
Design Driven Partitioning

Dirk Behrens, Erich Barke Robert Tolkiehn*

University of Hanover Siemens AG
Institute of Microelectronic Systems Semiconductor Devision

30167 Hanover, Germany 80377 Munich, Germany
Tel.: +49 511 762-4986 Tel: +49 89 4144-4970
Fax: +49 511 762-4994 Fax: +49 89 4144-8983

Email: d.behrens@ieee.org Email: tolkiehn@hl.siemens.de

Abstract - A new approach for partitioning VLSI digital inte-
grated circuits is presented. In contrast to known approaches,
which use only topological information, the presented method
also exploits specific information about design modules and
higher level design structure. Based on this knowledge, the
design driven procedure creates a cluster structure that incor-
porates the inherent design relationships (e.g. signal flow, logic
blocks) in the best way possible. Followed by standard iterative
improvement algorithms partitions are produced that outper-
form many partitioning approaches published before. Because
of its linear time complexity the presented clustering strategy is
able to handle very large designs. Due to its modular structure
it can be easily extended to incorporate special design features
or target architectures such as emulation systems.

path analysis [BrSa94]. Second, assignment of feedback
loops over more than one part should be avoided. This can
be done by an adapted move criterion in iterative improve-
ment algorithms [CoLi94]. Especially for MCMs parti-
tioning for low power has been proposed [KhMa95]. Some
other approaches address optimization of a given partition
during or following the partitioning process through encod-
ing interconnect information [BaSa93], retiming [LiSh93] or
logic replication [HwGa95], [KrNe91].

2 PARTITIONING APPROACHES

1 INTRODUCTION Partitioning approaches are classified by the number of parts
they produce into bi- and k-way-partitioning algorithms.
Most known approaches for k-way partitioning are general-
ized or modified bi-partitioning algorithms. Therefore, only
bi-partitioning is discussed here. Although, many ap-
proaches consider only graph partitioning they can be used
to partition circuits when applying a clique graph model.

Driven by growing design complexity and new design tech-
nologies like MCMs, FPGAs or logic emulation the problem
of partitioning digital integrated circuits has regained a high
level of attraction during the last five years. Objectives for
the partitioning problem are different: In case of MCMs a
given circuit has to be split into a given number of parts
while minimizing the interconnects between these parts and
balancing part sizes [San89]. For design verification by logic
emulation the number of parts should be minimal and an
upper boundary of part sizes and interconnections is given
by device capacity [ChLi94]. When prototyping or imple-
menting a design with multiple heterogeneous FPGAs costs
have to be minimized by choosing a cost minimum device
distribution [KuBr94].

Iterative improvement algorithms, also known as refinement
or top-down algorithms, take a (e.g. randomly generated)
startpartition and optimize the objective function by inter-
changing elements [KeLi69] or moving elements [FiMa82].
The quality of partitioning results strongly dependents on the
initial startpartition and the random choice of equal-gain
nodes for moving. Some approaches overcome this depend-
ency, but then runtime dependents on initial quality. On the
other hand, iterative improvement algorithms can easily be
adapted to complex objectives like the ones mentioned
above.

There are several other goals which normally will be added
to the mentioned objectives: First, timing of the design
should be optimized. Some approaches do this by critical

* This work was done while the author was a graduate student at the University
 of Hanover, Institute of Microelectronic Systems.

ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

Based on Ford & Fulkersons max-flow min-cut theorem
[FoFu62] some algorithms use repeated max-flow min-cut
[YaWo94], single [Pla90] or multi commodity [LeRa88]
flow techniques for partitioning. Network flow approaches
produce low cutsizes but on the other hand very unbalanced
part sizes.

All these approaches use only topological information about
a design, except [ShKu92] and [MuBr91] who incorporate
timing information.

4 CLUSTERING METRICS

Recently, algorithms based on quadratic programming tech-
niques, also referred to as spectral or eigenvalue based
methods, have been presented showing good partitioning
results [RiDo94], [HaKa91]. The general idea of spectral
methods is to place the modules into an one-dimensional
(using one eigenvalue) or n-dimensional (two or more eigen-
values) space and group neighbored elements into one part.

