
ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

Statistical Estimation of Combinational and Sequential

CMOS Digital Circuit Activity Considering Uncertainty of

Gate Delays

Tan-Li Chou Kaushik Roy

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285, USA.
tanli@ecn.purdue.edu kaushik@ecn.purdue.edu

Abstract|While estimating glitches or spurious transitions

is challenge due to signal correlations, the random behavior of

logic gate delays makes the estimation problem even more dif-

�cult. In this paper, we present statistical estimation of signal

activity at the internal and output nodes of combinational and

sequential CMOS logic circuits considering uncertainty of gate

delays. The methodology is based on the stochastic models

of logic signals and the probabilistic behavior of gate delays

due to process variations, interconnect parasitics, etc. We

propose a statistical technique of estimating average-case ac-

tivity, which is 
exible in adopting di�erent delay models and

variations. Experimental results show that the uncertainty

of gate delays makes a great impact on activity at individual

nodes (more than 100%) and total power dissipation (can be

overestimated up to 65 %) as well.

I. Introduction

As mobile and portable information systems are becom-
ing more popular, battery and packaging technologies do
not seem to be keeping up with the same pace. The deep
submicron processes are also pushing higher levels of inte-
gration, which increases the number of transistors in VLSI
circuits, and hence, the power density. Reliability problems
such as run time errors due to overheating have become more
and more serious. As a result, it has become important to
consider power dissipation and reliability issues during the
design phase. In order to design circuits for low power and
high reliability, accurate estimation of power dissipation is re-
quired. This paper considers accurate estimation of dynamic
power dissipation for CMOS digital circuits considering un-
certainty in gate delays. In CMOS digital circuits majority
of the power dissipation is due to charging and discharging
of load capacitances of logic gates. Such charging and dis-
charging occur due to signal transitions, which depend on in-
put signal patterns. Therefore, accurate estimation of power

dissipation involves accurate estimation of signal switching
activity at the internal nodes of a circuit. However, it is
computationally too expensive to try all possible combina-
tions of inputs in order to estimate power dissipation. There-
fore, techniques are being developed to accurately estimate
power dissipation considering probabilistic and statistical ap-
proaches [1], [2], [7], [9], [10], [4], [11], [12], [8]. Some of the
techniques considered spurious transitions (glitches or haz-
ards) while others ignored. Spurious transitions appear in
circuits not necessarily due to design errors. They also de-
pend on the timing relationship between logic signals of the
circuits. A node with inputs having di�erent path delays
in a synchronous circuit may have several transitions before
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it reaches steady state logic value. Though glitches can be
reduced by balancing paths and by reducing the depth of cir-
cuits, the power dissipation caused by glitches can be as high
as 70% of the total power in some circuits such as combina-
tional adders [8], [6]. The probabilistic techniques proposed
to consider glitches while handling spatial and temporal cor-
relations require building BDDs (Binary Decision Diagrams)
of various forms [7], [8], which can be computationally expen-
sive. One of the problems that these techniques have is that
inertial delay is not considered. As will be shown later, they
usually overestimate the activity. Moreover, the activity at
a node can be very sensitive to the path delays of its inputs
as pointed out in [14]. Therefore, slight variation of delays
result in great changes in activity. As a result, the minor
delay model inaccuracies in the statistical and probabilistic
approaches [7], [11], [12], [13], [3] can lead to large errors in
estimated activity. Unfortunately, these minor inaccuracies
are common due to sources of uncertainty such as process
variations (die to die, wafer to wafer, and lot to lot), in-
terconnect parasitics, temperature, approximation made by
modeling gate delays, and other e�ects.

A solution has been proposed to estimate an upper bound
on activity of individual nodes in larger circuits [14]. This
technique uses signal uncertainty to capture the worst cases{
to estimate the maximum activity. The technique provides
information that can be used in worst case design techniques
and is indeed very fast. However, worst case modeling can be
extremely conservative and therefore can over-estimate the
impact of inaccuracies in delay models on estimating glitches.
In this paper, we propose a statistical estimation technique
considering uncertainty of gate delays. Since this is a simu-
lation based technique, the spatial and temporal correlations
are taken into account automatically. Gate delays with iner-

tial delays are applied in the simulation so that the technique
considers spurious transitions without overestimating them.

In addition, the inaccuracies of delay models due to sources
of uncertainty is captured by the proposed probabilistic de-
lay model. That is, the proposed technique does not try to
estimate power dissipation of a particular chip. Instead, it
gives the average over all the chips of the same circuit under
consideration.

