
Abstract != A design flow with register-transfer-level (RTL)
partitioning and a RTL partitioning algorithm for efficient logic
synthesis and layout are described in this paper. Changing the
parameter of partitioning optimization dynamically, the algo-
rithm improves an interconnection cost in a short CPU time.
Experimental results on large circuits show that the algorithm
partitioned circuits with the large number of RTL components
in a tenth to a hundredth of conventional partitioning times.

I. INTRODUCTION

DA technology is struggling with today’s complicated
ASIC designs. A topdown design approach with Hardware
Description Languages (HDL) and logic synthesis has
reduced the design term. The approach requires circuit parti-
tioning to change the logical or functional hierarchy of a cir-
cuit into the physical hierarchy proper for its hardware
implementation.

In the design of a large digital circuit, the logical hierar-
chy is so deep and complicated that it is very difficult for
designers to find the best hierarchy that minimizes the design
terms of logic synthesis and layout. The hierarchy with large
blocks is suitable for floorplanning, but causes time-consum-
ing iterations of syntheses. Small blocks are more appropri-
ate to synthesize than large ones, but the hierarchy with small
blocks results in the large number of interconnects which
makes delay and area of interconnection large. To solve this
problem, the physical hierarchy should be constructed with
proper size blocks and the small number of interconnections
so that the blocks of the circuit are appropriate for logic syn-
thesis, floorplanning, and layout.

Our approach is to partition circuits at the RTL so that the
synthesis term and the layout term are reduced. The parti-
tioning method reduces partitioning CPU time significantly,
and minimizes the interconnects with a heuristic algorithm
which estimates partitioning CPU time in advance of parti-
tioning improvement.

Partitioning is popular at the netlist level because the
quality and the CPU time of layout highly depend on that of
the partitioning carried out beforehand. A circuit at the netlist
level has much more objects than at the RTL, so partitioning
takes much longer CPU time, in particular, in the partitioning
improvement stage. Because minimum objects of a netlist
circuit are cells or gates, it is difficult to partition the circuit
taking functional units into consideration. For example, flip--
flops of a shift-register could be assigned to different blocks.
Nets of a bundle connecting a pair of functions could turn to

be interconnects of different pairs of blocks.
Partitioning studies at the functional level have been

reported[1],[2]. Partitioning in this early stage of a system
design flow is very important for a multi-chip system,
because timing and area constraints for high-level synthesis
and logic synthesis highly depend on the way of chip parti-
tioning. However, a hardware structure performing the func-
tions is not so clear that measuring the circuit area, which
plays a principal role in partitioning for logic synthesis and
layout, is difficult and not accurate.

With its hardware structure clear and easy to measure, a
RTL circuit is suitable for synthesis-and-layout-oriented par-
titioning. Fewer objects make partitioning CPU time shorter
than at the netlist level. Because each object represents a
functional unit, flip-flops of a shift-register come into the
same block when the circuit is synthesized. Nets of a bundle
handled as a minimum unit are never assigned to different
blocks.

The min-cut algorithm known as the Kernighan-Lin[3]
algorithm interchanges two groups of nodes between two
blocks to minimize the interconnects. Fiduccia and Matthey-
ses[4] improved the algorithm to execute in a shorter CPU
time. Since the major part of partitioning time is spent in the
iterative improvement stage, it is important to reduce inter-
connects effectively in this stage.

This paper proposes a partitioning algorithm which esti-
mates the number of computations for improvement, makes
groups for interchange efficiently, and completes the
improvement in a short CPU time. It allows designers to
design and partition a circuit interactively. Experimental
results show that the algorithm significantly improves parti-
tioning CPU time with fewer interconnects.

II. RTL PARTITIONING

1) A Design Flow with RTL Partitioning
In a topdown design flow, designing at the RTL is based

on the function of a circuit and makes hardwares clear.
Because data transfers between registers are visible and the
minimum objects of the circuit represent functions, the cir-
cuit is able to be partitioned for synthesis and layout based on
the functional units. Fig. 1 shows a design flow with RTL
partitioning. The circuit designed at the RTL is partitioned
into some blocks with their sizes appropriate for logic syn-
thesis and layout. Small logical blocks are merged into larger
physical blocks, and large logical blocks are partitioned into

A RTL Partitioning Method with a Fast Min-Cut Improvement Algorithm

Kenichi Kawaguchi Chie Iwasaki Michiaki Muraoka
Semiconductor Research Center, Matsushita Electric Industrial Co., LTD.

