transitions, i.e.
ESW in Eq.(1), then we have

                  P(x1/2) = P(xα) + P(xβ) = 2P(xα) = 2P(xβ).

Note that the transition probabilities cannot be derived from
Eqs.(2) - (5). Therefore, we have to find other relationships
between signal probability and behavior probabilities if only
the input signal probability is known.

II. FORMULA FOR CALCULATING TRANSITION PROBABILITY

FROM SIGNAL PROBABILITY   

      Consider two consecutive clock cycles. Assuming that
signal values in the two cycles are independent of one
another, we can write:

          P x P x P x P x( ) ( ) ( ) [ ( )]0 20 0 0= = ⋅ = = =              (8)

           P x P x P x P x( ) ( ) ( ) [ ( )]1 21 1 1= = ⋅ = = =                (9)

       P x P x P x P x P x( ) ( ) ( ) ( ) ( )
1
2 2 1 0= + = = ⋅ =α β        (10)

In the above equations Eq.(10) provides the transformation
from signal probability into transition probability. Since the
use of probabilities to estimate power was first proposed in
[4], we consider the transformation formula in Eq.(10) is a
development of this earlier work.

      A stationary relationship between signal probability and
transition probability is given by Eq.(10). It implies that as
long as m bits are 1 in an l-bit sequence, the number of
transitions will be given by Eq.(8). If the number of (rising or
falling) unidirectional transitions is denoted by k0, we can
write

                       P x
k
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If the length l is large enough, we will have

                                  k
m l m

l0 =
−( )

                              (11)

However, the stationary relationship is difficult to accept
since eqn.(10) does not hold for an arbitrary sequence. For
example, consider a 12-bit sequence with six 1’s and six 0’s.
The signal probability will be P(x = 1) = P(x = 0) =0.5. The
three sequences shown in Fig.1 are examples of such a
sequence. Their first and last bits have the same value, that is,

the numbers of rising and falling transitions in each sequence
are equal. According to Eq.(8) we should have P(xα) = P(xβ)
= 0.25. So the number of rising and falling transitions is 6 if
we take l - 1 ≈  l = 12. However, only the sequence in
Fig.1(a) has this many transitions. For this reason Eq.(10) is
often criticized as being applicable only under the
assumption of temporal independence.

Fig. 1. Signal sequences (l = 12, m = 6)

In this paper we will show that Eq.(10) in fact gives the
maximum likelihood estimate of the number of transitions in
any random sequence of length l with m 1-bits.

III. STATISTIC OF SEQUENCES WITH FIXED LENGTH AND

SIGNAL PROBABILITY

      There is a sequence x of length l , in which m bits are 1’s
and n bits are 0’s, m + n = l. Therefore we have P(x = 1) =
m/l and P(x = 0) = n/l. For convenience we assume that the
first and the last bits are the same, then in (l - 1) behaviors of
the sequence, the number k of unidirectional (rising or
falling) transitions are equal. Thus, the number of the
transitions in the sequence is 2k. Now we will answer the
following questions:

(1) For the sequences with given l and m (n), how many k
values can be observed, that is, what is the range, kmin and
kmax , for k?

(2)  Given l and m (n), how many different sequences with
exactly k transitions can  be found?

       If we denote this number by Sk we can calculate H, the
total number of sequences with the given l and m (n), and
kave, the average of unidirectional transitions, as

                                      H Sk
k k

k
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=
∑
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                            (12)
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(3) Is there any difference between kave  as calculated in
Eq.(13) and k0 as calculated in Eq.(11)?

(a)

(b)

(c)



      For convenience we suppose the first bit and the last bit
of the sequences are 0, as in Fig.1. Then we move all 1-
cycles  with their falling transitions together, and move all 0-
cycles with their rising transitions together. For example, the
sequence in Fig.1(a) can be decomposed into two parts
shown as Fig.2(a) and (b). In Fig.2(a) we can at most arrange
m falling transitions in the logic-1 zone, including the right
most transition. However, in Fig.2(b) we can at most arrange
(n - 1) rising transitions in the logic-0 zone. Therefore,
number of the unidirectional transitions, k, can be from 0 to
min(m, n-1). For example, for l = 100, m = 30, n = 70, k can
take 1,2, …… 30.