In conjunction with clustering approaches many different
clustering metrics exist, which will be used during or follow-
ing clustering to compare results. All metrics normally apply
a weight to each cluster, summarize all weights and scale it
with a scale factor. Before explaining our design driven
approach in Chapter 5 and 6 we will review the most impor-
tant cluster metrics here. We use some of these metrics to
measure the quality of our clustering approach.

In contrast to the iterative improvement algorithms there are
many approaches based on clustering, also known as bottom-
up or constructive algorithms, which try to recursively col-
lapse elements together controlled by some objective func-
tion. Usually, these clustering algorithms are used as
preprocessing steps for two way iterative improvement
algorithms to reduce complexity, runtime of the algorithm
and to improve partitioning results. In two-way approaches
the iterative improvement algorithm first runs on top of the
clustered circuit and uses the results as the startpartition for
a second run over the decomposed cluster structure.

A netlist (hyper)graph G V E= (,) consists of a set of
nmodules or vertices V v v vn= 1 2, ,...,l q and a set of m nets

or (hyper)edges E e e em= 1 2, ,...,l q. A weight can be assigned

to each vertex and each (hyper)edge with some weighting
function v w vi i→ () and e w ei i→ () . A cluster Ci represents
a non-empty subset of V and a cluster structure
CS C C Ck= 1 2, ,...l q represents a set of k non-overlapping

clusters. Note that contrary to other approaches not every
module v Vi ∈ has to be a member of a cluster Cj .

The Design Driven Partitioning approach presented in this
paper is based on clustering followed by iterative improve-
ment techniques. Therefore, an analysis of known clustering
approaches will be given in the next chapter.

DS: max
degree

f CS
n

C
C

separation Ci
i

ii

k
()

()
()

=
=
∑1

1

(1)

The Degree Separation (DS) value [CoHa91] is defined as
the average number of nets incident to each module of the
cluster, which have at least two pins in the cluster (degree),
divided by the average length of a shortest path between any
two modules in that cluster (separation).

3 CLUSTERING ALGORITHMS

Many clustering approaches have been proposed. Generally
speaking, it is not possible to differentiate between k-way
partitioning (k >> 2) and clustering. Often partitioning
algorithms are classified as top-down and clustering algo-
rithms as bottom-up approaches. Clustering algorithms are
able to significantly decrease complexity of the problem, i.e.
runtime and memory requirements, as well as increase result
quality. Many known clustering algorithms try to construct
the natural hierarchy of a circuit by finding (strongly)
connected components in a design.

SC: min f CS
n k

e u v e u C v C

C

i i

ii

k
()

, , ,
=

−

∃ ∈ ∈ ∉

=
∑1

1 1b g

m r
(2)

The Scaled Cost (SC) value [ChSc93] is defined as the
weighted sum of cluster outdegree over all clusters divided
by cluster size and represents a generalized ratio cut
objective.

AB: max f CS
e C

e
i

e E e Ci

k

i

() =
∩ −

−∈ ∩ ≠∅=
∑∑

1

11m r
(3)

Previous work can been grouped into approaches using local
or global connectivity information. Simple pairwise local
clustering has been presented based on conjunctivity and
disjunctivity [ScUl72], average degree [BuHe83], kl-edge
connectivity [GaPu90] and time cycles [ShKu92]. Other
approaches use cluster radius and sparsity [AwPe90], a com-
paction heuristic [BuHe89], Rent's Rule [DiHo93], a
recursive ratio cut approach [WeCh90], labeling with delay
information [MuBr91], random walks [HaKa92], compac-
tion of moved nodes during an iterative improvement
algorithm [Saab93], recursive collapsing of small cliques in
a graph [CoSm93] and different vertex ordering [AlKa94].

The absorption (AB) metric [SuSe93] adds to each net of a
cluster an absorption value between 0 and 1 which implies
how much this net is "absorbed" by the cluster.

CD: max f CS
k

w e
e C

n

n C
i

k
i

i

()

()

= ∈

∈
=

∑
∑1

21 e j
(4)

The Cluster Density (CD) [CoSm93] is defined as the total
weight of edges in the cluster divided by the number of edges
of a complete graph between all modules in the cluster.

