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Abstract - A new approach for partitioning VLSI digital inte-  path analysis [BrSa94]. Second, assignment feédback
grated circuits is presented. In contrast toknown approaches, |oops over morghan one part should be avoidedThis can
which useonly topological information, the presentedmethod e done by an adaptedove criterion in iterative improve-
also exploits specific information about design modules and ment algorithms [CoLi94].Especially for MCMs parti-

higher level design structure. Based on thiknowledge, the tioning for low powerhasbeen proposed [KhMa955ome

design driven procedure creates a cluster structure that incor- h h dd AL f . ..
porates the inherent design relationships (e.g. signal flow, logic OtN€r approaches address optimization of a given partition

blocks) in the bestway possible. Followed by standard iterative during orfollowing the partitioningprocessthroughencod-
improvement algorithms partitions are produced that outper- ing interconnect information [BaSa93], retiming [LiSh93] or
form many partitioning approaches published before. Because logic replication [HwGa95], [KrNe91].
of its linear time complexity the presented clustering strategy is
able to handlevery large designs. Due tdts modular structure
it can be easily extended to incorporate special design features
or target architectures such as emulation systems.
2 PARTITIONING APPROACHES

1 INTRODUCTION Partitioning approaches actassified bythe number of parts

they produceinto bi- and k-way-partitioning algorithms.
Most known approaches férway partitioning are general-
ized or modified bi-partitioning algorithms. Therefooaly
bi-partitioning is discussechere. Although, many ap-
proaches consider onlyraph partitioninghey can beused
to partition circuits when applying a clique graph model.

Driven by growing design complexignd new design tech-
nologies like MCMs, FPGAs or logic emulatitime problem
of partitioning digital integrated circuits has regaindugh
level of attraction during the ladtve years. Objectives for
the partitioningproblemare different: Incase of MCMs a
given circuithas to be split into @iven number of parts
while minimizing the interconnectsetween thesparts and
balancing part sizes [San89]. For design verificatiologic  Iterative improvement algorithms, also known as refinement
emulation the number of parts should be minimatl an or top-downalgorithms, take a (e.g. randomly generated)
upper boundary opart sizesand interconnections is given startpartition andoptimize theobjective function by inter-
by device capacityChLi94]. When prototyping or imple- changing elementdKeLi69] or moving elements [FiMa82].
menting a design with multipleeterogeneous FPGAs costsThe quality of partitioning results strongly dependents on the
have to be minimized by choosingcast minimum device initial startpartition and the randorhoice of equal-gain
distribution [KuBr94]. nodes for moving. Some approacte®rcomethis depend-
ency, butthen runtimedependents omitial quality. On the
There areseveral other goals which normally will be addedther handjterative improvement algorithms caasily be
to the mentionedobjectives: First, timing of the design adapted to complexobjectives like the ones mentioned
should be optimized. Some approachestiiie by critical above.

* This work was done while the author was a graduate student at the University
of Hanover, Institute of Microelectronic Systems.
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Based on Ford & Fulkersons max-flow min-cut theoremll these approaches usaly topologicalinformationabout
[FoFu62] somealgorithms use repeatedax-flow min-cut a design, except [ShKu92jnd [MuBr91] who incorporate
[YaWo094], single [Pla90] or multcommodity [LeRa88] timing information.

flow techniques fompartitioning. Network flow approaches

produce lowcutsizes but on the othbandvery unbalanced

part sizes. 4 CLUSTERING METRICS

Recently,algorithmsbased on quadratjgrogramming tech- In conjunction with clustering approaches many different
niques, also referred to as spectral or eigenvéllased clustering metrics exist, which will be usedring orfollow-
methods, have been presented showing gomaditioning ing clustering to compare results. All metrics normalbply
results [RiDo94], [HaKa91]The general idea of spectrala weight to each cluster, summar@éweightsandscale it
methods is to place theodules into an one-dimensionalwith a scale factorBefore explaining our design driven
(using one eigenvalue) or n-dimensioftalo or more eigen- approach in Chapter 5 and 6 wil review the most impor-
values) space and group neighbored elements into one pattnt cluster metrics here. Wase some of these metrics to
measure the quality of our clustering approach.
In contrast to the iterative improvement algorithms there are
many approaches based on clustering, also knowotasn- A netlist (hyper)graphG =(V,E) consists of a set of
up or constructive algorithms, which try tecursively col- nmodules or verticey ={w, V... } and aset of M nets