3-1-1, Yagumo-Nakamachi, Moriguchi, Osaka 570 JAPAN
Tel: +81-6-906-4933
Fax: +81-6-906-3851

e-mail: kawaguti@vdrl.src.mei.co.jp

ASP-DAC ’97
0-89791-851-7/$5.00 1997 IEEE

smaller physical blocks to shorten the terms of synthesis and
layout. In the RTL partitioning stage, areas of the circuit and
its blocks are estimated to make blocks with similar sizes.
Logic synthesis of each block follows RTL partitioning.

2) Bundle-base Interconnection
Interconnects of a netlist-level circuit are nets, while

those of a RTL circuit are bundles of nets. From the layout
and timing point of view, the nets within a bundle should be
included in the same block or connect the same pair of
blocks. Fig. 2a shows a RTL circuit which has a four-bit reg-
ister, a comparator, and two one-bit registers. The circuit is
easily partitioned into two blocks as shown in Fig. 2b. After
logic synthesis, the partition of the circuit turns to be as
shown in Fig. 3a. It has four interconnects between Block 1
and Block 2. If logic synthesis comes first and partitioning
second, the circuit is partitioned with three interconnects as
shown in Fig. 3b. The partition in Fig. 3a has a one-larger
interconnection cost than the partition in Fig. 3b. However,
the layout of the circuit shown in Fig. 3a would have shorter
wiring delay and smaller wiring area thanks to bundle-base
interconnection.

Fig. 1: Design Flow

Fig. 2: RTL Circuit and Its Partition

Fig. 3: Partition at Netlist Level

RTL design

RTL Partitioning

Logic Synthesis

Layout

=

4

4 4

one-bit register

four-bit register

=

4

4 4

Block 1 Block 2

(a) (b)

Block 1
Block 2

Block 1

Block 2

(a) (b)

III. PARTITIONING ALGORITHM

1) Circuit Model
A circuit at the RTL handled in this paper consists of

objects representing the functional units and data-transfers
which connect some objects. Types of functional units are
registers, functional modules, buses, multiplexers, submod-
ules, and tables. In a partitioning process, the circuit is com-
piled as a hypergraph of which nodes and edges correspond
to objects and data-transfers in the circuit, respectively. Each
edge is weighted with the bit width of the corresponding data
transfer.

2) Partitioning Flow
A hypergraph modeling a circuit is partitioned into some

blocks. Then, the circuit is partitioned corresponding to the
hypergraph partitioning.

Hypergraph partitioning consists of two processes: initial
partitioning which partitions the hypergraph into the required
number of blocks and partitioning improvement which
reduces the interconnection cost, moving nodes from some
blocks to other blocks. In each process, a gate estimator esti-
mates the number of gates of blocks required for balancing
the sizes of blocks at the netlist level.

The major part of the partitioning CPU time is spent on
partitioning improvement to reduce lots of interconnects
generated during initial partitioning.

3) Partitioning Improvement
The partitioning improvement algorithm reduces inter-

connects by moving a group of one or more nodes at a time
rather than one node to avoid a local minimum of the inter-
connection cost. The larger the upper limit of the sizes of
moving groups is, the fewer the interconnection cost is.
However, the increase of the upper limit of the sizes of mov-
ing groups makes the number of the groups to compute the
gains of moving larger and the CPU time for partitioning
longer.

Our algorithm estimates the number of groups necessary
to compute the gains with each upper limit of the size of the
groups, and gets the initial upper limit from the point of view
of the CPU time.

Fig. 4 shows our algorithm for partitioning improvement.
A node at a border is defined as the node adjacent to at least
one node of a different block. First, in Step1, it gets the initial
upper limit of sizes of moving groups. Second, in Step2, it
selects one of the (unselected) nodes at the border, say node
A, of the blocks. Third, in Step3, finding the group that
reduces the interconnection cost most among groups includ-
ing node A, it moves the group. Fourth, in Step4, if some
unselected nodes are left at the border, it goes back to the sec-
ond step. Otherwise, it ends.

If the upper limit of sizes of moving groups is fixed
regardless of the circuit structure and the algorithm selects all
groups with the size equal to or smaller than the upper limit,
the number of the groups grows rapidly with the increase of
the number of nodes of the circuit. That leads the increase of

partitioning CPU time.
To avoid the increase of CPU time, the algorithm selects

a group of nodes by picking up nodes one by one and chang-
ing the upper limit according to the number of adjacent nodes
and the blocks they are assigned to.

