
ASP-DAC ’97
0-89791-851-7$5.00  1997 IEEE

Structural Approach for Performance Driven ECC Circuit Synthesis

Chauchin Su, Kathy Y. Chen, and Shyh-Jye Jou

Department of Electrical Engineering

National Central University

Chung-Li, Taiwan 32054, R.O.C.

Abstract

ECCGen is a logic synthesizer for error control cod-
ing circuits. It takes H matrices as inputs and pro-
duces circuit schematics in two steps, literal minimiza-
tion and gate/pin assignment. Di�erent from conven-
tional logic synthesis tools, it takes a structural ap-
proach to avoid the combinatorial explosion problem in
Boolean function and/or true table representations of
ECC circuits. Moreover, the structural approach also
reduce the complexity of timing and area optimization
signi�cantly when multiple-input exclusive-or gates are
used. The test results show that ECCGen achieves a
reduction of 57% in transistor count and 15% in delay
time on thirteen industrial ECC circuits.

1 Introduction

Error Control Coding (ECC) is an e�ective tech-
nique for the control of errors in digital communi-
cation and data storage systems. Today, it becomes
even more important because of the trend of digitiza-
tion. Both digital communication systems and com-
puter storage devices have ECC circuits built in. The
popular ones include Reed-Soloman and convolution
codes [2]. For circuit design, the use of logic synthe-
sis tools is indispensable. Logic synthesis tools, such
as MIS II [4], BOLD[7], and SOCRATES[8], examine
the logic equations, minimize the logic, and create a
netlist in terms of library gates. The advantages in-
clude correct by construction, fast design cycle, and
performance optimization. These tasks are di�cult
to achieve by human engineers. Unfortunately, the
conventional logic synthesis tools have di�culties han-
dling ECC circuits.

Conventional synthesis tools use binary cubes or
sum-of-product terms to represent logic functions
[3,4,7,8]. The synthesis task is transformed to and
solved as set covering problems. Such a representa-
tion is impractical for the representation of ECC func-
tions. ECC circuits are composed of binary exclusive-
or trees. Every minterm in a ECC function is also a
prime implicant. Therefore, the number of cubes to
represent a n-input exclusive-or function requires the
use of 2n�1 cubes. As a result, these synthesis tools
will su�er a serious combinatorial explosion problem
for large n. Moreover, the XOR is not a primitive
operator in Boolean algebra. For instance, AABC
equals ABC while A � A � B � C does not equal

b

out out’ out out’ out out’ out out’

out out’ out out’out out’ out out’

2 43 5

b

b’

a’a

d

d’

a’

a’

a

a

b

b’

b’

b

a’a

b

b’

d

d’

c’

c

c’

c

e’

e

c’

c

c d edcbaba a b c a

Figure 1: The Multiple-inputs CPL XOR Gates

A � B � C. Hence, Boolean algebra based synthesiz-
ers are not suitable for ECC circuits either.

There are many works focus on the minimization of
XOR and logical equivalence switching circuits [9-13].
However, they attempt to solve the problem by ex-
pressing an arbitrary switching function in a modulo-
2 sum-of-product term form or Reed-Muller form. A
ECC circuit is a special case of the Reed-Muller repre-
sentation. Every product term contains one only one
variable. Moreover, in complementary pass-transistor
logic (CPL) structure [6] a XOR gate can have more
than two inputs. The circuit diagrams of the multi-
input CPL XOR gates are shown in Figure 1. Al-
though the minimization of Reed-Muller form can also
handle ECC circuits, it is not su�cient for perfor-
mance optimization, especially when muti-input XOR
gates are used. With multi-input XOR gates, not only
literal minimization, pin/gate assignment plays a role
of same importance. Therefore, in this paper, we will
propose a methodology for performance driven syn-
thesis of ECC circuits, ECCGen.

The proposed synthesis methodology follows the
similar route as most synthesis tools, namely, literal

1



Encoder
G Correct

Decoder
H

e

d u
Media

v=u+e
d

s

Figure 2: The Block Diagram of Error Control Coding
Techniques

s1

151173151513 1311

s4s3s2

9 5 7 15 3 7 11
14128 10 4 6 12 14 2 6 10 14 1 5 9 13

Figure 3: The Original Implementation of H(15,11,3)

minimization and gate/pin assignment. In Section 2,
We will �rst study the ECC circuit structure and its
minimization. In Section 3, the set partitioning algo-
rithms for literal minimization are presented in detail.
In Section 4, the gate/pin assignment for CPL XOR
structure are discussed. In Section 5, the test results
on 13 ECC circuits are presented. Finally, the conclu-
sions are given in Section 6.