In the next chapter we show how to use this design informa-
tion to build up a cluster structure, which we call "design
driven cluster structure". Following we give an overview of
the clustering process explaining all steps in detail. In
Chapter 6 we analyze the final cluster structure using the
metrics mentioned above. Finally (Chapter 7) we present
partitioning results from a standard iterative improvement
algorithm running on top of the cluster structure finishing in
Chapter 8 with a short survey of possible extensions for the
presented approach.

KL: max f (CS)=
1

1k

k

l
C

Ci

k
i

i=
∑ (5)

Two nodes are kl-connected [GaPr90] if there exist k edge-
disjoint paths with length at most l between them. Normally
k and l are predefined and a search strategy finds feasible
nodes grouped into one cluster. The inherent objective is to
find clusters with many edge-disjoint paths of minimum
length, which means maximizing kCi

 and minimizing lCi
.

Our clustering flow consists of five different phases:

1) Calculate non-overlapping cluster structures (CS)
using different design information. Here we use
cones, connected components and feedback loops.

5 DESIGN DRIVEN CLUSTERING

2) Merge cluster structures to one non-overlapping
structure

3) Rating the different clusters and eliminating "bad"
clustersA review of published partitioning and clustering algorithms

shows that most of them use topological information about a
design exclusively. This is caused by the common partition-
ing flow, where first a (hyper)graph is created from a flat
netlist of the design. Due to this step all design information
like hierarchy, "celltypes" of nodes or clocked nets and other
useful information is lost. Only the number of nets is used to
weight graph edges, sometimes employing timing informa-
tion or complex graph-weighting-models [HaMa92].
Although nodes could be individually weighted, in most
cases the weight is set to one. But information about modules
and nets are the most important aspects designers use to
manually partition a design and thereby getting better results
than any automated algorithm!

4) Grow clusters with free elements

5) Rating the final cluster structure and eliminating
"bad" clusters

Fig. 1 and Fig. 2 show some statistics about the overall
clustering process for the MCNC benchmark circuit
primary1. These are typical statistics which are very similar
for other circuits. Following this flow overview we will
explain all steps in more detail:

Cone clustering: There are several approaches using cones
for clustering, showing good results [BrSa94], [CoLi94].
Mainly, cones are used to avoid cutting of critical paths
during partitioning. Consequently, our first CS is based on
cones. We use fanout free cones to avoid overlapping of
different clusters. As to be seen in Figs. 1 and 2 the fanout
free cone clustering step clusters only 30% of all instances
and produces many small clusters with only 2 or 3 instances.
Cone clustering has time complexity O d V⋅b g , with d as

average number of nodes a node is connected to.

The following design information is useful for partitioning:
Design hierarchy, sequential and combinational parts, signal
directions, feedback loops, busses, large nets like power-nets
or global clock-nets, combinational cones, critical paths and
most important high level structures like registers or
counters which are often difficult to find in a flat design.

0%

20%

40%

60%

80%

100%

Cone Connect3 Loop20 Merge Quality Grow Quality
Clustering step

In
st

an
ce

s

free 2 3 4-6 7-10 11-20 21-50 51-100 >100

0

20

40

60

80

100

Cone Connect3 Loop20 Merge Quality Grow Quality
Clustering steps

fr
ee

 in
st

/ #
cl

 /
cl

-s
iz

e
in

 #
in

st
, #

ga
te

s

#free inst (%) #cluster avg. #inst/cl. avg. #gates/cl.

Fig. 1: Grouping of instances into clusters of specific sizes (primary1) Fig. 2: Number of free instances, number of clusters and cluster sizes in
instances and gate-equivalents during clustering process (primary1)

seq seq seq

comb comb comb

busses

control
(large net)

feedback which are not desirable for the following partitioning step.
These clusters will be recognized and decomposed by the
following quality rating step. Merging has time complexity

of O CS2 , which is most times less than O V E+ .