lapse elements together controlled by savbgective func- _ . .
tion. Usually, these clusteringlgorithms areused as or (hyper)edge& _{Q’ @5 ﬁ“}' A weight can be assigned

preprocessing steps fdwo wayiterative improvement 0 each vertexand each (hyper)edge witsome weighting
algorithms to reduce complexityuntime of the algorithm functionv; — W(y) andg - W(¢). A clusterG represents
and toimprove partitioning results. In twaway approaches a non-empty subset oV and a cluster structure
the iterative improvement algorithm firains ontop of the CS:{q, G,... q;} represents a set & non-overlapping

clustered circuiandusesthe results as the startpartition forc|ysters. Notethat contrary to other approaches retery
a second run over the decomposed cluster structure. modulev; OV has to be a member of a clus@

The Design Driven Partitioning approach presented in this K

paper is based on clusterifiglowed by iterative improve- pg. max f (CS) :£Z|Ci| degreéG) 1)

ment techniques. Therefore, an analysis of known clustering n&  separation§)

approaches will be given in the next chapter.
The Degree Separation (DS) value [CoHa91] is defined as
the average number of nets incident to each module of the

3 CLUSTERING ALGORITHMS cluster, which have at leasto pins in the cluster (degree),

divided by the averagength of a shortegiathbetween any

Many clustering approaches have been proposed. Generélp modules in that cluster (separation).

speaking, it is nopossible to differentiate betwedw@way

partitioning (k >> 2) and clusteringOften partitioning 1k |{6|EU, vie ud G \O d|
algorithms areclassified as top-dowand clustering algo- SC: min f(CS)= Z 2
rithms asbottom-up approaches. Clustering algorithms are ”(k_l)i=1 |C||

able to significantly decrease complexitytloé problem, i.e. ) )

runtime andnemory requirements, as well as increase resdifie ScaledCost (SC) value [ChSc93] is defined as the
quality. Many known clustering algorithms try to construciveighted sum of cluster outdegree owélrclusters divided
the natural hierarchy of a circuit by findingstrongly) by cluster sizeand represents a generalized ratio cut
connected components in a design. objective.

Previous worlcanbeen groupethto approaches using local
or global connectivity informtaon. Simple pairwiselocal
clustering hasbeen presented based on conjunctivity and
disjunctivity [ScUI72], average degree [BuHe83], kl-edge , ,
corjmectivi%// [[GaPug]O]and tigmecycglles [S[hKu92].]Other gThe absorptlor(AB) metric [SuSe93] adds to .ean_let qf a
approaches use cluster radargsparsity [AwPe90], a com- cluster an at')sorptl'on" value be.tlweearm 1which implies
paction heuristic [BuHe89], Rents Rule [DiHo93], &'0W much this netis "absorbed” by the cluster.
recursive ratio cut approach [WeCh90], labeling vdétay

k |
AB: max f(CS)= Z w

3)
i=1{e0H en G20} lg-1

information [MuBr91], random walks [HaKa92ompac- DRLC)
tion of moved nodesduring an iterativeimprovement cp- max f (CS) :EZ eig (4)
algorithm [Saab93], recursive collapsing of small cliques in kg (9

a graph[CoSm93]and different vertex ordering [AlKa94]. nbG



The ClusterDensity (CD) [CoSm93] is defined #lse total In the next chapter wehow how to uséhis design informa-
weight of edges in the cluster divided by the number of edgésn to build up a cluster structure, which we call "design
of a complete graph between all modules in the cluster.  driven cluster structure”. Following we give awerview of
the clusteringprocessexplaining all steps in detail. In
1 K ke Chapter 6 we analyze the final cluster structure using the
' (5)  metrics mentionedabove. Finally(Chapter 7) we present
partitioning results from a standard iterative improvement
algorithm running on top of the cluster structure finishing in