The paper is organized as follows. Section II reviews signal
probability and activity de�nitions and the relationship be-
tween activity and power dissipation. Monte Carlo methods,
which are the basis of the proposed statistical estimation,
will be introduced in Section III. Section IV introduces the
probabilistic model of gate delays and determines a statisti-

cal estimation method of how to take the random behavior
of gate delay into consideration. Experimental results are



presented in section V. Conclusions are given in Section VI.

II. Preliminaries and Definitions

This section formally de�nes signal probability and activ-
ity. A brief discussion on power dissipation in CMOS circuits
is also presented.

A. Signal Probability and Activity

Given a logic signal x(t) and a random variable � , the com-
panion process of x(t) is de�ned as x(t) = x(t + �), where
� is uniformly distributed over < (real number). The bold
font is used to represent a stochastic process. The primary
inputs to a circuit are modeled as mutually independent
companion processes of logic signals. It can be proved [1]
that the probability of a companion process of a logic sig-
nal x(t) assuming the logic value ONE at any given time

t (limT!1
1
T

R T=2
�T=2

x(t)dt) becomes a time constant and is

called the equilibrium probability. This is denoted by P (x).
In contrast, the signal probability is de�ned as (clock cy-
cles in which the signal is steady state ONE)/(total clock
cycles)). Note that steady state signals are only considered
in signal probability estimation and any spurious transitions
are ignored. Najm [1] has also shown that the activity A(x),

de�ned as limT!1
nx(T )

T
, is equal to the expected value of

nx(T )

T
(mean-ergodic). The variable nx is the number of

switching of x(t) in the time interval (�T=2; T=2].
If we assume all primary inputs to the circuits under con-

sideration switch only at the leading edge of the clock and
the circuits are delay-free, we can de�ne normalized activity.
Normalized activity, denoted by a(x) is de�ned as A(x)=f ,
where A(x) and f are the activity at node x and clock fre-
quency, respectively. Normalized activity has an intuitive
meaning. That is, the probability of node x switching within
a clock cycle. In circuits with arbitrary gate delays where
glitches (or hazards) exist, we still de�ne normalized activ-
ity a(x) as A(x)=f . However, note that a(x) can be greater
than one. Hence, a(x) represents the average number of tran-
sitions in a clock cycle.

B. Power Dissipation in CMOS Logic Circuits

Of the three sources of power dissipation in digital CMOS
circuits { switching, direct-path short circuit current, and
leakage current { the �rst one is by far the dominant. Ignor-
ing power dissipation due to direct-path short circuit cur-
rent and leakage current, the average power dissipation in

a CMOS logic is given by POWERave = 1
2
V 2
dd

P
i
CiA(i);

where Vdd is the supply voltage, A(i) is the activity at node

i, and Ci is the capacitive load at that node. The summa-
tion is taken over all nodes of the logic circuit. It should
be observed that A(i) is proportional to a(i). Ci is approx-
imately proportional to the fanout at that node. As a re-
sult, the normalized power dissipation measure � de�ned as
� =

P
i
fanouti � a(i) is proportional to the average power

dissipation in CMOS circuits. The parameter, fanouti is the

number of fanouts at node i.

III. Monte Carlo Based Power Estimation for

Sequential Circuits

In this section we will �rst give a short overview of the
Monte Carlo techniques in estimation of signal activity fol-

lowed by a detailed analysis of the errors introduced in esti-
mation of circuit activity for sequential circuits when \near-

closed sets of states" are present. In the presence of such
states, we also derive a technique to estimate power dissipa-
tion in sequential circuits.
The basic idea of Monte Carlo methods for estimating

activity of individual nodes is to simulate a circuit by ap-
plying random pattern inputs. The convergence of simula-
tion can be obtained when the activities of individual nodes
satisfy some stopping criteria. We can use random num-
ber generators to generate input patterns conforming to the
given probabilities and activities. During a given period,
say T (T clock cycles), we count the number of transitions
at each node, n1 and call the value n1=T a random sam-
ple. T is called the sample length in this paper. The pro-
cess is repeated K times to have K independent samples,
aj = nj=T; j = 1 � � �K; by using di�erent seeds for the
random number generators. The sample mean is de�ned as
�a = (

Pn

j=1
aj)=K. For large K, �a will approach the ex-

pected value of �a, which is limT!1 nT =T , and is denoted as
a since the signal at each node is mean-ergodic (section II).
nT is the number of transitions in the time interval (�T

2 ; T
2 ].

