
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

Acceleration of Mincut Partitioning

using Hardware CAD Accelerator TP5000

Masahiro SANO Shintaro SHIMOGORI Fumiyasu HIROSE

CAD Group CAD Group CAD Laboratory
FUJITSU LTD. FUJITSU LTD. FUJITSU LABORATORIES LTD.

Kawasaki, Japan 211 kawasaki, Japan 211 Kawasaki, Japan 211
Tel: +81-44-754-2166 Tel: +81-44-754-2166 Tel: +81-44-754-2663
Fax: +81-44-754-2391 Fax: +81-44-754-2391 Fax: +81-44-754-2664

e-mail: sano@fd.cad.fujitsu.co.jp e-mail: shinta@fd.cad.fujitsu.co.jp e-mail: hirose@ab.fujitsu.co.jp

Abstract| This paper presents a new approach of

data pipelining for mincut partitioning acceleration

using a parallel computer. We choose the hardware

CAD accelerator TP5000 to implement our approach.

We obtain a speed improvement of 20 to 25 times as

fast as a SPARCStation-10 by using 10 processors in

the TP5000.

I. Introduction

The placement problem for VLSI design is to decide the
position of cells in order to minimize the chip size, power
consumption, signal delays, and cycle time of a resulting
chip. Many algorithms have been proposed, these include
mincut-based placement algorithms [1, 2].
Among them, the Fiduccia-Mattheyses mincut algo-

rithm (FM) is widely used, due to its fast computation
characteristics [2]. The total run-time is determined by
O(P), where P is the number of pins. However, as VLSI
chips become more complicated due to the advances in
VLSI fabrication technology, the time for mincut-based
placement becomes much larger.
In addition, the FM algorithm has the disadvantage

that the process easily falls into a local minimum. In or-
der to overcome this disadvantage, some additions to the
FM algorithm have been proposed [3, 4]. We use the SNT-
FM algorithm, which adds Stable-Net-Transition (SNT)
to the FM algorithm [4]. According to [4], the SNT-FM
algorithm achieves 27% to 62% fewer cuts than the FM
algorithm for some layout data from 10 K to 100 K gates.
However, the SNT addition also lengthens the compu-
tation time of the mincut-based placement. Therefore,
placement time becomes an even more important factor.
This paper presents a new approach to data pipelining

for mincut partitioning acceleration. In our approach,
the mincut process is partitioned into many small sub-
processes. Each sub-process is then assigned to a pro-
cessing element (PE), and each data set is processed
on PEs successively. We implement the SNT-FM algo-
rithm on the hardware CAD accelerator TP5000 which

is suitable for the data-pipelined processing. We obtain
the speed improvement of 20 to 25 times faster than a
SPARCStation-10 by using 10 processors in the TP5000.

II. SNT-FM algorithm

The FM algorithm uses a simple \hill-climbing" tech-
nique for optimization, and is likely to be trapped in a
local minimum. This means that the �nal partition de-
pends greatly on the initial partition. Some reports state
that over 80% of the cut nets after executing the FM were
already cut in the initial partition, and the FM falls into
a local minimum due to these nets [4]. A net which re-
mains cut from the beginning until the end when the FM
is executed once, is called a \stable net", or SN.

Fig.1 shows the SNT-FM algorithm, which adds Stable-
Net-Transition (SNT) to the FM algorithm. The SNT
operation is executed after the FM process in order to
escape from a local minimum. The SNT detects stable
nets (line 4 in Fig.1), and forces all cells on stable nets into
one block and makes their nets \not cut" (line 5 in Fig.1).
Then, the FM restarts with the rearranged partition from
the SNT operation as the initial partition. This process is
repeated in order to optimize the cut size (line 2 in Fig.1).

SNT-FM algorithmf
1. partition initially at random;
2. for i = 0 to #iteration f
3. apply FM;
4. search for stable nets (SN);
5. move cells connected to stable nets

and obtain new initial partition;
g

g

Fig. 1. The SNT-FM algorithm.

III. Configuration of Data Pipelines

We present a data pipelining approach to mincut par-
titioning. In our approach, the mincut process is divided
into many small sub-processes. Each sub-process consists
of a few simple instructions, and the amount of instruc-
tions in each sub-process are balanced between the other
sub-processes.
Fig.2 shows the sub-process partitioning for the FM al-

gorithm. First, the cell with the maximum cell-gain is se-
lected from the gain-list and moved from its current block
to the complimentary block, where the cell-gain of a cell is
de�ned as the decrease of cuts when the cell moves from
its current block to the complimentary block, and the
gain-list is a data structure to manage cell-gain. Next,
it reads out the net IDs connected with the moved cell,
and reads out the cell IDs connected to the net, and reads
out the block IDs for the cells. Then, it calculates how
many cells exist in each block for the net before and after
the cell is moved. After that, the di�erence of net-gain
for the net is calculated, where the net-gain of a cell con-
nected by a net is the decrease of cut for the net when
the cell moves from its current block to the complimen-
tary block, so the net-gain can be -1, 0, or 1. Then, a new
cell-gain can be calculated by adding the di�erence of net-
gain to the old cell-gain. Finally, it updates the gain-list
by removing the cell from the old cell-gain position and
appending it to the new cell-gain position. After calculat-
ing the cell-gains for all cells adjacent to the moved cell
and updating the gain-list, the subsequently moved cell
is selected. This operation is repeated until there are no
more movable cells.
When one cell is moved, the cell-gain of cells adjacent