Two nodesare kl-connected [GaPr90] if there exisedge- Chapter 8 with a shogurvey of possible extensions for the
disjoint paths with length at mosbetweerthem.Normally  presented approach.

k and | arepredefinedand a searchtrategy finds feasible

nodes grouped into one cluster. Tihberentobjective is to  Qur clustering flow consists of five different phases:

find clusters with many edge-disjoint paths rfnimum

length, which means maximizirig and minimizinglc, . 1)  Calculate non-overlapping cluster structures (CS)
using different design informationHere we use
cones, connected components and feedback loops.

KL: max f(CSF—-Y —
k& lc

2) Merge cluster structures to one non-overlapping

5 DESIGN DRIVEN CLUSTERING structure

) ) o ) ) 3) Rating the different clusterand eliminating’bad"”
A review of publishegbartitioning ancclustering algorithms clusters
showsthatmost of thenuse topological information about a
design exclusivelyThis iscaused byhe common partition- 4) ~ Grow clusters with free elements
ing flow, wherefirst a (hyper)graph is created from a flat Rating the final cluster structurand eliminating
netlist of the desigrDue tothis stepall design information "pad" clusters
like hierarchy,"celltypes" of nodes or clocketets andther
useful infomation is lost. Onlghe number of nets issed to  Fig. 1 and Fig. 2 show some statistics abatle overall
weight graphedges, sometimes employitigning informa- clustering process forthe MCNC benchmark circuit
tion or complex graph-weighting-models [HaMa92]primaryl. These argypical statistics whiclare very similar
Although nodes could be individually weighted, in mostor other circuits. Followingthis flow overview we will
cases the weight is set to one. But information about moduféplain all steps in more detail:
and nets are thenost important aspects designeise to
manually partition a design anidereby getting better results Cone clustering: There areseveral approaches usiegnes
than any automated algorithm! for clustering, showinggood results [BrSa94], [CoLi94].

Mainly, conesare used to avoid cutting of criticgbaths

The following design information is useful fgrartitioning: ~ during partitioning.Consequently, our first CS is based on
Design hierarchy, sequentimhdcombinational parts, signal cones. We use fanout free cones to avoid overlapping of
directions feedback loops, busséarge nets like power-nets different clusters. As to be seen in Figsarid 2 thefanout
or global clock-netscombinationalcones, criticapaths and free cone clustering step clusters only 30%albfinstances
most important high level structures like registers orand produces many small clusters watily 2 or 3 instances.
counters which are often difficult to find in a flat design.  Cone clusteringhas timecomplexity O(d[]]\/]), with d as

average number of nodes a node is connected to.
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Fig. 1. Grouping of instances into clusters of specific sizes (primary1) Fig. 2: Number offree instances, number of clusters and clusizes in

instances and gate-equivalents during clustering process (primary1)



feedback which are not desirablfor the following partitioning step.
These clusters will be recognizeshd decomposed by the
following quality rating step. Merging has time cqiexity

of O[|CS}2}, which is most times less th@ﬂv| +| E”

seq seq seq

7L
Quality rating: For qualifying clusters we camse any of
the above clustering metrics. However, somin@m address
control only a subset ofhe objectivesand themore complex ones
(large net) & require a lot of time to evaluate. Therefore, we define a
busses different metric: Its firsbbjective is toget "dense" clusters,
which meanghat it favours a lot of nets captured in each
Fig. 3. Sequential and combinational parts in a pipelined design cluster with respect to the number of instances included.
Second, it minimizes the number of clusterpins wespect