Similarly, for large K the sample standard deviation s will
approach the true standard deviation �. Furthermore, ac-
cording to the Central Limit Theorem [16] �a is a random
variable with mean a and has a distribution approaching the
normal distribution if K is large (typically � 30). Likewise
� � s=

p
K. It has been shown in [11], [12] that for (1� �)

� 100% con�dence the following inequality holds:

ja� �aj
�a

� z�=2s

�a
p
K
; (1)

where z�=2 is a speci�c value such that the area under the
standard normal distribution from z�=2 to 1 is �=2. There-
fore, if

K � (
z�=2s

�a�0
)2; we have (2)

ja� �aj
�a

� z�=2s

�a
p
K
� �

0
; and hence

ja� �aj
a

� �0

1� �0
= �:

Equation 2 is the stopping criterion for (1��) � 100% con-
�dence and � is an upper bound on the relative error.
If any node in the circuit has a very low activity, that is, its

�a� 1, by equation 2 the number of samples required can be
very large. This results in slow convergence. However, since
these low-activity nodes contribute little to power dissipa-
tion, a modi�ed stopping criterion is proposed in [12]. One
can specify a particular threshold value amin, below which
the activities of nodes are less important. Hence one may not
wait for those nodes to converge to a value within a certain
percentage of error. Furthermore, if

K � (
z�=2s

amin�0
)2; we have (3)

ja� �aj
�a

�
z�=2s

�a
p
K
� amin�

0

�a
; and hence ja� �aj � amin�

0
:

Therefore, equation 3 becomes the stopping criterion (with
�a < amin) for (1 � �) � 100% con�dence and amin�

0 is an
absolute error bound (not a percentage error bound).
In sequential circuits, things are di�erent due to the state-

bit feedback. One of the approaches is to monitor the state-
bit probabilities to determine the convergence [13]. However,
to derive each sample probability of a state bit is a problem

since the probability depends on the state the sequential cir-
cuit is in. This can be resolved by assuming that the state of
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Fig. 1. Example: Another STG of a sequential logic circuit.

the machine at time k (kth clock cycle) becomes independent
of its initial state at time 0 as k ! 1. That is, the prob-
ability will be independent of the initial state as k ! 1.
However, there are some circuits that can not be directly
estimated by this approach. Let us consider the State Tran-
sition Graph (STG) of Figure 1. Let G1 and G2 denote the
set of states given by fs1s0; �s1 �s0g and f �s1s0; �s1s0g, respec-
tively. Assume that the probability of making a transition
between the set of states in G1 and the set of states in G2 is
very low. As a result, most of the samples are collected from
G1 if the initial states are s1s0 (S0) or �s1 �s0 (S1). These sets
G1 and G2 are called sets of near-closed states. Let y be the
output node given by y = (s1s0+ �s1 �s0)x1. Considering only
the set of states in G1, y = (s1s0+ �s1 �s0)x1 = x1, while con-
sidering only the set of states in G2, y = (s1s0+ �s1 �s0)x1 = 0.
Therefore, P (y) = P (x1) in G1 and P (y) = 0 in G2. That
is, the probability behavior is very di�erent in two di�erent
groups of states. Data sampled from a particular group is
biased giving errors. As a matter of fact, if we assume all the
primary inputs have the same probability and normalized ac-
tivity of 0:2 and 0:3 respectively, the normalized activity of
y sampled from G1 is 0:3 (a(yjG1)) and 0:02 (a(yjG2)) from
G2.
A solution to this problem is as follows. Let us assume

that we know the values of P (G1) and P (G2) of the previous
example. The normalized activity, a(y) can be computed as
follows,

a(y) = P (G1)� a(yjG1) + P (G2)� a(yjG2): (4)

If STG is given, P (G1) and P (G2) may be computed by
assuming that the primary inputs are either temporally un-
correlated [9], [10] (which may give errors when they are not)
or Markov [4]. A primary input is Markov if its future value
depends on the present value and does not depend on its

past. However, if no STG knowledge is assumed, can we �nd
out P (G1) and P (G2)? Under the assumption that the pri-
mary inputs are Markov, it turns out that we can implicitly
compute P (G1) and P (G2) [5]. If we start with randomly
generated initial state, simulate the circuit for a warmup pe-
riod of clock cycles and then sample data, the probability of
sampling data from among the states of Gi is close to P (Gi).
Let �G denote the upper bound on the relative error between
the probability and P (Gi). Assume that the primary inputs
are Markov, the warmup period is empirically determined

by [5] ln 2i+j

�GP (Gi)
=ln1:1. Here i and j are the number of

state bits and primary inputs. If we repeat the same pro-
cedure N times, we will have N � P (G1) samples from G1

and N � P (G2) samples from G2. Let aj(yjGi) represent the
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Fig. 2. Monte Carlo based technique 
ow chart for both sequential

and combinational circuits

jth sample taken from Gi. Hence the mean of the samples

taken from Gi is

P
N�P(Gi)

j=1
aj(yjGi)