Quality rating: For qualifying clusters we can use any of
the above clustering metrics. However, some of them address
only a subset of the objectives and the more complex ones
require a lot of time to evaluate. Therefore, we define a
different metric: Its first objective is to get "dense" clusters,
which means that it favours a lot of nets captured in each
cluster with respect to the number of instances included.
Second, it minimizes the number of clusterpins with respect
to the number of instances included. This results in the
following Cluster Quality (CQ) metric:

Fig. 3: Sequential and combinational parts in a pipelined design

Connected components: The idea of clustering connected
components is to consider structures like pipelined designs,
with large combinational parts. To find connected compo-
nents (Fig. 3), we first remove the clocktree which consists
of all clocked elements and combinational elements driving
clocked input pins. Then we remove busses. Finally, we
remove big nets connecting more than a predefined number
of elements and apply a standard connected components
algorithm. Figs. 1 and 2 show that if removing all nets with
more than three pins (Connect3) this step clusters more than
50% of all instances. The generated clusters are larger (up to
50 instances) than those produced by cone clustering (about
20 instances only). Finding connected components has
O V E+ time complexity.

CQ: max CQ
k

E E

V
e C v w e v C w C

v Ci

k
i i i

i i

=
−∈ ∃ ∈ ∉ ∧ ∈

∈=
∑1

1

, ,
(6)

Applying this metric to all built clusters, we got good results
by decomposing all clusters with a cluster quality value of
less or equal -1. Many small clusters with size between 2 and
10 instances are decomposed and almost all big clusters are
preserved. The disadvantage of this quality step is the in-
creasing number of free instances from 30% to 50%. To
overcome this problem we let all clusters grow in a following
step. By using an intelligent cluster storing, quality rating
only has time complexity of O CS O V E<< + .

Feedback loops: Considering the timing of a partitioned
design, feedback loops should not be cut. Like [CoLi94] we
try to keep all feedback loops in one part. Therefore, we use
a modified Depth First Search to find all feedback loops in a
design. Because in many designs there are very long loops,
which cannot be captured in one part, we limit the size by a
predefined maximum number of elements in the loop. As
Figs. 1 and 2 show, clustering of loops with less or equal 20
elements in the loop (Loop20) produces a small number of
clusters with good sizes (11 to 50 elements). Most times
several loops are combined within one cluster. The used
Depth First Search approach has complexity of O V E+ .

Growing: During the loop detection process all feedback
loops have already been cut and the complete design has
been ranked by a Breadth First Search. We now use this
ranking to traverse all free instances, and if one of them is
directly connected to a cluster we compare its rank ri to that
of the neighboring element rn in the cluster. If

r r rn i i∈ + −1 1;l q the instance will be added to the cluster.

Otherwise we proceed with the next directly connected
cluster. If no connected cluster fits the ranking objective we
proceed with the next free instance. As in the merging step,
clusters that reach given limits in gate or pin count are
locked for any further growing process. After the growing
procedure approximately 60% of all instances are grouped
into clusters with 21 - 100 and more elements. A following
second quality rating step will preserve these big clusters and
only decompose a few of the smaller ones (Figs. 1 and 2). At
the end about 80% of all instances have been clustered with
an average cluster size of 18,64 instances per cluster and
only 20% of all instances are free (primary1). For some
circuits we got improved results by applying the quality and
growing steps more than once. Fig. 4 gives a pseudo code
listing of the clustering process. The described growing

process has time complexity of O V CSfree* .

Merging: The next step is to merge cluster structures. By
merging overlapping clusters we form a new cluster. If the
new cluster exceeds given gatecount or pincount limits the
cluster of highest priority is preserved and the other ones are
decomposed again. Priority of feedback loop clusters is
higher than that of cone clusters, which in turn is higher
than that of connected components clusters. This trivial
merging approach will be improved by future work. As
shown in Figs. 1 and 2 more than 30% of all instances are
grouped into clusters with 11 - 100 elements by merging
cone, connect and loop clusters. Only 30% of all instances
are not clustered. However, there still exist some smaller
clusters having pincount and netcount to gatecount ratios,

// Get cluster structures
foreach designinformation i=0 to n do

create non-overlapping cluster structure CSi

quality rating do not improve it. However, good partitioning
results as shown in the next chapters prove the quality of our
cluster strategy.