. . to the number of instances included. This results in the
Connected componentsThe idea of clusteringonnected following Cluster Quality (CQ) metric:

components is to consider structures like pipelined designs,

with large combinational parts. To find connectsampo-

nents (Fig. 3), we firstemovethe clocktree which consists 1Kk |E|e|1q _|E|D/,w:e NiksaR e
of all clocked elementand combinational elements driving CQ:  max CQ:@Z V|
clocked input pins. Then weemove busses. Finally, we =1 vi UG
remove big nets connecting mdten apredefined number

of elementsand apply a standardconnected components applying this metric to all built clusters, wgot good results

algorithm. Figs. Jand 2showthat if removing all nets with py decomposingll clusters with a cluster quality value of

morethanthree pins (Connect3) thssep clusters morhan  |ess or equal -1. Many small clusters with size between 2 and

50% of all instances. The generated clusters are larger (UptPinstances aréecomposedndalmost allbig clusters are

50 instancesjhanthose produced by cone clustering (aboUreserved. The disadvantagetbfs quality step is the in-

20 instances only)Finding connected components hascreasing number of free instances from 30% to 50%. To

O[|V| +| Eﬂ time complexity. overcome this problem we let all clusters grow in a following
step. By using an intelligent cluster storing, quali&ging

only has time complexity a[|Cq| << @ V+| .

(6)

Feedback loops: Considering the timing of a partitioned
design,feedback loops shoulibt be cut. Like [CoLi94] we
try to keepall feedback loops in ongart. Therefore, we use Growing: During theloop detection procesall feedback
a modified Depth First Search to fiatl feedback loops in a loops have already been camd thecomplete design has
design.Because in many desigtisere arevery long loops, beenranked by a Breadth First Search. Waw usethis
which cannot be captured in opart, we limit thesize by a ranking to traerseall free instancesand ifone of them is
predefined maximum number of elements in tbep. As directly connected to a cluster we comparedtsk r; to that
Figs. 1and 2show, clustering of loopwith less or equal 20 of the neighboring elementr, in the cluster. If

elements in théoop (Loop20) produces small number of i 41 1 the instance will be added to the cluster.
clusters withgood sizes(11 to 50 elements). Most times . . .
several loopsare combinedwithin one cluster. Thaised Otheérwise we proceed witthe next directiconnected

. . cluster. If no connected cluster fits trenking objective we
Depth First Search approach has complexn@[c])ﬂ +| E” proceed witlthe nextfree instance. As ithe merging step,

clustersthat reachgiven limits in gate orpin count are

é cked for anyfurther growing process. Aftahe growing
grocedure approximately 60% afl instances argrouped

into clusters with 21 - 10@nd more elements. A following
second quality rating step will preserve these big clusters and
only decompose few of the smallelones (Figs. And 2). At

the endabout 80% ofll instancediave been clustered with
than that ofconnected components clustei®is trivial an aver(?ge clust_er size of 18,64 insj[ances per cluster and
merging approach will be improved by future work. Aso_nly .ZOA) ofall_ instances arfree (p“m?fyl)- F°f3°!“”e
shown in Figs. Jand 2morethan30% of all instances are circuits we got improved results_by ap_plylng the quality and
grouped into clusters with 11 - 100 elements by mergirf@"iNd Steps morénhanonce. Fig. 4gives a pseudeode
cone, connecand loop clusters. Only 30% dill instances '=ung of the clusteringprocess.The described growing
are not clusteredHowever, there still existsomesmaller process has time complexity®[|\/]free*|C$].

clusters having pincourdnd netcount to gatecount ratios,

Merging: The next step is to merge cluster structures.
merging overlapping clusters we forrnmaw cluster. If the
new cluster exceeds given gatecounpimcount limits the
cluster of highest priority is preservadd the otheones are
decomposedagain. Priority of feedback loop clusters is
higher than that otone clusters, which iturn is higher



/I Get cluster structures quality rating do noimproveit. However, googartitioning
foreach designinformation i=@ n do results as shown in the next chapigmsvethe quality of our
create non-overlapping cluster structure;CS cluster strategy.

