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Abstract— In this paper, we propose an efficient solution forthe  substitution is simply that in ASICs and processors, several
Multiple Constant Multiplication(MCM) problem. The method multiplication costs can be substantially reduced by imple-
exploits common subexpressions among constants based on hier-menting with shifts, adders, and subtractors rather than with
archical clustering and reduce the number of shifts, additions, and multipliers. The importance of such optimization has been
subtractions. The algorithm defines appropriate weights which  recognized for high-level synthesis. Only recently, however,
indicate the operation priorities and selects the common subex- has this transformation been investigated to reduce power
pressions which results in the least number of local operations. consumption [4] and area size [5].

It can also be extended to various high-level synthesis tasks such  The significant advance for the transformation was achieved

as arbitrary linear transforms. Experimental results show the by Potkonjaket al. in [6], [7]. They first formulated the

effectiveness of our method. Multiple Constant Multiplication(MCM) problem in high level
synthesis by considering the multiplications of one variable
with several constants at a time and also reduced the number of
the shifts and additions based on iterative pairwise matching.

Recently, high-level synthesis methodologies have played Mehendaleet al[8] considered the problem by examining the
important role in VLSI design automation. Many tasks in highpoeﬁicient matrix and the iterative elimination of two-element

level synthesis such as design representation, transformatiGRMMon subexpressions.

scheduling, and allocation have been exploited. In addition, Inthis paper, we first present new weights for subexpressions
powerful high-level synthesis systems with these techniqu#adicating priorities to be executed earlier, and present the
have been introduced over the last decade [1], [2]. algorithm to minimize the numbers of additions+subtractions

Among the high-level synthesis tasks, transformation to b&nd shifts by using them. Since the definition of the weights
havioral descriptions and to internal flow-graph representatiofi@kes into account not only a direct common subexpression but
is quite important to achieve high-quality design. Such tranglso subexpressions which can be computed by just shifting the
formation involves various compiler-like optimizations suctpther, it can fully express the operation priorities and explore
as constant folding, redundant operator elimination. Anothéhe search space quite effectively. Our method can be applied
powerful transformation technique, the tree-height reductiof@r various number representations such as Signed Digit(SD)
uses the algebraic properties of operators such as commutatfPresentation. Furthermore, it can be extended to a general
ity and distributivity to decrease the height of the parse treéinear transform with arbitrary elements, and thus, applied
This technique has been successfully applied to high-levi® various kinds of high-level sysnthesis tasks, especially for
synthesis to improve the parallelism of the design [3]. numerically intensive applications.

The problem we consider in this paper is one of these flow- This paper is organized as follows: In the next section, we
graph transformations, that is, substituting multiplications witsummarize the MCM problem using an example. In Section
a single constant by shifts and additions, and minimizingl, we show our hierarchical clustering method to thoroughly
the number of these operations. The motivation for such eéxplore common subexpressions. In Section IV, we extend

I. INTRODUCTION
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our basic scheme to arbitrary linear transforms to aim at
several high-level synthesis tasks Section V is devoted to the
experimental results. Finally, we conclude in Section VI.

Constant [Binary representation|

815 1100101111
365 0101101101
831 1100111111
121 0001111001

Il. PROBLEM FORMULATION

A. Previous Work

o0 T ®

Optimization of multiplications with a constant has been
investigated from several viewpoints, such as on softwalryg. 1. Values of the constants and their binary representations
compilers [9], computer architecture [10], DSP [11], and
so forth. Chatterjeest al[5] have addressed this problem

to improve area size and have presented algorithms based on X

number splitting. However in these tecniques, the simultaneous al b| c| d

optimization of multiplications of one variable by multiple { / / {

constants has not been fully explored. (* Gi (*
Recently, another significant advance was achieved by

Potkonjaket al[6], [7] and by Mehendaleet al[8]. Potk- + i

injak et al. considered all of the constants multiplied by
the same variable at the same point in time and formulatgg, » eyample of multiple constant multiplications
the MCM problem as follows:Substitute all multiplications
with constants by shifts and additioend subtractiong and
use common subexpressions between various muItipIicatioES e 1 Fi " he followi q o
to minimize the number of additiofand subtractions They xampie . Irst, consider the following  description:
. . rg{:a*X—i—b*X—l—c*X—i—d*X. The concrete val-