6 CLUSTERING RESULTS

// Merge cluster structures
for i=1 to n do

merge CS0 with CSi
For comparing the quality of our clustering approach we
have clustered different circuits from the MCNC benchmark
suite and two industrial test cases and compared the results
to previous publications. An overview of cluster counts and
sizes is summarized in Table 1. Reduction of problem size is
shown in Table 2. Values of some clustering metrics com-
pared to other published clustering approaches are presented
in Table 3.

// Eliminate "bad" clusters
forall Ci ∈ CS0 do

if ClusterQuality(Ci) < CQ threshold value then
decompose Ci

// Let cluster grow
forall free instances Ii do

if Ii has connections to at least one cluster Cj
if rank(Ii) = rank(ICj)±1 then

add Ii to Cluster Cj
TABLE 1

NUMBER OF CLUSTERS OF SPECIFIC SIZE AND DS, SC, AB AND CQ VALUES FOR N=3, L=20

design instance count clustering metrics
2 3 4-6 7-10 11-20 21-50 51-100 >100 DS SC AB CQ

primary1 6 5 3 5 4 8 1 1 1,13 208,5 563 -0,52
primary2 7 6 7 5 3 9 7 6 0,83 67,1 1503 -0,61
s9234 10 16 58 52 37 18 9 3 0,49 15,2 3141 0,30
bio 0 0 398 46 3 27 1 8 1,05 23,7 4385 -0,55
ind1 7 13 15 5 8 6 1 5 0,65 79,0 1393 -0,64
ind2 26 7 11 9 7 14 10 9 0,72 50,4 2560 -0,66

// Eliminate "bad" clusters
forall Ci ∈ CS0 do

if ClusterQuality(Ci) < CQ threshold value then
decompose Ci

Fig. 4: Pseudo code for the presented Design Driven Clustering approach

TABLE 2
Fig. 5 shows the evolution of different clustering metrics
during the clustering process. Because of different absolute
values they are standardized first. Note that the objective is
to maximize DS, AB and CQ while minimizing SC respec-
tively -CQ. Cone clustering produces average DS values but
poor SC, AB and CQ values.

REDUCTION FACTORS FOR INSTANCES AND NETS FOR N=3, L=20

design instances + clusters netcount reduction
netlist clustered netlist clustered instances nets

primary1 787 183 881 403 77% 54%
primary2 3036 2201 3148 2585 28% 18%
s9234 3358 189 3349 457 94% 86%
bio 5533 601 4865 891 89% 82%
ind1 1703 950 1746 1271 44% 27%
ind2 3618 2381 4523 3162 34% 30%

Connected components clustering results in average DS, SC
and AB values. Loop clustering produces good DS values,
average SC and CQ and poor AB values. The following
merging step has great influence in decreasing the SC value
and increasing the AB value. Succeeding quality rating im-
proves only the SC value.

TABLE 3
DS, SC, AB VALUES CLUSTER SIZES OF DIFFERENT APPROACHES FROM [ALKA94] AND [COSM93]

design clust.alg. DS SC AB CD avg. clst size
primary1 WINDOW 1,471 173,10 687,60 4,36

RW-ST 1,325 287,90 629,90 4,36
AGG 0,879 277,90 437,00 4,36
MBC 1,258 254,00 309,30 4,36
FMC 0,176 7,40
DDP 1,130 208,50 562,60 0,150 16,15

primary2 WINDOW 1,539 57,69 2257,00 4,29
RW-ST 1,566 82,81 2013,00 4,29
AGG 1,048 89,73 1227,00 4,29
MBC 1,238 82,44 736,40 4,29
FMC 0,248 12,10
DDP 0,830 67,1 1502,72 0,305 37,94

0

0,2

0,4

0,6

0,8

1

Cone Connect3 Loop20 Merge Quality Grow Quality
Clustering steps

N
or

m
al

iz
ed

 c
lu

st
er

in
g

m
et

ric
s

DSnorm SCnorm ABnorm -CQnorm

As shown in Table 1, Design Driven Partitioning produces
cluster structures with most clusters of size 4-50. However,
also large clusters with more than 100 instances will be
produced. The cluster structures have reduction factors from
28%-94% for instances and 18%-86% for nets (Table 2).
Compared to other sometimes very complex clustering
approaches presented in [AlKa94] and [CoSm93] DDP
shows good SC, AB, CD and avg. cluster sizes (Table 3).