to the moved cells can change. So, the next moved cell
cannot be selected until the new cell-gains are calculated.
However, since adjacent cells to a moved cell are inde-
pendent of one another, reading out sub-processes, cal-
culating sub-processes, and updating sub-process can be
processed in parallel.
Fig.3 shows how the FM algorithm can be realized using

data pipelining. Each pipeline stage has individual local
memory (LM). In Fig.3, each square represents a pipeline
stage, i.e., each process of a PE. Each block underneath
the PE represents the data structure of the local memory.
The arrows between the blocks show data ow.
In Fig.3, PE7 starts up this process by sending the block

ID which may contain a moved cell to PE6. Then, PE6
selects the cell ID with the maximum cell-gain from the
gain-list in its own LM, and feeds it to PE8. PE8 reads
out the net IDs connected with the moved cell ID from
the cell-to-net table in its own LM, and sends out the net
IDs to PE1. PE1 reads out the cell IDs from net-to-cell
table in its own LM and sends the cell IDs to PE2. PE2
reads out the block IDs from the cell-to-block table in
its own LM and sends the block IDs to PE3. PE3 reads
out the number of cells in each block for the net from its
own LM, and calculates it after moving the cell. It stores

move the cell with the maximum cell-gain from gain-list

read net ID connected with the moved cell

read cell ID connected by the net

Read block ID of the cell

Calculate the number of cells for each block in the net

Calculate cell-gain for the cell

Update gain-list

Start

Processed all connected nets?

End

YES

NO

Moved all cells?

YES

NO

Processed all connected cells?

YES

NO

Calculate change in net-gain for the net

Fig. 2. Partitioning the FM algorithm into sub-processes.

this value into its own LM and sends the number of cells
in each block before and after moving the cell to PE4.
PE4 reads out the pre-moving net-gain and post-moving
net-gain from its own LM and calculates the change in
net-gain by subtracting the pre-moving net-gain from the
post-moving net-gain, and sends it to PE5. PE5 reads out
the old cell-gain from its own LM and adds the net-gain
change. It then stores this new cell-gain into its own LM
and sends the new and old cell-gain to PE6. PE6 updates
the gain-list in its own LM.
We can also construct pipelines for the rest of the SNT-

FM algorithm, which are line 4 and 5 in Fig.1.

IV. Implementation on TP5000

The TP5000 is a hardware CAD accelerator which con-
sists of dedicated Very Long Instruction Word (VLIW)
processors with high-speed interconnections [5]. Its data
pipelines can be recon�gured. The TP5000 is scalable to
5120 processors. One processor is called a Processing El-
ement (PE), and a group of 10 PEs is called a Processor
Group (PG). It takes one PG to make a data pipeline.
The structure of one Processor Group (PG) is shown

in Fig.4. The �gure shows how the data pipeline of the
FM algorithm from Fig.3 is mapped onto one PG. In this
�gure, bold circles correspond to the PEs, and bold arrows
correspond to the data ow in Fig.3.
Fig.5 shows the structure for each PE in the TP5000.

The PE consists of two local memories (LM1 and LM2),

Gain-list

Moved cell ID

Read
net ID

Cell-to-
net table

Read
cell ID

Net-to-
cell
table

Read
block ID

Cell-to-
block
table

Calculate
#cells in
block

Net-to-
#cells in
block
table

#Cells-to-
net-gain
table

Calculate
cell-gain

Cell-to-
cell-gain
table

Net ID
Cell ID

Net ID
Cell ID
Block ID

Cell ID
Number
of Cells

Cell ID
New, old cell-gain

Calculate
block size

Cell-to-
cellsize
table

Net ID

Store
the best
cut set

Best
cut set

Cell ID
Block IDMoved cell ID

Manage
gain-list

PE1 PE2 PE3 PE4 PE5PE6

PE7

PE8

PE9
Cell ID
Block ID

Calculate
change in
net-gain

Cell ID
Change
 in net-gain

Block ID PE’s
process

PE’s
own local
memory

(LM)

PE

Fig. 3. Data pipelining implementation of the FM algorithm.

From/to other PG

From/to
other PG

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE9

PE8From/to
other PG

Fig. 4. Mapping onto PG for the FM algorithm.

one dual-port memory (DPM), two ALUs (ALU1 and
ALU2), four register �les, a crossbar switch, a network
interface, and controlling microcode RAM. The crossbar
switch allows for exible interconnections, and all facil-
ities are controlled in parallel by the VLIW microcode
program stored in a microcode RAM. The local memory
is high-speed SRAM, so memory access is very fast.

