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Abstract

In this paper, we present a study on the relationship
between entropy and the average power consumption of
circuits generated from Boolean functions. Based on a
general-delay model, an entropy-based formulation for
power estimation is derived from a large set of experi-
mental data. The study shows that the entropy measure
provides an e�ective power estimate for single-output
and fully-correlated multiple-output functions. The s-
tudy also shows that if entropy is used as a power mea-
sure, the internal structure of a circuit must be con-
sidered in order to achieve accurate power estimates
for non-correlated multiple-output functions. Experi-
ments on a set of benchmarks demonstrate that com-
bining entropy-based power measures with input-output
correlation analyses of logic functions leads to a viable
measure for high-level power estimation.

1 Introduction
With the advent in portable computing and high

density VLSI circuits, power dissipation has emerged
as a principle design consideration in VLSI designs. In
the past few years, handful power minimization meth-
ods have been reported for low power designs at circuit,
layout, logic, behavioral, and architectural levels [1, 2].

Accurate and e�cient power estimation methods are
indispensable to the design of low power applications.
In the absence of a power estimation and analysis tool,
designers will have di�culty to make intelligent design
decisions during the design process in order to meet the
power requirement without a costly redesign process.
Hence, a variety of power estimation techniques have
been proposed and studied extensively in industry and
academia [3, 4].

Most of reported power estimation techniques are fo-
cusing on power estimation at circuit and schematic lev-
els. Only very few of them are targeted to the power es-
timation for designs at higher levels of abstraction such
as Boolean functions and RT-level designs. In recent
studies, Najm [5] proposed a technique for power esti-
mation of designs at the register-transfer level (RTL).

ySupported by the National Science Council of R.O.C. under

contracts No. NSC-85-2215-E-007-034 and NSC-86-2221-E-007-

021

This method uses the entropy as a measure of the aver-
age switching activity of the expecting �nal circuit from
its Boolean function. Marculescu et al. [6] proposed two
RTL power estimation methods. The �rst method uses
the entropy to predict the average switching activity of
the circuit. The second one uses the information energy
of the circuit to predict the average switching activity.
Both studies demonstrate that entropy is a viable power
measure for circuits from their logic functions.

In this paper, we address the problem of the use of
entropy to predict the average power consumption of
circuits from their Boolean functions. In the previous
studies, entropy has been successfully used for solving
the problems of area estimation [8, 9, 11] and average
switching activity estimation [5, 6]. In this study, we
investigate the direct relationship between entropy and
the average power consumption of circuits through a
series of experiments. An entropy-based formulation
for power estimation is derived from the data based on
a general-delay model. The usages and limitations of
using entropy for high-level power estimation are dis-
cussed in the paper.

This paper is organized as follows. Sections 2 and
3 introduce the basic concepts of entropy measures for
area and power estimations. Section 4 presents the em-
pirical experiments. Section 5 discusses the experiments
using entropy for power estimation. Finally, section 6
gives concluding remarks.

2 Entropy Measures for Area Estima-

tion of Boolean Functions
Entropy has been formulated as an area measure for

implementing a Boolean function [7, 8, 9, 10]. In this
section, we �rst describe the entropy of a Boolean func-
tion and then the use of entropy to predict circuit areas
of Boolean functions.

Given a Boolean function with n inputs and m out-
puts, there are 2n possible input vectors and 2m output
vectors. Assume that the input values are uniformly
distributed, the probabilistic distribution of the out-
puts can be described as a random variable. For each
output vector Oi, the probability of f = Oi is

Pr(f = Oi) = Pi = NOi=2
n; (1)

where NOi is the number of times Oi appears in the
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truth table.
The entropy H of a boolean function f is de�ned as

H(f) =

2
mX

i=1

(Pi � log2(1=Pi)): (2)

For a single-output function f , the above equation
can be reduced to

H(f) = P1 � log2(1=P1)+(1�P1) � log2(1=(1�P1)); (3)

where P1 is the fraction of 1's in the output column of
the truth table.

Under the presumption of that circuit area is pro-
portional to the number of logic devices used in the
computational work, Hellerman [8] proposed the use of
entropy as a measure for the computational work of an
n-input Boolean function, which is de�ned as Compu-
tational Work = 2nH(f). In the later work, Pippenger
[10] proposed a formula to predict the average amount
of logic required for implementing an n-input Boolean
function, which is shown as follows:

L = (1� d) �K(n) �H(f1); (4)

where L is the literal count, d is the fraction of don't
care, and K(n) is a function of the number of inputs.