Fig. 5: Evolution of different clustering metrics during the clustering

A global view of the evolution shows increasing AB values
and decreasing SC and -CQ values. The DS value is well
suited for all clustering aspects although merging and

7 PARTITIONING RESULTS But RatioCut value outperforms simple FM and eigenvalue
based approaches. For s9234 DDP produces best cutsize ever
published and for bio it produces comparable low cutsize and
best RatioCut value.

In this chapter we will demonstrate the quality of our
clustering scheme by applying a bi-partitioning procedure on
the calculated cluster structure. Therefore, we implemented
the standard Fiduccia and Mattheyses algorithm as described
in [FiMa82]. With this algorithm we bi-partition the clus-
tered MCNC benchmarks and industrial circuits presented in
the Chapter 6 using three runs with different starting parti-
tions for each design. We then compare these results (DDP)
with already published results from PARABOLI [RiDo94],
FM and FMC [CoSm93], FM and RW-ST [HaKa92], MBC
[Bui89], IG-Match [CoHa92], EIG1-IG [HaKa92], EIG1
[HaKa91] and FM and RCut 1.0 [WeCh91]. Note that we
have transferred results published under primary1/2, which
do not use module size information, to primSC1/2 and
primGA1/2 respectively.

8 CONCLUSION AND FUTURE WORK

As shown by the presented results design driven clustering
produces comparable results with low time complexity.
Finding higher level logical and structural clusters in a
design does not only decrease cutsize but also can offer the
opportunity to include other objectives like timing optimi-
zation automatically. By using different cluster structures as
well as a specialized growing process the presented approach
is expandable in several ways. Incorporating additional
design information promises higher quality results.

As seen in Figs. 6 and 7 a standard FM algorithm produces
good results regarding net cut size and ratio cut values. For
primary1 regarding cutsize DDP outperforms clustering
approaches published before, e.g. MBC, RW-ST and FMC.
Eigenvalue based methods, e.g. IG-Match, EIG1-IG and
PARABOLI, produce smaller cutsizes but are also outper-
formed regarding RatioCut values. For primary2 cutsize of
DDP is not very impressing. This results from a strong
clockpath with many combinational elements in the clock-
tree, which leads into an inefficient cluster structure (see
future work).

Due to growing design complexity all top down approaches
will eventually reach their limits regarding computing time
and memory requirements. Therefore, bottom up approaches
are favorite candidates to handle upcoming complexities.
However, the partitioning results presented show that itera-
tive improvement algorithms like FM are still acceptable
approaches if reasonable preprocessing steps to reduce
complexity are used.

We currently extend our approach with respect to the cluster
structure by incorporating other design information like
design hierarchy and critical paths. In preliminary examina-
tions (Table 4) two industrial designs have been partitioned
as flat netlists (FM), using the hierarchy as a clustering
structure (FM + hierarchy) and using our DDP on the flat
design. Results show that using hierarchy information in
some cases will drastically reduce cutsize, where DDP today
does not show impressive results (ind1), while in other cases
using hierarchy will not be very efficient, but DDP is (ind2).
But always DDP produces best RatioCut values. So incorpo-
rating hierarchy information into the presented clustering
strategy promise additional improvement of results.

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA

AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

0

50

100

150

200

250

300

primSC1 primSC2 primGA1 primGA2 s9234 bio
MCNC benchmark circuit

cu
t n

et
s

AAA
AAAFM

AA
AAFM

AA
AAFM

AA
AAMBC

AA
AARW-ST

AA
AAFMC

AA
AARCut 1.0

AAA
AAARCut 1.0

AA
AAIG Match EIG1 IG

AA
AAEIG1

AA
AAParaboli DDP

Fig. 6: Cutsize for bi-partitioning of clustered designs with standard FM

TABLE 4

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

0

1

2

3

4

5

primSC1 primSC2 primGA1 primGA2 s9234 bio
MCNC benchmark circuit

R
at

io
C

ut
 v

al
ue

 (
10

-5
)