N �P (Gi)
, denoted as a(yjGi). As

a result, the mean of these samples is

(
PN �P (G1)

j=1
aj(yjG1) +

PN �P (G2)

j=1
aj(yjG2))

N
=

N � P (G1)a(yjG1) +N � P (G2)a(yjG2)

N
=

P (G1)a(yjG1) + P (G2)a(yjG2);

which is not biased. The modi�ed version of Monte Carlo
based technique for sequential circuits is outlined in Figure 2.
In the above analysis, we have assumed that there are

only two near-closed sets. But there can be more than two
near-closed sets in a sequential circuit. Our technique can be
extended to cases having multiple near-closed sets. In addi-
tion, the experimental results (Section /refresult) show that
accurate results can be obtained for the sequential ISCAS
benchmark circuits under this assumption.

IV. Delay Models and Statistical Estimation

As mentioned earlier, minor delay model inaccuracies may
lead to large errors in estimated activity. Therefore, delay
models are crucial to the statistical estimation of activity.

Probabilistic delay models used in the estimation will be in-
troduced to capture the uncertainty of gate delays. Based on
the probabilistic delay models, we will generalize the Monte
Carlo approach.

A. Delay models

In the design phase, a designer is faced with di�erent
sources of uncertainty that a�ect the delays of the circuit.
These sources can be grouped into two classes: systematic
and random [15]. The systematic class includes approxima-
tions made to simplify the model for improving simulation
time, approximations made to estimate device and intercon-
nect parasitics prior to layout, and uncertainty in the �nal
process center and distribution when design proceeds in par-
allel with process development. On the other hand, the ran-
dom class includes uncontrolled variations in photolithogra-
phy, die to die variations, wafer to wafer variations, lot to
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Fig. 4. A Circuit with random delays

lot variations, operating temperature, power supply voltage,
etc. In [14], it has been shown that a circuit node where
two reconvergent paths with di�erent delays meet may have
a large number of spurious transitions. However, even in a
tree-structured circuit with balanced paths (without recon-
vergent fanout) there can be a large number of spurious tran-
sitions due to slight variations in delays. These variations can
be caused by any of the above sources of uncertainty.
Let us consider the circuit of Figure 3. All gates are as-

sumed to have the same delay. Because the tree has perfectly
balanced paths, there are no glitches at all. The �nal output
has normalized activity 0:5 when all the primary inputs are
assumed to be synchronous and have activity of 0:5. How-
ever, due to sources of uncertainty, the gate delays may have
variations and are shown in Figure 4. As a result, glitches do
occur and the values of activities at individual nodes change.
This is shown in Figure 4. The inertial delays are assumed to
be half of the values of transport delays for the simulation.
Notice that the �nal output normalized activity becomes 1:30
rather than 0:5. In order to capture this random behavior
in statistical design, these sources of uncertainty are repre-
sented by probability distribution while in worst-case design,
the extreme cases are taken into account.

In this paper, we choose transport delay (d) model with
inertial delay (dI). However, it should be noted that the
technique is not restricted to such a delay model. The point
is to model the parameters of chosen delay models as random
variables in order to capture the probabilistic behavior of
gate delays. The transport delay is modeled as a random
variable of truncated normal distribution with mean �d and

standard deviation �d as shown in Figure 5. The mean is
the nominal value of transport delay d and the deviation is

either assigned by users or determined by feedback from the
fabricated chips. Moreover, if a random delay is less than
a minimum value Min, it is discarded since in real circuits
it must be larger than some positive value. Similarly, if a
random delay is greater than a maximum value Max, it is

σd

µd
Min Max

Fig. 5. Random delay with truncated normal distribution
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truncated since it can be considered as a delay fault.