Fig. 5 shows the algorithm of moving the group with the
largest gain including a node, say node A, at the border. A
selection parameter in a step is defined as the number of
nodes which would be assigned to the group after the step. In
this algorithm, S7 plays the crucial role to shorten partition-
ing CPU time and improve the connection cost. S7 increases
the selection parameter by one if the number of nodes adja-
cent to the current node is one or two. It makes the possibility
of partitioning improvement higher.

If all of the following conditions are satisfied, S7
decreases the selection parameter by one.

1. Four or more nodes outside of the selected group are
adjacent to the current node.
2. The number of nodes adjacent to the current node is
larger than the selection parameter.
3. All nodes adjacent to nodes of the selected group
except node A are assigned to the block which the current
node is assigned to.

It reduces the number of computations of gains of groups.
In Fig. 6, the circuit has two interconnects between

Block1 and Block2. Assume the selection parameter is three,
the current node is node n1, and node n1 is added to the
selected group as the first node of the group at S3. To reduce
the interconnection cost of the partitioning, the group of five
nodes, {n1, n2, n3, n4, n5}, should be moved to Block1 at a
time. Without S7, three groups, {n1}, {n1, n2}, {n1, n2, n3},
would be computed their gains. no matter which one is
moved, the interconnection cost would never be reduced.

At S7, if the number of nodes adjacent to the current node
such as node n1 is two, the selection parameter is increased
by one. Therefore, at S9, when nodes n2, n3, n4, n5 are
selected as the current node, the selection parameters are 3,
3, 2, 2, respectively. Thus, the group of five nodes, {n1, n2,
n3, n4, n5} can be selected to compute the gain. With the
largest gain, the group is moved to Block1 to reduce the
interconnection cost to one.

In Fig. 7, the circuit has one interconnect. Assume the
selection parameter is three at S3, the current node is node
n1, and the selected group consists of a node, n1.

.

Fig. 4: Partitioning Improvement Algorithm

 Step1 Get the initial upper limit of the size of moving
groups.

 Step2 Select one node at the border (say node A) of the
blocks.

 Step3 Move the initial group including node A.
 Step4 If some unselected nodes are left at the border, go

back to Step2. Otherwise, end.

Fig. 5: Algorithm of Moving Group

Fig. 6: Partitioning Example 1

Fig. 7: Partitioning Example 2

Without S7, thirteen groups would be computed their
gains. No matter which one is moved, the interconnection
cost would never be reduced.

At S7 when the current node is node n2, which has six
adjacent nodes, the selection parameter decreases from one
to zero. The number of groups to compute the gain is four
and partitioning goes faster.

4) Getting the Initial Upper Limit
Because the major part of the partitioning CPU time is

spent on partitioning improvement as mentioned above, par-
titioning CPU time is estimated from the number of gain
computations of groups. The algorithm gets the initial upper
limit of sizes of groups in order to complete partitioning in
time appropriate to the circuit size.

 S1 Set the upper limit of sizes of moving groups to a
selection parameter.

 S2 Select node A as the current node.
 S3 Add the current node to the selected group.
 S4 Compute the gain of the selected group and the sizes

of blocks when it moves to the other block.
 S5 If the sizes of blocks computed in the former step

were balanced, update the best group with the largest
gain.

 S6 Decrease the selection parameter by one.
 S7 Change the selection parameter according to the

number of nodes adjacent to the current node and the
blocks they are assigned to.

 S8 If the selection parameter is zero, execute S10.
 S9 For all nodes adjacent to the current node, set one of

them as the new current node, and execute S3 to S9
one by one.

 S10 If the gain of the best group is one or more, move
the best group.

Block1 Block2

n2n1

n5

n3

n4

n6

Block1 Block2

n1 n2

n3

n4

n5

n6

n7

n8

n9

The algorithm to get the initial upper limit is shown in
Fig. 8. The sub-algorithm to estimate the number of gain
computations of groups for T3 is shown in Fig. 9. As you see,
the algorithm in Fig. 9 looks similar to the algorithm of mov-
ing the node with the largest gain in Fig. 5. The difference is
it has no steps corresponding to S4, S5, and S10.

As groups of nodes don’t move in the algorithm in Fig.
9, the estimated number of computations is different from the
real number. However, the difference is too small to affect
getting the initial upper limit.