Cheng and Agrawal [11] conducted an extensive em-
pirical experiment to evaluate formula 4. The results
indicate that computational work based on the entropy
of the Boolean function has shown a direct relation to
the hardware needed to implement the function. In
their study, they have determined the values of K(n)
(n = 6� 10), which also con�rms the previous observa-
tions [12] of K(n) = k2n for some constant k. Further-
more, the results also indicate that the average amount
of literal count is always given by the computational
work formula irrespective of the number of inputs and
outputs of the Boolean functions. This demonstrates
that entropy is a useful measure for area estimation
from Boolean functions.

3 Entropy and Circuit Power
Recently, Najm and Marculescu et al., [5, 6] pro-

posed two entropy-based power estimation approaches
for logic/RT-level designs. Both studies demonstrate
that entropy is a viable measure for power estimation
of a circuit from its logic function. In this section, we
will introduce the basic concept of the use of entropy
for power estimation.

As stated in [5], the average power Pavg consumed
by a circuit is

Pavg = 1=2V 2

dd

X

i=1

Ci �D(xi); (5)

where Ci is the total capacitance at node i and D(xi)
is the transition density of node xi.

Hence, the average power consumed by a circuit is
proportional to the sum of the product of transition
density and the capacitance of all nodes in the circuit
as
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Figure 1: An example.

Pavg /

NX

i=1

Ci �D(xi) � D

NX

i=1

Ci; (6)

where D is the average node transition density.
Since the total capacitance of all nodes is proportion-

al to the circuit area A, the average power consumption
of a circuit can be expressed as

Pavg / A �D: (7)

As mentioned in the previous section, area A can be
estimated using a formula based on the entropy of a
Boolean function (i.e., formula 4). Thus, if the average
transition density of a circuit is also related to entropy,
then the average power consumed by a circuit can be
estimated directly from the entropy of the circuit. As
a result, the main objective in [5] is to establish the
relationship between the average transition density and
the entropy of a circuit.

Under the assumptions of that the average transi-
tion density of a circuit is proportional to the average
entropy and the output entropy of a circuit is a decreas-
ing function with the circuit depth (i.e., output entropy
is always less than input entropy), Najm [5] proposed
an approximation of the average value of H(X) over
all nodes xi in the circuit, which depends only on the
input and output entropies and the input and output
node counts as

H � (2=3)=(n+m)(Hi + 2Ho); (8)

where n and m are the number of inputs and outputs,
Hi and Ho are the input and output entropies, respec-
tively.

The results in [5] show that using the zero-delay tim-
ing model the estimated average transition densities ob-
tained using formula 8 are well correlated to the one
generated by simulation. However, this model may not
work well on a general-delay timingmodel because tran-
sition density does not react as a uniform decreasing
function with circuit depth on a general-delay model.
For example, Figure 1 shows a circuit in which the out-
put entropies are not always decreased with the circuit
depth. In Figure 1, the solid triangles and empty trian-
gles indicate the transition densities which increase and
decrease with the circuit depth, respectively.
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Figure 2: Functions with 6-input and single-output.

4 An Empirical Study
In this section, we will present an empirical study

to investigate the relationship between the power and
entropy of a Boolean function based on a general-delay
timing model. We �rst used the approach described in
[11] to conduct a series of empirical experiments. We
assumed that the signal probability of each input is 1=2
and the transition density is 1=2 of the clock frequency.
For a given P1 (probability of f = 1), we randomly gen-
erated 100 functions. These functions were then min-
imized using the MIS [13] system (using the standard
script). The circuits were mapped with themcnc:genlib
library. Finally, we used the MED system [14], which is
a Monte-Carlo based power estimator, to estimate the
power consumptions of the generated circuits.

Figure 2 shows the relationship between the pow-
er consumption and P1 for 6-input and single-output
functions. The points on the four curves are the
maximum, average, and minimumpower consumptions
(mW/MHz) obtained from 100 functions, and the nor-
malized entropy function to �t the measured power con-
sumption. In addition, the relation graph of the average
power consumptions versus the entropies for 6, 7, 8, and
9-input functions is shown in Figure 3, in which each
point represents an average value over 200 randomly
generated functions. The results indicate a near-linear
relationship between power and entropy.

From the data, we found that the power consumption
of a Boolean function can be formulated as follows:

Pavg = Kp(n) �H(f); (9)

which is same as the area formulation (formula 4) pro-
posed by Pippenger [10] on fully speci�ed functions.

Table 1: Values of Kp(n)

n Kp(n) Kp(n)=Kp(n� 1)
6 0.00750 -
7 0.01494 1.99
8 0.02716 1.82
9 0.04888 1.82
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Figure 3: Fully speci�ed n-input single-output function-
s.(n=6,7,8,and 9)

From the analysis of measured slope for function-
s with di�erent number of inputs (Table 1), we found
that Kp(n)=Kp(n � 1) � 2 which is same to the ob-
servations [12, 11] on the relationship between the area
and entropy of a Boolean function. Hence, we can ex-
press the relationship between the power consumption
and entropy of a Boolean function as below:

Pavg = kp � 2
n
�H(f); (10)

for some constant kp.