Here, we show the example of the processing in one
pipeline stage. The example is the sub-process executed
in PE6 in the FM algorithm. PE6 holds the gain-list in
its own local memory and dual-port memory.

Fig.6 shows the process of PE6. In Fig.6, the horizon-
tal axis represents facilities, the vertical axis shows the
microcode instruction step, and each square represents
a process which each facility executes at each microcode

Data

Control

Microcode RAM

Local
memory1,2

Network

Crossbar Switch

Dual port
memory ALU1,2 Register

file

Fig. 5. Processing Element (PE) architecture in TP5000.

instruction step. For example, at microcode step 0 the
Network-in, LM1 address control, LM2 address control,
condition check, and branch are active, so �ve processes
are executed. Processes of facilities proceed concurrently
from microcode step 0 to 4 for one set of data. Fig.6 shows
�ve steps for one set of data. However, at microcode step
4, the processes at microcode step 0 for the next data set
are executed simultaneously, shown by the dotted squares.
Then the PE executes the microcode of step 1 for the next
data set. Therefore, the number of microcode addresses
for a data set in the process of PE6 is four. When we com-
pile the program for the process of PE6 using the GNU C
compiler (gcc) with the -O3 option on a SPARCStation-
10, the entire process is executed with 43 instructions.
Thus the process using PE on TP5000 is much faster.

Net-in LM1
access

Condition
check

DPM
adderss
control

DPM
access

BranchLM1
address
control

LM2
access

LM2
address
control

0

1

2

3

4

Read
cell ID

Set cell ID
as LM
address

Set cell ID
as LM
address

Is data
valid?

If condition
 goto 1
else
 goto 0

Read new
and old
cell-gain

Set value
of LM2
as LM
address

Read LM1

Set value
of LM1
as LM
address

Read LM2

Set new
cell-gain
as DPM
address

Is data
valid?

If condition
 goto 2
else
 goto 1

Set head of
new cell-
gain as LM
address

update
LM1

Update
LM2

Read value
of head of
new cell-
gain

Goto 3

Set cell ID
as LM
address

Update
LM1

Set cell ID
as LM
address

Set old
cell-gain
as DPM
address

Update
head of
new cell-
gain

Goto 4

Read
cell ID

Set cell ID
as LM
address

Update
LM1

Set cell ID
as LM
address

Update
LM2

Update
head of
old cell-
gain

Goto 1
Is data
valid?

Microcode
instruction

step

Process for next data

Fig. 6. Process of PE6.

V. Experimental Result

We implement the SNT-FM algorithm using one PG in
the hardware CAD accelerator TP5000. The speed of the
SNT-FM algorithm was evaluated. We executed our tests
on four di�erent circuits. Table I shows the execution time
of the SNT-FM algorithm using a SPARCStation-10 (SS-
10), and using one PG in the TP5000, and the relative

speed improvement (time on SS-10 / time on TP5000).

As shown in Table I, we obtained a speed improvement
of 20 to 25 times faster than a SPARCStation-10 by using
one PG in the TP5000.

We used SS-10 in this experiment which is fabricated by
similar technology level to TP5000 (0.8� CMOS, 15MHz).
Accordingly, Table I shows the advantage of data pipelin-
ing approach.

VI. Conclusion

We presented a data pipelining approach to mincut par-
titioning and implemented the SNT-FM algorithm on the
hardware CAD accelerator TP5000. We improved the
execution speed by about 20 to 25 times faster than a
SPARCStation-10 by using 10 processors in the TP5000.

The TP5000 is scalable up to 5120 PEs, we plan to fur-
ther increase the execution speed to more than 100 times
faster than a SparcStation-10 by developing an multiple
data pipeline mincut approach.

TABLE I
Execution time on SS-10 and on one PG in the TP5000.

Execution time(sec.) Improve

Circuit Cells Nets SS-10 TP5000 ratio

A90 7870 11809 466.5 21.5 21.7

B59 9021 12240 609.5 32.2 18.9

C27 14357 17435 1414.7 54.7 25.9

D51 37813 42504 7075.9 325.5 21.7

References

[1] M. A. Breuer,\A Class of Min-Cut Placement Algorithms,"
Proc. 14th Design Automation Conf., pp. 284-290, 1977.

[2] C. M. Fiduccia and R. M. Mattheyses, \A Linear-Time Heuris-
tic for Improving Network Partitions," Proc. 19th Design Au-

tomation Conf., pp. 175{181, 1982.

[3] M. R. Hartoog, \Analysis of placement procedures for VLSI
standard cell layout," Proc. 23rd Design Automation Conf.,
pp. 314-319, 1986

[4] T. Shibuya, I. Nitta and K. Kawamura, \SMINCUT: A VLSI
Placement Tool using Min-Cut," Fujitsu Sci. Tech. J., Vol.
31, No. 2, pp. 197-207, 1995

[5] S. Shimogori, K. Takayama, H. Matsuoka, K. Hirahara and
F. Hirose, \Thread Processor TP5000 for CAD Acceleration,"
Intl. Symp. on Fifth Generation Computer Systems 1994,
pp. 17-24, Dec. 1994.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