B. Statistical Estimation

Recall that in Monte Carlo based technique the primary
input patterns are generated conforming to a given activity
and probability of the input signals. In a more abstract view
point, we can think of activity (a) at a node as a function
of primary input vectors PI. Each component of PI is a
stochastic process (see Section II). Therefore, a is also a
stochastic process and can be expressed as follows,

a = F (PI): (5)

In Section III, we applied Monte Carlo based techniques to
estimate the expected value of a, E(a). However, what is
missing in this approach is the information about the delay.

In other words, the delays of the gates of the circuit are
assumed to be some constants (deterministic). Now assume
that gate delays are not deterministic and each gate delay can
be represented by a random variable di. If D is a random
vector consisting of all the random variables of gate delays,
a can be represented as follows,

a = F (PI; D): (6)

Therefore, when applying Monte Carlo based techniques to
estimating F (PI;D), delays are modeled as random variables
and should be generated from time to time along the simula-
tion. The rationale behind this is that whenever we generate
a new set of delays, they correspond to another die or even
the same die but with di�erent operating conditions such as
temperature and power supply voltage. Figure 6 outlines the
procedure of how the modi�ed Monte Carlo based technique
works.

V. Experimental Results

The Monte Carlo based approach with Probabilistic De-
lay models (MCPD) to estimate activities at the internal and



TABLE I

Long run information and results of different delay models on

ISCAS combinational benchmark circuits

Ckt CPU �n �r �m �u

C432 1.2 hr 130 196 194 215

C499 1.2 hr 184 276 270 270

C880 2.3 hr 279 394 389 391

C1355 5.1 hr 393 805 725 887

C1908 23 hr 625 1446 1515 1634

C2670 30 hr 892 1769 1773 1720

C3540 29 hr 1069 2572 2577 2544

C5315 52 hr 1984 4306 4598 4605

C6288 141 hr 2011 31138 51503 57300

C7552 56 hr 2691 6432 6677 6903

output nodes of both combinational and sequential circuits
has been implemented in C under the Berkeley SIS environ-
ment. In this section, in order to compare the results with
gate delays to those assuming no delays, all the primary in-
puts are assumed to be synchronous. That is, if they switch,
they switch at the same time (say, at the leading edge of a
clock cycle). Primary inputs are randomly generated con-
forming to the given probability and activity of the input
signals. In our analysis all the primary inputs are assumed
to have signal probability of 0.5 and normalized activity of
0.5. MCPD uses the probabilistic delay model (Section IV).
The transport delay d, which is a random variable, has mean
�d (equal to nominal value) and standard deviation �d. Un-
less mentioned otherwise, we assume that the standard de-
viation �d is equal to 0:3�d and the inertial delay is also a
random variable that equals to 0:5d. In order to asses the
accuracy of the results, we run MCPD for a long time with
99% con�dence and 1% error. For combinational circuits,
since the activity is higher than that with zero delay mod-
els due to the presence of spurious transitions, we choose a
higher threshold (amin = 0:5). In Table I CPU time for long
runMCPD (in hours on a SPARC 5 workstation) is provided.
The same table also presents several power dissipation val-
ues (normalized power dissipation measure) of di�erent delay
models. �n, �r, �m and �u represent the normalized power
dissipation measures of no delays, probabilistic delay mod-
els, transport delay (not random but equal to nominal value)
with inertial delay being half of the transport delay, and unit
delay, respectively, assuming 95% con�dence, 5% error, and
threshold of amin = 0:5.

Several interesting observations can be made by examin-
ing at Table I. Though the results of unit delay model can
have higher spurious transitions (6 out of 10 circuits of Ta-

ble I), it is not always the highest. As far as �r and �m

are concerned, �r is not necessarily greater than �m. It de-
pends on types of circuits. For example, for the �rst four
circuits �r > �m while for the rest of the circuits �r < �m.
That is, for some circuits like C499, activity at some nodes is
sensitive to uncertainty and therefore ar (activity with prob-
abilistic delay) is greater than am (activity with non-random

nominal delay). This is shown in Figure 7. Also note that
the estimated activity at individual node with probabilistic
delay models can be twice as high as that with nominal delay
models. On the other hand, for some circuits like C6288, un-
certainty helps balance paths of circuits and results in fewer
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spurious transitions (Figure 8). The estimated activity at
individual node with nominal delay models can be twice as
high as that with probabilistic delay models. As we can see
from Table I), the power estimation based on nominal delay
models can either underestimate (10 % less) or overestimate
( 65 % more) compared to the results based on probabilis-
tic delay models. That is, the nominal delay model based
technique can only estimate the power dissipation of a par-

ticular chip, while the other one gives an average over all the
chips under consideration. Therefore, if designers or auto-
matic synthesis tools use the estimation of only one chip, it
may lead to less optimal design for most of the chips.