2 ECC Circuit Design and Minimiza-

tion

Before the introduction of the synthesis algorithm,
let us discuss the encoding and decoding mechanisms
of the ECC technique �rst. The block diagram of a
generalized ECC system is shown in Figure 2. Before
data d is transmitted, it is encoded by taking an inner
product with a generation matrix G in GF(2). The re-
sult vector u, u = d�G, is called a codeword. During
the transmission, the codeword may be contaminated
by an error vector e and become v = u+e. Such an er-
ror can be a stuck-at fault in memory systems or noise
in communication channels. At the receiving end, the
received data v is multiplied by a parity matrix H to
check if it is a codeword or not. The result parity or
syndrome s, s = H � v, indicates the correctness of
the received word v. If s is a zero vector then v is an
error-free codeword. Otherwise, v is an erroneous non
codeword.

The encoding and decoding blocks are similar.
They both implement inner products of a vector and
a matrix in GF(2). Let us take the decoding circuit
of the well known (15,11,3) Hamming code as an ex-
ample to illustrate the synthesis and minimization of
ECC circuits. TheHmatrix of Hamming code is given
as follows.

H =

2
64

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

3
75

13119 5 7
14128 10 4 6 2

6
10

14
3

7
11

15
1

5
9

1315

sy

2
6
10

14
3

7
11

15
1

5
9
13

10
11

12
13

8 14
15

64
5 79

s1 s4s2

sx sy

s3
(b)

(a)
s1 s2 s3 s4

sx

Figure 4: The Shared Implementation of H(15,11,3)

The corresponding syndrome equations are listed be-
low.

s1 = v8 � v9 � v10 � v11 � v12 � v13 � v14 � v15
s2 = v4 � v5 � v6 � v7 � v12 � v13 � v14 � v15
s3 = v2 � v3 � v6 � v7 � v10 � v11 � v14 � v15
s4 = v1 � v3 � v5 � v7 � v9 � v11 � v13 � v15

A straight forward implementation of the above syn-
drome equations is shown in Figure 3. However, if we
reorganize the Boolean equations as follows.

sx = v12 � v13 � v14 � v15
s1 = v8 � v9 � v10 � v11 � sx
s2 = v4 � v5 � v6 � v7 � sx
sy = v3 � v7 � v11 � v15
s3 = v2 � v6 � v10 � v14 � sy
s4 = v1 � v5 � v9 � v13 � sy

The new implementation is shown in Figure 4.a. As
a result, the number of XOR gates reduced from 28 to
22. As one can see, sx is a sharable subtree of s1 and
s2. So, �nding as many sharable subtrees as possible
is an alternative way to minimize ECC circuits. Our
approach to achieve literal minimization is detailed in
the next section.

3 Literal Minimization

Instead of considering the cube covering of the
Boolean functions, we achieve literal minimization by
�nding as much sharable subtrees as possible. In this
section, a set modeling for H matrices is proposed, set
partitioning for literal minimization is illustrated, and
�nally, the test results on thirteen EEE circuits are
presented.

The Set Modeling and Partitioning of H Matrix



11

15
14

10
3
2

6
7

13
14

12

15

9
8

10
11

13
14
15

12
5
6
7

4

3 11
9

13
15

5
7

1

s1 s2

4

4 4

4

4 4

s3 s4

11

15
14

10
3
2

6
7

3 11
9

13
15

5
7

1

9
8

(a)

10
11

13
14

12

15

5
6
7

4

4

s3 s4

s1

22

s2s1,2

9
8

10
11

13
14

12

15

5
6
7

4

3
7

11
15

2
6

10
14

1
5
9

13
s3,4s3 s4
(c)(b)

Figure 5: A Step-by-Step Set Modeling and Partition-
ing for H(15,11,3).

11

10

9

8

12

13

14

15

10
11

12
13

14
15

10
11

9
8

13
12

14
15

9
8

10
11

12
13
14
15

(a)

14128 10
151311

s1

9
9
8

s1

(b)

Figure 6: A Partitioning and Implementation of s1.

The H matrix is modeled as a number of syndrome
sets. Each syndrome set represents a row of the H
matrix. The members of a syndrome set are the non
zero bits of the corresponding row. For example, the
H(15,11,3) matrix is represented as the four syndrome
sets shown in Figure 5.a.