We have also conducted experiments on a set of
multiple-output functions. As described earlier, we ran-
domly generated a large number of functions (1000 each
for (6-input, 2-output), (6-input, 3-output), (6-input,
4-output (Figure 4)), (7-input, 2-output (Figure 5)),
(8-input, 4-output (Figure 6)), and 100 for (9-input,
7-output (Figure 7))). We assumed that the outputs
of the randomly generated functions are correlated to
each input. From the data, we also observed the same
results as indicated in [11] such that the average pow-
er consumed by a circuit is always given by formula 10
irrespective of the number of inputs and outputs.

Furthermore, we have conducted the same set of ex-
periments by applying di�erent mapping methods. The
100 generated functions were minimized using the MIS
system with the standard script and then mapped us-
ing default, area and delay options (default:map -W -p,
area:map -W -m O -AF -p, and delay:map -W -n 1 -
AFG -p) with the mcnc:genlib library. Figures 8 and 9
show the the average power and entropy relationship
with di�erent technology mapping options on 6-input
single-output and 9-input single-output functions, re-
spectively. The results also conform to the previous de-
rived formula (formula 10) with a varying constant kp.
One interesting observation from the data is that cir-
cuits generated using the mapping with the minimum-
area option do not produce the minimum-power design-
s.
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Figure 4: Functions with 6-input and 4-output.
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Figure 5: Functions with 7-input and 2-output.
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Figure 6: Functions with 8-input and 4-output.
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Figure 7: Functions with 9-input and 7-output.
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5 Experiments
In this section, we conducted experiments using en-

tropy as a power measure. First, we applied formula 10
to estimate the power consumptions of a set of bench-
marks. The results are shown on the Pavg column in
Table 2. The results show that the power measures us-
ing formula 10 are overestimated by a large margin on
the multiple-output examples compared to that gener-
ated by simulation (Pavg v.s. MED [14]).

The main contribution to such overestimations is de-
scribed as follows. Because the entropy of a random
variable depends solely on the probabilistic distribution,
using entropy as a power measure which only considers
the probabilistic distribution of the Boolean value but
not the structure of its generated circuit. For single-
output functions with the same entropy, they all have
the same number of 10s in the truth table. Hence, we
will obtain the same power consumption for all these
functions when entropy is used as a power measure.
However, because of the di�erent distribution of 1's
location within the functions, the synthesized circuit-
s from these functions may vary in a wide range so as
the power consumed by the generated circuits. This ex-
plains the deviation of the power consumptions under
the same entropy, as shown in Figure 2.

Table 2 Power estimation for benchmarks

Ckt. #I/Os MED H(f) Pavg Pavg�
9symm1 9/1 0.0472 0.869 0.042 0.042
majority 5/1 0.0022 0.992 0.0037 0.0037
cm138a 6/8 0.0022 0.919 0.0068 0.0027
cm42a 4/10 0.0044 3.031 0.0056 0.0043
b1 3/4 0.0022 2.5 0.002 0.0012
cm82a 5/3 0.0055 2.479 0.0092 0.0053
f51m 8/8 0.0412 8 0.2173 0.0267
x2 10/7 0.0066 2.958 0.2892 0.052
z4ml 7/4 0.0095 3.730 0.0557 0.018
alu2 10/6 0.0823 4.698 0.4592 0.0713

This problem is getting even worse when using en-
tropy for power estimation of multiple-output functions.
For example, consider the following worst scenario, giv-
en an m-input m-output identity function, the entropy
of the function will be m. For this particular function, a
very high power estimate will be obtained when entropy
is used as a power measure. However, this function can
be implemented as a circuit of simply connecting the
inputs directly to the outputs, which should consume
very little power. This demonstrates that if entropy is
used as a power measure, the internal structure of a cir-
cuit must be considered in order to achieve a meaningful
power estimate.

Let's �rst investigate why the entropy-based pow-
er estimates of multiple-output functions are overly es-
timated. Recall that in our experiments on multiple-
output functions, we assume that the outputs of the
randomly generated functions are fully correlated to
each input. For example, for an 8-input 2-output func-
tion, the two outputs are fully correlated to the 8 inputs.
Using formula 10, the power estimate of an 8-input 2-
output function is equivalent to the sum of the power

estimates of two 8-input single-output functions. How-
ever, in most of benchmarking examples, their outputs
are not always fully correlated to each input. For exam-
ple, for the same 8-input 2-output function, if the two
outputs only correlate to 7 inputs each, then the power
estimate of this function is equivalent to the sum of the
power estimates of two 7-input single-output functions.
Using formula 10, the power estimate of an 8-input 2-
output is larger than the sum of the power estimates of
two 7-input single-output functions. This indicates that
we have to take into account the correlation between in-
puts and outputs of logic functions in order to obtain
accurate power estimates for multiple-output functions.