Fig. 2. Decomposition of signal sequence in Fig.1(a)

      For the second question, we can analyze how many
different sequences can  be found for given l, m (n) and k by
using the example in Fig.2. For Fig.2(a) this is the question
about how many patterns can contain k-1 falling transitions at
m - 1 positions in the logic-1 zone. (The last  falling
transition is fixed at the end of the zone.) The answer is
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. On the other hand, for fig.2(b) the

question is how many patterns we can contain k rising
transitions at  n - 1 positions in the logic-0 zone. The answer
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. Therefore, for the given l, m (n) and

k we can find Sk different sequences:
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Based on Eqs.(10),(11) we have
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      Table 2 shows the sequence numbers, Sk, for l = 100,  m =
30 and different k, k = 1,2, …… 30. The percentages in total
sequences for l = 100,  m = 30 are also given. The
distribution curve is shown in Fig.3, where we find the peak
appears at k = 21. Therefore we denote kpeak = 21. Based on
Table 2, we can calculate the average number of
unidirectional transitions as kave = 21.12 ≈ 21. Besides, for
given l = 100,  m = 30 we get k0= 21 again! Note that we
obtain kpeak and  kave without any assumption about temporal
independence.

TABLE 2

NUMBER OF SEQUENCES, SK, FOR L = 100 AND M = 30

k number of

 sequences Sk

Sk/H (%)

1 69 0.00 %

2 6.80e+4 0.00 %

3 2.13e+7 0.00 %

4 3.16e+9 0.00 %

5 2.67e+11 0.00 %

6 1.42e+13 0.00 %

7 5.12e+14 0.00 %

8 1.31e+16 0.00 %

9 2.43e+17 0.00 %

10 3.41e+18 0.00 %

11 3.65e+19 0.00 %

12 3.05e+20 0.00 %

13 2.01e+21 0.01 %

14 1.05e+22 0.07 %

15 4.40e+22 0.31 %

16 1.48e+23 1.04 %

17 4.05e+23 2.82 %

18 8.94e+23 6.24 %

19 1.60e+24 11.17 %

20 2.32e+24 16.16 %

21 2.70e+24 * 18.86 %

22 2.53e+24 17.63 %

23 1.88e+24 13.10 %

24 1.10e+24 7.64 %

25 4.93e+23 3.44 %

26 1.67e+23 1.16 %

27 4.09e+22 0.28 %

28 6.81e+21 0.05 %

29 6.88e+20 0.00 %

30 3.16e+19 0.00 %

Total  H = S Sk = 1.43e+25 100 %

Apart from m = 30, we also investigate m = 10, 20, 40, 50,
60, 70, 80, 90 and 100.  For m = 100, the situation is similar
to the case of m = 30, and the statistical results are listed in
Table 3. Therefore, the transition probability derived from
Eq.(8) has a new explanation: the calculated probability from
given signal probability P(x = 1) expresses not only the peak
in the distribution of transitions,  but also the average number
of transitions. In fact we can replace P(x1/2) in Eq.(8) by
Pave(x

1/2):  

(a)

(b)

m

n



                           P x P x P xave( ) ( ) ( )
1
2 2 1 0= = ⋅ =

Since the probability represents the average number of
transitions in any sequence of length l, it can be reliably  used
to calculate the transition probability without any concern for
presence or absence “temporal correlations”. The calculated
transition probability should be realized as the most probable
and the average transition activity.
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Fig. 3. Distribution curve of Sk

TABLE 3

AVERAGE UNIDIRECTIONAL TRANSITION NUMBER KAVE AND PEAK VALUE

KPEAK  OF SEQUENCE WITH L = 100 AND M = 10→ 50

m kave kpeak percentage of sequence
number at kpeak

10 9.08 9 40.85 %

20 16.12 16 24.43 %

30 21.12 21 18.86 %

40 24.08 24 16.60 %

50 25.00 25 16.00 %

60 23.88 24 16.74 %

70 20.71 21 19.23 %

80 15.51 16 25.39 %

90 8.27 9 44.88 %

IV. DISCUSSIONS

      To estimate the power dissipation in VLSI circuits with
high accuracy, it is necessary to know the actual input
pattern, which may be represented by detailed input
sequences, by input signal probabilities, or by input transition

probabilities. When some characteristic input sequences are
given, the best way to estimate power is to input these
sequences into a simulator and calculate the power by
averaging results. If we extract the signal probability from the
sequence and execute the probability algorithm to estimate
power by using Eq.(10), the accuracy may be lost since
Eq.(10) may not match the behavior of the given sequence.
Therefore the deviation of results by using the SPICE
simulator and the probabilistic simulator can be understood.
However, as long as the loss is within a tolerable range, then
the probability simulator may be used since it is significantly
faster than actual simulation.

      On the other hand, if the input signal probabilities are
given we should take all sequences that satisfy the probability
profile into account. Then we can use Eq.(10) to calculate the
corresponding transition probability without being restrained
by any temporal independence assumption. The calculated
transition probability represents the average and the most
probable value, which conforms to statistical principles.
However, we should point out that it will be impossible to
accurately compare the results with SPICE unless we
simulate all sequences that have the signal probability profile
and average them out.

      Finally, if the input transition probabilities are given, we
can bypass the signal probability propagation algorithm and
use these transition probability directly.
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