The implementation from a syndrome set to a XOR
tree can be regarded as a recursive partitioning pro-
cess. A set can be partitioned into two subsets. The
physical meaning of the partitioning is to create a root
XOR gate and determine the fanins to both inputs.
Note that, the detail structures of the subtrees are
not decided yet. To determine the detail structure of
the subtrees, one must keep partitioning the subsets
with two or more elements until no more partitioning
is possible. After that, the circuit structure is fully
de�ned. For example, for the complete partitioning
shown in Figure 6a, the corresponding tree structure
is shown in Figure 6b.

To minimize the circuits, we can partition the sets
in such a way that one of the subsets is also the sub-
set of the other sets. Such a subset is called a sharable
subset and such a partitioning, a sharable partitioning.
For two sets, the maximal sharable subset is the inter-
section of the sets. To facilitate the sharable partition-
ing algorithm, we now formallymodel the ECC matrix
as a graph. Each node represents a row in H matrix.
The weight of an edge is the number of columns com-
mon to its two terminal nodes. For H(15,11,3) code,
the graphical representation is shown in Figure 5a.
With the graphical model, the ECC logic minimiza-
tion algorithm is abstracted as follows.

LiteralMin()
while (9e(i; j) � 2) f

e(i,j) = the edge of the largest weight
nnew = ni \ nj ; /* Sharable Subset */
ni = ni - nnew; /* Sharable Partitioning */
nj = nj - nnew; /* Sharable Partitioning */
update the edges related to ni, nj , and nnew.

g

This is a greedy algorithmwhich works on the most
pro�table partitioning one at a time until no more
sharable partitioning is possible. For H(15,11,3), if
e(1; 2) is selected �rst, the new graph is shown in Fig-
ure 5b. Now, the next choice is e(3; 4). The �nal
graph is in Figure 5c. From now on, further parti-
tioning will yield no improvement because there is no
sharable subset or no edge with weight greater than
2. The �nal logic implementation is shown in Figure
4.a.

Test Results

The test results on thirteen ECC circuits obtained
from [2] are shown in Table 1. Many of them are prac-
tical ECC circuits implemented in commercial ma-
chines. The �rst three columns are the properties of
the ECC circuits. Column four and after are the num-
bers of XOR operators required after literal minimiza-
tion. The forth column is the original design without
minimization. The �fth column is the results by [1].
The sixth column is the results of a random search
algorithm with a CPU time limit of 100,000 seconds.
The last column are the results by our set partition-
ing algorithm. The last row shows the total number
of XOR operators used for all the cases. Overall, EC-
CGen achieve 44.7% reduction over original design,
12.4% over [1], and 4.7% over 100,000 seconds of ran-
dom searches.

There is a very interesting observation here. Con-
ventionally, we believe that, when selecting an error
control code, we must select the code with the fewest
1's in order to minimize the size of the circuit. How-
ever, the results in Table 1 suggest that this is not al-
ways true. Comparing case 8 with 4, 5, 6, and 7, case
8 has the most 1's before optimization. After mini-
mization, it requires only 44 XOR operators which is
the smallest of all. The same observation can be seen
in case 2 and 3 and in case 11 and 12. So, the key
issue is the sharing capability of the code.

After literal minimization, there is gate/pin assign-
ment to obtain the circuit. Figure 4 shows two designs
for the sharable partitioning in Figure 4.c. By the use
of 4-input and 5-input XOR gates, the circuit size is
minimized. The di�erences between these two extreme
implementations are area and timing. Moreover, there
are more implementations lie between them. In the
next section, we will present a gate/pin assignment
method to obtain an optimal trade-o� between area
and timing.

4 Gate/Pin Assignment

Gate/pin assignment accepts the results of literal
minimization, selects an optimal circuit structure for



Table 1: Test Results - Literal Minimization

Circuit Property Number of XOR Operators
Case Size Function Original ECCSyn[1] Random ECCGen
1 (15,11) DEC-SED 28 22 22 22
2 (24,18) SEC-DEC-S4ED 54 43 42 42
3 (24,18) SEC-DED-S3ED 84 48 44 43
4 (32,25) SEC-DED-S4ED 81 58 57 57
5 (40,32) S2EC 97 73 76 73
6 (45,34) SEC-DED-BED 108 90 83 84
7 (45,39) SEC-S3ED 150 92 83 86
8 (48,40) HD-3 184 47 44 44
9 (60,53) SEC-S4ED 163 119 106 106
10 (72,64) SEC-DED-S4ED 208 159 122 142
11 (72,64) SEC-DED-S4ED 240 158 186 146
12 (72,64) S2EC 272 177 152 146
13 (207,198) SEC-DED-S3ED 819 484 424 385