explored common subexpressions among multiple constarits o

: . . o . . ves of the constants fromto d are shown in Fig. 1 and the
using the iterative pairwise matching algorithm. Note that. lified cirevit in Fig. 2
this algorithm works better than the simple bipartite matchings,Imp ffied cireuit in Fig. 2. ) ] )
even though it possibly has some defects in searching for Not only are the constants integers but even arbitrary fixed

common subexpressions. Mehendateal. also considered point numbers are permissible. Before explaining the algo-

the MCM problem by looking for common 2-bit Subexpres_rithm, we need to make one assumption. If all we need is the

sions across bit locations and those within a coefficient. [IPtaZ! value of the right side of the descript.ion, then it d.oes
doing this, they suceeded in further reducing in the number opt make sense to find the common expre§5|0n, becausg in that
additions+subtractions. However, since they explore commc?f‘_'flse_' al! of the constants can be added in advance using the
subexpressions across constants and those within a conspalﬁ{”bunve property. Thus, we assume that we need each of
separately and explore only those of ‘2-bit’ types, better con{he product elemenis« X, b )_(’ cx X, andd *.X and tha.t .
mon subexpressions which exist in many bit locations acrod¥ do not add the constants in advance. This assumption is
the constants and within a constant can be missed. Thus, Wépr.opriate when we formulate the MCM problem on various
explore the common subexpressions across the constants QRBI'CatmnS'

those within each constant simultaneously and decide the bestVe first represent all of the constants in binary form as
subexpression to be executed by the priority criteria whichown in Fig. 1. By this representation, an addition between
takes both types of common subexpressions into account. phyo shifted numbers can be shared by all of the constants that
thermore, we extend the basic algorithm to a wider range Have common 1s in the same two figures. We will demonstrate

problems, such as to the MCM problem for a linear transforrloW to share the subexpressions: If we first shift and add the
with arbitrary entries. numbers corresponding to the common 1s in the first, fourth,

and sixth figures as shown in Fig. 3, we need only two
additions among the three figures and two shifts for the 1s in
the fourth and sixth figures. However, without any sharing,

We introduce the MCM problem using an example and memwe need eight additions and eight shifts for the computation.
tion the basic idea. Thus, six additions and six shifts are saved by that sharing.

B. Exploring Common Subexpressions — An Example
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Fig. 3. Clustering based on 2-bit common subexpressions Fig. 4. Clustering with a substitution of shifts for additions

We then process the computation for the third and 10th figureadditions, and subtractions. Thus, we first minimize the num-
Continuing in the same way, we need 10 additions and eigher of additions+subtractions and then, minimize the number
shifts, while initially 22 additions and 22 shifts were neede®f shifts under the assumption that varrel shifts are used and
for the multiplications of, b, ¢, andd. cost of all shifts is identical.

However, this is not sufficient because it does not utilize We first need to introduce some notation to support the
common subexpressions within each constant. That is, asalgorithm. ~ Consider a variablé’ multiplied by multiple
Fig. 4 where the sum of the shifted numbers correspondirf@nstants{a,}(0 < k < n — 1) where each of them has
to the 1s in the third and fourth figures of the constaman bits. We firstexpress all of the constants in some representation
be just computed by shifting the sum for its first and secon@®king the values 1;-1, and 0. Let/ = {v;}(0< i < m —1)

figures as follows: be the set ofn vertices where; represents théh figure from

the right of all constants. We express the value ofithdigure

X2+ X«3=(X+Xk])«2 (1)  of ax by v;[k]. Then, the representation of, is written as
Um—1[k]vm_2[k] -+ vi[k]vo[k], which implies that the values

Similarly, the sum corresponding to the subexpresdionf d
in Fig. 4 can be computed in terms of the subexpresdidm
Fig. 4 as follows:

(v;[k]) (0<k <n-10<i<m-—1)forman x m matrix
whose elements are 1, or 0. We call(v;[k]) the digit

matrix.
ZG:(X i) = {i(X < i)} <3 2 vm-a[0] .. w0 vo[0]
i=3 i=0 (Uz' [k’]) — Vpm—1[1] o v1[1] vo[l]
By rigorously executing such substitutions of shifts for vm_l[n— 1] .. vl[n—l]vo[n—l]

additions, we can reduce the number of additions to nine,
where the number of shifts is unchanged, eight in total.
We extract common subexpressions in such an order tha[:ia_ 5. Digit matrix
pair of bits that exists most frequently across the constants and
within a constant is given the highest priority and shifted and
added first. We progress with the algorithm until all bits have Next, we define two kinds of weights betweenandv; to
been added and the whole computation is completed. express priorities among the subexpressions as follows:
The above examp!e describes techniques for explo.rln'g t%f = #{(0y [, vg[k]) = (1,41) [0< T < m — 254,
common subexpressions across constants and those within eacH
constant. We will show the details of the algorithm in the next X Lp+ X g =+X it X <) <
section. Wi = #{(vplk],vg[k]) = (£1,F1) [0< I <m — 25t

Xgp—-X<¢=2XKi-X<j)<gl}

1. HIERARCHICAL CLUSTERING ALGORITHM Each of the weightsV;% is equal to the number of 2-bit

subexpressions which can be computed by just shifting the
addition(or subtraction) result of « i + X « j to the left.