/I Merge cluster structures
for i=1to ndo 6 CLUSTERING RESULTS
merge Cgwith C$
For comparing the quality of our clustering approach we

/I Eliminate "bad" clusters have clustered different circuits from the MCNC benchmark
forall C; O CSydo suite and two industrial testtasesand compared the results
if ClusterQuality(§) < CQ threshold valuthen to previous publications. Anverview ofcluster counts and
decompose C sizes is summarized in Table 1. Reduction of problem size is
shown in Table 2. Values of some clustering metcas-
/I Let cluster grow pared to other published clustering approaches are presented
forall free instances Ho in Table 3.
if 1j has connections to at least one cluster C
if rank(k) = rank(bj)il then TABLE 1
add || to Cluster q: NUMBER OF CLUSTERS OF SPECIFIC SIZE ANDS, SC, ABAND CQ VALUES FORN=3, L=20
design instance count clustering metrics
Hoo n " 2| 3/4-6|7-1011-20|21-50|51-100|>100|DS [SC |AB |CQ
/I Eliminate "bad” clusters primaryl | 6] 5 3 5 4 8 1 1] 1,13/ 208,5] 563| -0,52
forall C; 0 C§ydo priman2 | 7] 6] 7| 5 3 o 7 6| 0,83 67,1]1503]-0,61
. . s9234 10|16/ 58 52 37 18 9 3] 0,49 15,2 3141 0,30
if ClusterQuality(§) < CQ threshold valuthen bio of olaes] 4] 3 o7 1| 8| 1,05] 23,7[4385[-0,55
decompose p indl 7113] 15 5 8 6 1 5| 0,65 79,0/ 1393| -0,64
ind2 26) 7] 11 9 7 14 10 9] 0,72 50,4| 2560| -0,66
Fig. 4: Pseudo code for the presented Design Driven Clustering approach
. . . . . TABLE 2
Fig. 5 showsthe evolution of different clustering metrics REDUCTION FACTORS FOR INSTANCES AND NETS FON&3, L=20
during the clusteringrocess. Because of different absolut@esign [instances + clusters netcount reduction
values theyare standardized firshote that theobjective is A netlist | clustered| netlist |clustered|instances| nets
to maximize DS, ABand CQwhile minimizing SCrespec- p::;:z;y; 382; Z;gi 3?3; Zggg ;;Zf iggf’
. . i (9 0
tively -CQ. Cone clustering produces average DS values 1%934" 3358 189 3349 257 94% 86%
poor SC, AB and CQ values. bio 5533 601 4865 891 89% 82%
ind1 1703 950 1746 1271 44%) 27%
. . ' 3618 2381 4523 3162 34% 30%
Connected components clustering results in average DS, B - -
and AB values.Loop clustering producegood DS values,
average SCGand CQ angboor AB values.The following TABLE 3
merglng Stel:has greatnﬂuence |n deCI‘eaSIng the S@lue DS, SC, ABVALUES CLUSTER SIZES OF DIFFERENT APPROACHES FROMLKA94] AND [COSM93]
and increasing the ABalue. Succeeding qualitating im- design | clustalg. | DS SC AB CD_ | avg. clst size
primaryl |WINDOW 1,471 173,10, 687,60 4,36
proves Only the SC value. RW-ST 1,325 287,90, 629,90 4,36
AGG 0,879] 277,90 437,00 4,36
‘DDSnorm ESCnorm OABnorm O -CQnorm‘ MBC 1,258| 254,00 309,30 4,36
1+ FMC 0,176 7,40
™ DDP 1,130] 208,50, 562,60 0,150 16,15
2081 primary2 |WINDOW 1,539 57,69| 2257,00 4,29
£ RW-ST 1,566 82,81] 2013,00 4,29
i AGG 1,048 89,73| 1227,00 4,29
£°97 MBC 1,238]  82,44] 736,40 4,29
] FMC 0,248 12,10
E 0,4 1 DDP 0,830 67,1 1502,72 0,305 37,94
[
5
E N —‘ 1
2
ol ; As shown in Table 1, Design Driven Partitionipgpduces

cluster structures with most clusters of size 4{36wever,

Cone Connect3 Loop20 Merge Quality Grow Quality . A ;
Clustering steps also large clusters with moréhan 100 instances will be
Fig. 5: Evolution of different clustering metrics during the clustering produced. The cluster structures have redudactors from