Total 2488 1570 1444 1376

OptStruct = S

EV = Find EV(S)

for each ev  in EV

XST = Expand(ev)

for each xst in XST

S1 = Instantiate(S,xst)

OptStruct = GPAssign(S1)

Done

Done

GPAssign (S)

PinAssign(S)

Y
N

Expandable(S)?

Y

Y
N

N

Improve?

Return (OptStruct)

Figure 7: The Gate/Pin Assignment Algorithm

each subset, and produces the netlists in circuit level.
The netlist can be fed to layout synthesizers to pro-
duce physical layouts. Here, we chose CPL XOR gates
to demonstrate the feasibility. Gate/pin assignment
is able to handle other multi-input XOR gates, such
as static, dynamic, and cascode voltage switch logic
(CVSL) [5,6] providing that the gates are character-
ized.

The gate/pin assignment (GPAssign) is a recur-
sive depth-�rst search algorithm as shown in Figure
7. It searches for the optimal circuit structure for a
given subset according to an user-de�ne cost function.
Upon receiving a tree structure (S), it determines if
the tree is fully expanded. If it is, an optimal pin as-
signment (PinAssign) will proceed. If S has improve-
ment over the previous optimal structure (OptStruct),
OptStruct is updated If S is not fully expanded, it
�nds the expandable variables (EV ) and expands ev-
ery expandable variables (ev) to a subtree S1. For
each instantiation of S1, it calls PGAssign recursively
for further expansion. In the rest of the section, we

3

((111)1)

xor4-6

4

(1111)

xor4-1

3

((11)11)

xor4-2

3

(1(11)1)

xor4-3

3

(11(11))

xor4-4

3

((111)1)

xor4-5

xor4-7

((1(11))1)

xor4-11

(((11)1)1)

xor4-10

(1((11)1))

xor4-9

(1(1(11)))

xor4-8

((11)(11)

Figure 8: All Possible 4-input XOR Trees.

will discuss the tree expansion, pin assignment, and
the search pruning that is not shown in the owchart.

XOR Tree Expansion

In order to explain the tree expansion, let us look
at all possible 4-input XOR tree structures shown in
Figure 8 �rst. The XOR trees are represented in the
syntax of LISP, as shown at the bottom of the �gure.
A pair of parentheses represents a gate. The ith ele-
ment in the list are corresponding to the ith input. To
obtain all possible implementation of a k-input tree,
we start from (k), for example (4) for k of 4. Any ele-
ment larger than 1 in the list is regarded expandable.
We must decompose k into a nested list of 1's. Again,
(4) can be expanded into f(1111), ((2)11), (1(2)1),
(11(2)), ((3)1), (1(3)), ((2)(2))g. Let us take (1(3)) as
an example. (1(3)) indicates that the �rst level is a
2-input XOR gate with the �rst input a primary in-
put and the second input the fanout of a 3-input XOR



tree. We can further expand the subtree (3) into (111),
(1(11)), and ((11)1). After substituting (3) by these
subtree structures, the fully expanded tree structures
are xor4-6, xor4-8, and xor4-9 as shown in Figure 8.
The expansion algorithm is rather simple, we will not
detail it here.

Pin Assignment

Once the tree structure is determined, the next step
is to assign pins. Since the circuit structure is decided,
transistor count and tree delay from each tree input
to the tree output are also determined. The purpose
of pin assignment is to produce an assignment with
the shortest delay. This is a straightforward task. We
simply order the signal inputs according to their path
delays and order the tree input pins according to their
tree delays. Here, the path delay of a signal is the
maximal delay from primary inputs. The tree delay
of a pin is the delay from the input pin to the tree
output. The input with longest path delay is assigned
to the pin with the smallest tree delay, and vise versa.
Such a pin assignment is able to yield the minimal
total path delay for that particular.

Cost Function

In ECCGen, the optimality is judged by a user-
de�ne criterion. Such a criterion is quantized by a
mathematical equation called CostFunction.