The MCM problem can be formally stated as the minimizaHence, all the subexpressions used to calculate each weight
tion problem of a weighted sum of the numbers of shiftscan be performed with only one addition(or subtraction).

A. Preliminaries



B. Hierarchical Clustering Procedure 3. For allv;,v; € V, compute the Weightsmi}.

- +
We explain how to calculatgV;*;} and how to select 4 yngjl all of the pairs of columns have no positive weights,
subexpressions by using the following example.

Example 2. Suppose a variabl& is multiplied by the four e Select the best pair of digits,e. find the pair of
constants:, b, ¢, andd where the binary representations of the columns(vy, v;) that takes the valuewas {W;5 }.
constantsare=111%,6=110%, c=011Q, andd = ¢ Update the digit matrix according to the clustering of
101 %. Then, there are initially four vertices corresponding common subexpressions: let the clustered elements
to the four bit elements,e. V' = {vo, v1, vz, v3}. The digit to be zero in the former matrix and decide the
matrix that consists of the bit elements of a, b , ¢, and d is elements of the new columns which are produced
shown in Fig. 6. by the clustering instead.

11 1 1 e Recompute the weigh f?} for the updated digit

(k) = é i g é matrix.
101 1 5. Output the total number of additions and shifts needed

and the final data flow graph.
v3 Uz V1 Vg
In the third step, we compute the weights which take into
Fig. 6. Digit matrix for Example 2 count both the direct common subexpressions and the subex-
pressions which are obtained by the substitution of shifts for
additions. The fourth step is the main recursive procedure of
%he algorithm. The pairing that can reduce the number of ad-
ditions most is selected. In case that there are weights with the
same highest value, we select the subexpression that does not

airs invy andvz. Thus,Wo; =24+ 14+2=5. All W; ;sare . . .
P 2 3 ot _+ ++ , o increase the height of the data-flow graph because balancing
obtained in the same way. In this caBgy, is maximal and all , _ _
. ’ ._the heights of all trees tends to result in the better sharing of
the pairs of (1 1) are clustered over columns and rows at a tim

. the subexpressions while also affecting the throughput.
We generate three columng, vs, andvg corresponding to the Lo . .
i i ) As for the substitution of shifts for additions, generally, such
above three kinds of subexpressions, respectively. Hence, 'gsf}1ez

- o - . Ifts can be performed between the subexpressions which
digit matrix is subsequently updated as in Fig. 7 and weights .
. . " consist of more than two non-zero digits and the common
are computed again. Finally, we need four additions and four

. ) subexpressions can be fully explored.
shifts for the whole computation. P y exp

To calculateW(;r 1, for example, we count the subexpression
that are obtained by shifting (1 1) iy andv;. There are two
such pairs invg and vy, one such pair in; andw,, and two

1010000
V. EXTENSION TO ARBITRARY LINEAR TRANSFORMS
1 00 0 001
01 00 O0O0TDO The MCM problem can be seen frequently in many problems
0 01 1000 which include linear transforms such as those in signal and

image processing, error-correcting codes, and so forth. Thus,
it is beneficial to extend our method to linear transforms with
entries of arbitrary values.

The general linear transform has the form:

Ve Us U4 U3 VU2 V1 Vg

Fig. 7. Updated digit matrix

Now, we outline the algorithm below. n
g YZ:ZGUXJ’ (z:l,,n)
j=1

Algorithm for Hierarcichal Clustering

. ) Such a case was formerly discussed in [7] in which they applied
1. Represent all constants in some representation form and . . o . . :
i . ) the iterative pairwise matching algorithm twice. However, we
transform them into the digit matrix){[k]) where each