In this study, we used a partitioning-based method
to perform power estimation of multiple-output func-
tions. The main idea of this approach is to decompose
a multiple-output function into a set of single-output
functions. We �rst compute the power consumption
for each decomposed single-output function using for-
mula 10. Then, we determine the correlation (called
input-sharing factors) between inputs and outputs. The
power consumption of the multiple-output function is
computed as the di�erence between the sum of pow-
er measures of the decomposed single-output functions
and the power contributed by the input-sharing fac-
tors. The partitioning-based power estimation method
for multiple-output functions is listed as follows:

1. Decompose the multiple-output function into a set
of single-output functions.

2. Compute the entropy and power for each single-
output function.

3. Compute the input-sharing factor for each input.

4. Recompute the power by taking into account the
input-sharing factor for each single-output func-
tion.

5. Sum up the power measures of all the decomposed
single-output functions.

We will use the following example to explain the pro-
posed method. Assume there is a multiple-output func-
tion with two outputs o1 and o2 and three inputs i1, i2
and i3 in which o1 is correlated to i1 and i2 while o2 is
correlated to i2 and i3. We can decompose the function
into two single-output functions of o1 = f(i1; i2) and
o2 = f(i2; i3). We �rst use formula 10 to compute the
power for these two single-output functions. We then
compute the input-sharing factor for each input. For
example, since functions of o1 and o2 are only correlat-
ed to inputs i1 and i3, respectively, the input-sharing
factors of i1 and i3 are one. On the other hand, both
of o1 and o2 are correlated to i2. In other words, i2 is
sharing by the functions of o1 and o2. Hence, the input
sharing factor of i2 is 1=2. As a result, the total number
of e�ective inputs of o1 and o2 is 1 + 0:5 = 1:5. Fur-
thermore, the total power factor PFi of a single-output
function i is calculated as PFi = (mi�Effi)=mi, where
mi is the number of the inputs of function i and Effi
is the number of e�ective inputs of function i. For ex-
ample, for both of o1 and o2, the input-sharing fac-
tor is (2 � 1:5)=2 = 1=4. After obtaining the input-
sharing factor for each single-output function, we can
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Figure 10: Fidelity analysis of power estimates.

recompute the power for each function by deducting the
power contributed by the input-sharing e�ect. We as-
sume that the power contributed by the input-sharing
is proportional to the square of the input-sharing fac-
tor. For example, the power of o1 (Po1) is recomput-
ed as Po1 = Po1 � (1 � (1=4)2). Finally, the power of
the multiple-output function is calculated as the sum
of power measures of all the decomposed single-output
functions.

Using the described method, we re-estimated the
power consumptions which are shown on the Pavg� col-
umn in Table 2. The results show a large degree of
improvement on the power estimates. However, the re-
sults also indicate that unless we can successfully and
accurately predict the structure of a circuit from its
Boolean function, using the entropy method to obtain
accurate power estimates may not be plausible.

An entropy-based power estimation method may not
achieve accurate power estimates for high-level applica-
tions. It still poses another useful application to sup-
port designers for their design decisions. For exam-
ple, given two functions, a designer may like to know
which one will consume less power to support their de-
sign tradeo� decisions. In this case, the \�delity" of
the estimates is more important than the \accuracy".
Fidelity is a crucial factor in the quality measure that
indicates the degree of the estimated results correspond
to the actual results. In other words, �delity is the de-
viation from the average error over all design points. If
the error over all design points is always of the same
magnitude then �delity is high. We studied the \�deli-
ty" of our power estimates Pavg and Pavg� to the sim-
ulated power estimates (MED). Figure 10 illustrates
the �delity analysis of the power estimates. The results
show that a coherent relationship exists between Pavg�
and the simulated estimates (MED) for all examples
except for x2. On the other hand, Pavg did not provide
high �delity power estimates compared to the simulated
power estimates.

6 Conclusions
We have presented a statistical study to derive an

entropy formulation for power estimation of Boolean
functions. We found that the power consumption of a
Boolean function can be formulated as the same for-
mulation proposed by Pippenger for area estimation
with a di�erent constant value (kp). The study showed
that the entropy measure provides an e�ective power
estimate for single-output and fully-correlated multiple-
output functions. The study also showed that if entropy
is used as a power measure, the internal structure of
a circuit must be considered in order to achieve accu-
rate power estimates for non-correlated multiple-output
functions. We have proposed a partitioning-based pow-
er method for multiple-output functions. Experiments
on a set of benchmarks demonstrated that combining
entropy-based power measures with input-output corre-
lation analyses of logic functions leads to a viable mea-
sure for high-level power estimation. Further study in
this area is necessary in order to achieve accurate power
estimates for high-level applications.
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