CostFunction =Wt � TxCount+Wd �Delay

If the task is to minimize area, Wt can be set to 1 and
Wd to 0, while to optimize timing, Wt to 0 and Wd

to 1. With the cost function, we can determine the
optimality of the structure.

Search Pruning

From the tree structure expansion mechanism, we
know that the complexity is non polynomial. There-
fore, we need to prune those futile searches. For this,
an estimation function EstimateCost is outlined as
follows. For an unexpanded element (n), the lower
bound of the transistor count is n � 4, the use of a n
input XOR gate, as shown in Figure 1. However, the
estimation of the lower bound of the delay is more dif-
�cult. Assume that there are m all possible structure
for a n-input tree. Let the tree delays of jth structure
are denoted from ti

1
to tj

n
in ascending order. The esti-

mated delays are from t1 to tn also in ascending order
also. Then, we use the following equation to calculate
ti.

ti =
m

min
j=1

t
j

i

In other words, ti is the smallest among the ith short-
est delay of all possible n-input tree structure.

It can be shown that the previous calculation lead
to a theoretical lower bound on delays and transistor
count. ECCGen estimates the lower bound of the cost
by the lower bounds of the unexpanded elements and
the actual data of the expanded elements, If the es-
timated cost EstimateCost(Struct) is greater than

Table 3: Test Results - CPU Time

2-Xor Min-A Min-T Min-T8
1-10 Sec. 1-10 Sec. 10-1000 Sec. 10-100 Sec.

the current best cost Cost, S is pruned. For exam-
ple, if only transistor count is considered, all the other
unexpanded structures will be pruned once (1111) is
explored, because it uses only 16 transistors. Note
that, the lower bounds on trees of di�erent number of
inputs can be calculated beforehand. So, it is a simple
table look up in ECCGen.

5 Test Results

The test results on thirteen ECC circuits are listed
in Table 5. Since there are many ECC circuits with
sets of more than 16 inputs, in some case we have
to set a limit on the search to control the execution
time. So, users are able set a limit on the number
of inputs to a gate. The �rst column of Table 5 is
the result of the original design by the use of only 2-
input XOR gates. The third column, 2-XOR, are the
designs which use 2-input gates after literal minimiza-
tion. The fourth columns, Min-A, are the designs for
the criterion of minimal area. The �fth columns, Min-
T, are the designs for the criterion of minimal delay
without limitation. The �nal columns, Min-T8, are
the designs for the criterion of minimal delay with an
input limit of 8. Note that, Min-T could not �nish on
case 6, 7, 9, and 13 because there are subsets with too
many inputs. The results are collected after 50,000
seconds of CPU time. ECCGen has been tested on
TwinHead SS2 Workstation, a SUN Sparc 2 compat-
ible machine. The CPU time for di�erent cases are
listed in Table 5.

As expected, the criterion for minimal area yields
the smallest transistor count, a 65% reduction over
original design. Even the criteria for minimal delay,
Min-T and Min-T8, achieve 57% reduction in tran-
sistor count. As compare to the conventional 2-input
gate design, 2-XOR, Min-T achieves not only 23% re-
duction in transistor count but also 15% improvement
in delay time. This is in accord with our hypothesis
that the use of balanced binary tree structure does not
necessarily yield the shortest delay. So, we conclude
that the use of multiple input CPL XOR gates reduce
not only the area but also the delay.

6 Conclusions

In this paper, we have designed and implemented
a dedicated logic synthesizer, ECCGen, for the syn-
thesis of ECC circuits. ECCGen takes H matrices as
inputs and produces physical layouts in two steps, lit-
eral minimization and gate/pin assignment. For literal
minimization, we model H matrices as sets and use
partitioning algorithm to achieve 44.7% reduction in
literal count. For circuit implementation, we use CPL
XOR gates as the basic circuit structure. Through the
exploration of di�erent XOR tree structures, gate/pin



Table 2: Test Results - Transistor Count

Transistor Counts / Delay (ns)
Case Original 2-Xor Min-A Min-T Min-T8
1 224/2.79 176/2.79 112/3.34 160/2.79 160/2.79
2 432/3.23 336/3.23 212/4.34 300/2.90 300/2.90
3 656/3.41 456/3.41 284/5.61 368/3.03 368/3.03
4 648/3.98 344/3.98 220/4.71 300/3.65 300/3.65
5 776/3.46 572/3.46 444/5.97 576/3.33 552/3.33
6 864/5.02 688/5.02 424/7.06 604/4.15 616/4.15
7 1200/4.80 848/4.80 508/6.99 748/4.00 772/4.00
8 1472/5.47 352/5.47 260/9.96 316/4.97 320/4.97
9 1304/4.69 1136/4.69 704/7.57 960/3.94 972/3.94
10 1664/5.57 1168/5.57 728/7.86 1040/4.28 1000/4.28
11 1920/5.60 1168/5.60 752/8.07 976/4.31 1008/4.31
12 2176/3.97 584/3.97 356/5.28 480/3.10 480/3.10
13 6552/7.04 3080/7.04 1920/9.83 2656/5.52 2656/5.52