) ) . present a natural and effective method to explore the solution
element consists of a single digit. . L . . . .
space at a single point in time using hierarchical clustering.
2. Eliminate duplicates of identical constants as well am the case of matrix multiplication, two kinds of shift-for-
eliminate constants of less than two non-zero digits.  addition substitution are taken into account for the weight



computation; one is for the constants in the same columns, TABLEI
. T . Ri
i.e. for those multiplied by the same variablg and the other BENCHMARK RESULTS ON SEVERAL LINEAR TRANSFORMS

is for those in two different columns multiplied by different (1) Examples for Linear Codes with binary values

Additions
variablesX andX’. In the former case, the pair of digits are Bxample | il | (7] | HC |HC/nitial
in the same column and the weights are computed in the same (7.4Hadamard 21 16 16 | 0.762
way as before. To explore the latter case, we first need to (F%g,eldl_?v'u”er 61 43 31 | 0508
define the digit matrix. It can be achieved by regarding each (15,7) BCH 74 28 47 | 0635
column in the original matrix as a set of multiple columns so (24,12,8) Golay 76 i 47 | 0618
that each element consists of just a single digit. Then, we can , _
. N . (2) Example for a Linear Transform with 0, 1, -1
generalize the definition of the weights as follows: Additions/Subtractions
N Example [ hiial | 77 | He Hc/nitial
Wit = #{(vplk], vg[k]) = (£1,£1) [0< I <m — 1.t Hadmétlrric)i( b 56 24 20 | 0357
X<p+X <g=2(X i+ X' <))<} Hadamard ) 240 | - | 64 | 0.267
Wi = #H(vp[k], vglh]) = (£L,F1) [0< A <m — 15t (3) Example for a Linear Code wit ternary values
/ _ ) . Shifts Additions
X<gp—-X<«g=2(X«xi- X' <j)«l} Example |~ T hc [acal 1 1 He |hon
- : . . 12,6,6
Then, {W%} within one column is a special case of this ‘remary) Golay 10| 5 | 05] 24 20 |0.833

definitions.t. X and X’ being the same variable.

Note that in regard to a linear transform with elements of
only 1, -1, and 0, common subexpressions are limited to thosghow the reduction ratios compared with the initial number of
across the rows in the matrix, thus preventing substitution @fperations.
shifts being performed. The weights and the procedure arep;qre specifically, (1) of Table 1 shows the set of bench-
almost the same as those used by Mehereta€[8], although  ark examples of the representation matrices of some error-

they did not refer to a matrix computation. correcting codes with binary elements as in [7] and [12]. The
We will now state the extended algorithm. Hadamard matrices in (2) were taken as examples with ele-
ments of values 1-1, and 0. They are often used for image
Extended Algorithm for Linear Transforms and video compression.

1. Represent all of the elements of a matrix in some repre- For those matrices with elements of a single digit, our
sentation form. weights coincide with those of Mehenda&eal [8] as we note
in IV and will be performed in the same way exept for the
2. Generate the digit matrix by regarding each column of thEelection of the subexpressions with identical weight. The
original matrix as a set of multiple columns so that eaCI.::\verage reduction ratio for (1) and (2) is about 0.525 and the
element consists of a single digit. numbers of additions/subtactions are less or equal to those in
3. Compute the Weight@/{/ifj} and apply the clustering [7]- Especially for the Hadamard matriXs, we discover the
algorithm to the digit matrix. best digit-pairs in the 3rd and 7th columns from the left and as
well as in the 4th and 8th columns from the left by the weights.
This results in reducing four more additions than in [7].
V. EXPERIMENTAL RESULTS ) ,
Finally, (3) of Table | and Table Il are examples of linear
We have implemented the algorithms in C under Unix anttansforms with entries of arbitrary values. We compare
applied them to a set of benchmark examples as shown in Taloler results with the method previously proposed for linear
I and Il. Some of them were adopted from the examples usékhnsforms. Since the input numbers of shifts and additions are
in [7]; we used as many examples as we could to compastightly different between [7] and our method, we compared the
the effects directly. In the two tables, the rows are devoted t@duction ratios to be equitable. Inthese examples, with regard
the names of the benchmark examples. The columns “Initiatd the number of additions/subtractions, the average reduction
and “I” show the number of additions initially needed. “HC” ratio in our method is 0.242 and those in [7] is 0.276. Thus,
is the abbreviation for our hierarchical clustering and theur method achieved better level of reduction. In analyzing
column “HC” shows the number of operations after applyinghe results, in [7], the substitution of shifts were not taken into
our algorithm. The columns “HC/Initial”, “HC/I”, and “[7]/I" account and the multistep approach were taken for reducing
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