To estimate the number of computations, the algorithm
doesn’t compute gains, nor update the best selected groups,
nor move them as shown in Fig. 9. Thus, it takes much
smaller amount of CPU time than partition improvement
does.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of it, we implemented the
partition algorithm described in this paper. The RTL circuits
for evaluation were designed with our in-house ESDA tool,
Bchart[5],[6]. We also implemented the Kernighan-Lin algo-
rithm (K-L algorithm) for RTL partitioning. TABLE I shows
the results of two-way partitioning.

Fig. 8: Getting the Initial Upper Limit

Fig. 9: Estimation of the Number of Computations of Gains

 T1 Fix the number of computations of gains according
to the size of circuit.

 T2 Set one to the upper limit.
 T3 Estimate the number of computations of gains of

groups with the upper limit.
 T4 Exit if the number of computations at T3 is reached

to the number fixed at T1.
 T5 Increase the upper limit by one and go back to T3.

 U1 Select a node at the border of blocks as the current
node.

 U2 Set the upper limit of sizes of moving groups to a
selection parameter.

 U3 Add the current node to the selected group.
 U4 Increase the estimation number by one.
 U5 Exit if the estimation number has been reached to

the fixed number at T1.
 U6 Decrease the selection parameter by one.
 U7 Change the selection parameter according to the

number of nodes adjacent to the current node and
the blocks they are assigned to.

 U8 If the selection parameter is zero, execute U10.
 U9 For all nodes adjacent to the current node, set the

selected node as the new current node, and execute
U3 to U9 one by one.

 U10 If some unselected nodes are left at the border, it
goes back to T1. Otherwise, exit.

TABLE I: EXPERIMENTAL RESULTS OF TWO-WAY PARTITIONING

The amount of reduced CPU time was balanced to the
CPU time for estimation of partitioning time on circuit #1.
Setting the upper limit of sizes of moving groups according
to the size and construction of a circuit, our algorithm avoids
the explosion of CPU time. Our algorithm reduced partition-
ing CPU times significantly in large circuits with fewer inter-
connection costs.

V. CONCLUSION

In this paper, a design flow with RTL circuit partitioning
and a partitioning algorithm were proposed. The algorithm
estimates partitioning CPU time in advance of partitioning
improvement, gets the initial upper limit of the size of mov-
ing groups, and changes the upper limit dynamically accord-
ing to the local structure of the circuit. Experimental results
showed that the algorithm shortened partitioning CPU time
with fewer interconnection cost.

The difference between the proper block sizes for logic
synthesis and layout was not mentioned in this paper. In
some cases, the physical hierarchy of a circuit should be
changed when designing comes from logic synthesis to lay-
out. For example, merging some blocks for logic synthesis
into a block for layout reduces the layout term in the case that
a layout tool handles larger blocks than logic synthesis tool
does. The way to manage the hierarchies for logic synthesis
and layout should be studied.

In the future, we will extend our work to the architecture
or system level partitioning and complete a top-down design
flow from the system level.

VI. REFERENCES

[1] K.Kucukcakar and A.C. Parker, “CHOP: A constraint-driven system--
level partitioner,” Proceedings of the 28th Design Automation Conf.,
pp.514-519, 1991

[2] R. Gupta and G. De Micheli, “Partitioning of functional models of syn-
chronous digital systems,” Proceedings of the International Conf. on
Computer-Aided Design, pp. 216-219, 1990

[3] B.W. Kernighan and S. Lin., “An efficient heuristic procedure for par-
titioning graphs,” Bell Systems Technical Journal, Vol.49, pp.291-307,
1970

[4] C.M. Fiduccia and R.M. Mattheyses, “A linear-time heuristic for
improving network partitions,” Proc. of 19th Design Automation Conf.,
pp.175-181, 1982

[5] M.Matsumoto, Y.Takai, C.Iwasaki, and M.Muraoka, “A functional
design method based on graphical representation,” Technical Report of
IEICE, 93-ARC-98, 93-DA-65, pp. 73-80, 1993

[6] K.Nakatani, “The evaluation of Bchart: a functional design system with
a graphical environment,” DA Symposium '93, pp. 97-100, 1993

Circuits
partitioning CPU time

8 358 35#1

#objects #data- interconnection costs

595 732

K_L

#2

#3

866

2243

1900

7041

217 10

9010437

215 208

593 207

transfers our
K_L

#gates: 16305(#1), 24237(#2), 4751(#3)

algorithm
our

algorithm

(sec.)

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