Total 19904/59.0 11008/59.0 6924/86.6 8532/50.0 8544/50.0
Compare 1.00/1.00 0.55/1.00 0.35/1.47 0.43/0.85 0.43/0.85

assignment achieves not only 57% reduction in tran-
sistor counts but also 15% reduction in delay over
the original designs. Moreover, gate/pin assignment
is able to handle other multi-input XOR gates by a
simple change of delays and areas in the library. EC-
CGen is not limited to ECC circuits only. It can be
used as the technology mapping for Reed-Mullar cir-
cuit synthesis as well. After the logic synthesis in the
Reed-Mullar form, the modulo-2 part can be mini-
mized by ECCGen.

From literal minimization, we learned that to min-
imize the size of an ECC circuit, select the code with
smallest number of 1's is not the only guideline. Select
the codes with the most sharable rows can lead to bet-
ter results after optimization. For circuit implemen-
tation, the use of balanced binary tree structure does
not necessarily have the shortest delay. Through care-
ful gate/pin assignment, the use of multi-input XOR
gates does not only reduce the circuit size but also
shorten the delay.

References
[1] C. Su, and J. Wang, "ECCSyn - A synthesis

tool for ECC circuits," Proc. ISCAS'93, pp. 1706-
1709, Chicago, U.S.A., 1993.

[2] T.R.N. Rao and E. Fujiwara, Error-control cod-
ing for computer systems, Prentice-Hall Int, Inc.,
Englewood Cli�s, New Jersey, U.S.A., 1989.

[3] R. Brayton, G. Hachtel, C. McMllen, and A.
Sangiovanni-Vincentelli, Logic minimization al-
gorithms for vLSI synthesis, Kluwer Academic
Publishers, Hingham, Maryland, U.S.A., 1984.

[4] R.
Brayton, R. Rudell, A. Sangiovanni-Vincentelli,
and A. Wang, "MIS: A multiple-level logic opti-
mization system," IEEE Trans. Computer Aided
Design, Nov. 1987, pp. 1062-1081.

[5] N. Weste, and K. Eshraghian, Principles of
CMOS VLSI design a systems perspective 2nd
ed., Addison-Wesley, New York, U.S.A., 1993.

[6] K. Yano and et al., "A 3.8-ns CMOS 16X16multi-
plier using complementary pass-transistor logic,"
IEEE J. of Solid-State Circuits, vol. 25, no. 2,
April, 1990, pp. 388-395.

[7] D. Bostic and et al., "The boulder optimal logic
design system," Proc. Int'l Conf. on Computer-
Aided Design, Nov. 1987, pp.62-65.

[8] D. Gregory and et al., "Socrates: a system for
automatically synthesizing and optimizing com-
binational logic," Prof. 23th Design Automation
Conference, June 1985.

[9] S. Even, I. Kohavi, and A. Paz, "On minimal
modulo 2 sums of products for switching func-
tions," IEEE trans. on Electronic Computers,
Oct. 1967, pp. 671-674.

[10] A. Mukhopadhyah and G. Schmitz, "Minimiza-
tion of exclusive OR and logical equivalence
switching circuits," IEEE Trans. on Computers,
vol. C-19, No. 2, Feb. 1970, pp. 132-140.

[11] G. Papakonstantinou, "Minimization of modulo-
2 sum of products," IEEE Trans. on Computers,
Vol. C-28, No. 2, Feb. 1979, pp. 163-167.

[12] M. Helliwell and M. Perkowski, "A fast algorithm
to minimize multi-output mixed-polarity general-
ized Reed-Muller forms," Proc. 25th ACM/IEEE
Design Automation Conf., 1988, pp.427-432.

[13] C.C. Tsai and M. Marek-Sadowska, "Multilevel
logic synthesis for arithmetic functions," Proc.
33th ACM/IEEE Design Automation Conf.,
1996.


	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