The accuracy of the normal run results are shown on Ta-
ble II. The average relative error (% error) is the average
percentage of all the relative errors of individual nodes pro-
vided that a(y) � 0:1. This indicates that on the average how
accurate the long run MCPD is for those nodes with higher
activity. Maximal absolute error (Max abs error) among all
the nodes is also given. The term a represents the activity

of a node at which maximal absolute error occurs and its
percentage error is denoted as a % error in the table. Notice
that the CPU time of normal run MCPD is comparable to
that of statistical techniques without considering probabilis-
tic behavior of logic gate delays [12].

Similarly, for sequential circuits we run MCPD for a long
time with 99% con�dence, 1.5% error, 0.1 threshold (amin),
near-closed set probability (P (Gi)) of 0.1, and the upper
bound on the relative error of P (Gi) (�G) being 1%. In con-
trast to long run MCPD, the normal run MCPD takes the
following parameters: 95% con�dence, 7.5% error, 0.3 thresh-
old (amin), near-closed set probability (P (Gi)) of 0.5, with
�G being 5%. Comparison between results of long runMCPD

and normal run MCPD is shown in Table III. In the table,
% error has the same meaning as that of Table II. ND�

and PD� represent the normalized power dissipation with
zero delay and with probabilistic delay, respectively. No-



TABLE II

Individual node information on MCPD in comparison with long

run MCPD results

Ckt CPU % error Max abs a a %
(sec) error error

C432 89 1.2 0.052 0.96 5.4

C499 78 1.1 0.034 1.23 2.8

C880 111 1.6 0.032 1.07 3.0

C1355 333 1.3 0.029 2.05 1.4

C1908 807 0.84 0.045 1.07 4.2

C2670 938 0.87 0.038 1.47 2.5

C3540 2140 1.05 0.047 4.60 1.0

C5315 3141 0.86 0.087 3.60 2.4

C6288 10700 0.83 0.343 14.37 2.4

C7552 4989 0.82 0.054 2.64 2.1

TABLE III

Individual node information on MCPD in comparison with long

run MCPD results

Ckt # CPU ND� PD� % error
samples (sec)

s344 146 119.3 83.8 106.0 0.99

s382 93 41.8 48.5 60.2 1.8

s444 75 23.0 53.2 63.8 6.0

s526 50 16.4 62.4 72.2 7.4

s641 88 225.8 155.5 191.3 1.4

s713 95 250.0 170.1 214.5 1.2

s832 99 137.5 186.5 228.1 1.3

s953 162 260.0 140.3 162.2 2.1

s1196 149 515.1 334.6 420.2 1.1

s1238 134 455.4 345.0 434.4 1.3

s1423 126 605.9 290.1 418.2 2.2

tice that we assume that there are only two near-closed sets.
Therefore, the activity sample can be taken from a bimodal

population (G1 and G2) rather than a single population (G1

or G2).

In order to test the run time for larger sequential circuits,
three larger circuits (s9234, s13207, s15850) have been tried
with the same parameters as those of normal run except
for �2. �2 is assumed to be 0.5 to speed up the simula-
tion (shorter warmup period) since these three circuits have
a large number of latches. The number of gates (#gates),
primary inputs (#PI), 
ip-
ops (#�), levels (#levels), and
run time (CPU) are shown in Table IV.

TABLE IV

Run time test for large sequential circuits

Ckt #gates #PI #� #levels CPU

s9234 5597 36 211 58 3.6 hr

s13207 8027 31 669 59 8.4 hr

s15850 9786 14 597 82 16.3 hr

VI. Conclusions

In this paper we have proposed a statistical estimation
technique considering probabilistic delay models for both
combinational and sequential CMOS logic circuits. Experi-
mental results show the great impact that the probabilistic
behavior of gate delays can have on activity of individual
nodes as well as power dissipation of a whole circuit. The
CPU run time of estimating activity is reasonable and com-
parable to that of estimating activity without considering
uncertainty. Though for our experiments we chose trans-
port delay with inertial delay models, the technique is not
restricted to a particular model. When more accurate de-
lay models are provided, say rise/fall delay models rather
than transport ones, our technique can easily adopt the new
model. Together with worst-case analysis, the proposed tech-
nique can be integrated into a statistical design process that
takes advantage of both.
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