AA
AAFM

AAA
AAAFM

AA
AAFM

AA
AAMBC

AA
AARW-ST

AA
AAFMC

AA
AARCut 1.0

AA
AARCut 1.0

AAA
AAAIG Match EIG1 IG

AA
AAEIG1

AA
AAParaboli DDP

BI-PARTITIONING RESULTS FOR STANDARD FM, FM USING HIERARCHY AND DDP APPROACH

design cutsize RatioCut
FM CH+FM DDP FM CH+FM DDP

ind1 141 47 128 8,75E-05 1,72E-04 6,92E-05
ind2 559 515 258 1,95E-05 1,79E-05 8,96E-06

To handle designs with large sequential parts, clustering of
the clocktree using ranking information will be added.
Thereby, a defined number of large clock nets will be
handled as global nets and cut by default. Also, cluster qual-
ity rating and cluster growing steps will be enhanced to
control growing for specific FPGA demands. Finally we will
extend this approach to distribute a given design onto a
minimum number of FPGAs by using only the growing
process without the need of a following partitioning step.

Fig. 7: RatioCut for bi-partitioning of clustered designs with standard FM

9 REFERENCES [KrNe91] Kring C.; Newton A.; "A Cell-Replicating Approach to Mincut-
Based Circuit Partitioning", Int. Conf. on Computer Aided
Design, pp. 2-5, 1991

[AlKa94] Alpert, C.J.; Kahng, A.B.; "A General Framework for Vertex
Orderings With Applications to Netlist Clustering", Int. Conf. on
Computer Aided Design, pp. 63-67, 1994

[KuBr94] Kuznar, R.; Brglez, F.; Zjac, B.; "Multi-way Netlist Partitioning
into Heterogeneous FPGAs and Minimization of Total Device
Cost and Interconnect", Design Automation Conf., pp. 238-243,
1994[AwPe90] Awerbuch, B.; Peleg, D.; "Sparse Partitions", IEEE Ann. Symp.

on Found. of Computer Science, pp. 503-513, 1990
[LiSh93] Liu, L.-T.; Shih, M.; Chou, N.-C.; Cheng, C.-K.; Ku, W.;

"Performance-Driven Partitioning Using Retiming and Repli-
cation", Int. Conf. on Computer Aided Design, pp. 296-299, 1993

[BrSa94] Brasen D.; Saucier G.; "FPGA Partitioning for Critical Paths",
Proc. European Design Automation Conf., pp. 99-103, 1992

[BuHe83] Bui T.; Heigham C.; Jones C.; Leighton T.; "Improving the
Performance of the Kernighan-Lin and Simulated Annealing
Graph Bisection Algorithms", Proc. Design Automation Conf.,
pp. 775-778, 1989

[MuBr91] Murgai R.; Brayton R.; Sangiovanni-Vincentelli A.; "On Clus-
tering for Minimum Delay/Area", Proc. Design Automation
Conf., pp. 6-8, 1991

[Pla90] Plaisted, D. A.; "A Heuristic Algorithm for Small Separators in
Arbitrary Graphs", SIAM Journal on Computing, vol. 19, no. 2,
pp. 267-280, 1990

[ChLi94] Chou, N.-C.; Liu, L.-T.; Cheng, C.-K.; Dai, W.-J.; Lindelof, R.;
"Circuit Partitioning for Huge Logic Emulation Systems", Proc.
Design Automation Conf., pp. 244-249, 1994

[RiDo94] Riess B.M.; Doll K.; Johannes F.M.; "Partitioning Very Large
Circuits Using Analytical Placement Techniques", Proc. Design
Automation Conf., pp. 646-651, 1994

[ChSc93] Chan P.K.; Schlag M.D.F.; Zien J.Y.; "Spectral K-Way Ratio-Cut
Partitioning and Clustering", Proc. Design Automation Conf., pp.
749-745, 1993

[Saab93] Saab Y.; "Post-Analysis Based Clustering Dramatically Improves
The Fiduccia-Mattheyses Algorithm", pp. 22-27, 1993[CoHa91] Cong, J.; Hagen, L.; Kahng, A.; "Random Walks for Circuit

Clustering", Int. ASIC Conf., pp. P14-2.1 - P14-2.4, 1991
[San89] Sanchis, L. A.; "Multiple-way network partitioning", IEEE

Transactions on Computer, vol. 38, no. 1, pp. 62-81, 1989[CoHa92] Cong, J.; Hagen, L.; Kahng, A.; "Net Partitions Yield Better
Module Partitions", Proc. Design Automation Conf., pp. 47-52,
1992 [ScUl72] Schuler D.; Ulrich E.; "Clustering and Linear Placement", Design

Automation Workshop, pp. 50-56, 1972
[CoLi94] Cong J.; Li Z.; Bagrodia R.; "Acyclic Multi-Way Partitioning of

Boolean Networks", Proc. Design Automation Conf., pp. 670-
675, 1994

[ShKu93] Shih, M.; Kuh, E.S.; "Quadratic Boolean Programming for
Performance-Driven System Partitioning", Proc. Design Automa-
tion Conf., pp. 761-765, 1993

[CoSm93] Cong J.; Smith M.; "A Parallel Bottom-Up Clustering Algorithm
with Applications to Circuit Partitioning in VLSI Design", Proc.
Design Automation Conf., pp. 755-760, 1993

[SuSe93] Sun, W.; Sechen, C.; "Efficient and Effective Placement for Very
Large Circuits", Proc. Design Automation Conf., pp. 170-177,
1993

[DiHo93] Ding C.; Ho C.; "A New Optimization Driven Clustering Algo-
rithm for Large Circuts", Proc. European Design Automation
Conf., pp. 28-32, 1993

[WeCh90] Wei Y.; Cheng C.; "A Two-Level Two-Way Partitioning Algo-
rithm", Int. Conf. on Computer Aided Design, pp. 516-519, 1990

[FiMa82] Fiduccia C.; Mattheyses R.; "A Linear-Time Heuristic for
Improving Network Partitions", Proc. Design Automation Conf.,
pp. 175-181, 1982

[WeCh91] Wei Y.; Cheng C.; "Ratio Cut Partioning for Hierarchial Design",
IEEE Transactions on Computer Aided Design, vol. 10, no. 7, pp.
911-920, 1991

[FoFu62] Ford, J. R. and Fulkerson, D. R.; "Flows in Networks", Princeton
University Press, 1962

[YaWo94] Yang, H.; Wong, D.F.; "Efficient Network Flow Based Min-Cut
Balanced Partitioning", Int. Conf. on Computer Aided Design, pp.
50-55, 1994

[GaPr90] Garbers, J.; Prvmel, H.J.; Steger, A.; "Finding Clusters in VLSI
Circuits", Int. Conf. on Computer Aided Design, pp. 520523,
1990

[HaKa91] Hagen, L.; Kahng, A; "Fast Spectral Methods for Ratio Cut
Partitioning and Clustering", Int. Conf. on Computer Aided
Design, pp. 10-13, 1991

[HaKa92] Hagen L.; Kahng, A.B.; "New Spectral Methods for Ratio Cut
Partitioning and Clustering", IEEE Transactions on Computer
Aided Design, vol. 11, no. 9, pp. 1074-1085, 1992

[HaMa92] Hadley S.W.; Mark B.L.; Vannelli A.; "An Efficient Eigenvector
Approach for Finding Netlist Partitions", IEEE Transactions on
Computer Aided Design, vol. 11, no. 7, pp. 885-892, 1992

[HwGa95] Hwang J.; Gamal, A; "Min-Cut Replication in Partitioned Net-
works", IEEE Transactions on Computer Aided Design, vol. 14,
no. 1, pp. 96-106, 1995

[KeLi69] Kernighan B.; Lin S.; "An Efficient Heuristic Procedure for
Partitioning Graphs", The Bell System Technical Journal, pp.
291-307, 1969

[KhMa95] Khan, S. A.; Madisetti, V. K.; "System Partitioning of MCMs for
Low Power", IEEE Design & Test of Computers, Spring 1995,
pp. 41-52, 1995

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