28%-94% for instanceand 18%-86% for nets (Table 2).
A global view of the evolution showsncreasing ABvalues Compared to other sometimesery complex clustering
and decreasing S@nd -CQ values. The DS value ugll approaches presented in [AlKa94hd [CoSm93] DDP
suited for all clusteing aspects althoughmerging and shows good SC, AB, CD and avg. cluster sizes (Table 3).



7 PARTITIONING RESULTS But RatioCut value outperforms simple Favd eigenvalue
based approaches. For s9234 DDP produces best cutsize ever

In this chapter we will demonstrate thwpiality of our published and for bio it produces comparable low cutsize and
clustering scheme by applying a bi-partitioning procedure gsest RatioCut value.
the calculated cluster structure. Therefore, we implemented
the standard Fiduccia and Mattheya&gorithm adescribed
in [FiMa82]. With this algorithm we bi-partition thelus-
tered MCNC benchmarks and industrial circuits presented in 8 CONCLUSION AND FUTURE WORK
the Chapter 6 using three runs wittfferent starting parti-
tions for each design. WWeencompare these results (DDP) ag shown by the presented results design driven clustering
with already published results froMARABOLI [RiD094], produces comparable results witbw time complexity.
FM andFMC [CoSm93], FMandRW-ST [HaKa92], MBC ' Einding higherlevel logical and  structuratlusters in a
[Bui9], 1G-Match [CoHa92], EIG1-IG [HaKa92], EIG1 yesigndoesnot only decrease cutsize but alsan offer the
[Hakadl]and FM ancRCut 1.0 [WeCh91]Note that we  ,hnortunity to include otheobjectiveslike timing optimi-
have transferred results published under primary1/2, whiGliiion automatically. By using different cluster structures as
do not use module size information, to primSC1/2 ange|| as a specialized growing process the presented approach
primGA1/2 respectively. is expandable in severakays. Incorporaing additional

As seen in Figs. @nd 7 a standard FM algorithanoduces design information promises higher quality results.

goodresults regarding net cut siaed ratiocut values. For

primaryl regarding cutsiz&dDP outperforms clusteringDue to growing design complexigil top down approaches
approaches published beforeg. MBC, RW-STand FMC.  will eventually reachtheir limits regarding computing time
Eigenvalue based methods, e.g. 1G-Match, EIG1-IG arshdmemory requirements. Therefore, bottom up approaches
PARABOLI, producesmaller cutsizes but are also outperare favorite candidates ttandle upcomingcomplexities.
formed regarding RatioCut values. For primary2 cutsize dflowever,the partitioning results presentsdowthat itera-

DDP is notvery impressing. This resultfrom a strong tive improvement algorithms like FMre stillacceptable
clockpath with many combinational elements in theck- approaches if reasonable preprocessing steps to reduce
tree, which leads into an inefficient cluster struct(Bee complexity are used.

future work).

=P DR BFM OMBC  SRWST @FVC  mRouiLio We currently extend our approach with respect to the cluster
@RCut 1.0 8IG Match DEIG1 IG ®EIG1 _&Paraboli BDDP ‘ structure by incorporating other design information like
design hierarchynd critical paths. In preliminary examina-
tions (Table 4)Ywo industrial designs havieeen partitioned
as flat netlists (FM), using the hierarchy as a clustering
structure (FM + hierarchyand usingour DDP orthe flat
design. Resultshow that using hierarchy information in
some cases will drastically reduce cutsize, where RORy
does not show impressive results (ind1), while in other cases
using hierarchy will not beery efficient, but DDP is (ind2).
imSCL prmSCz prmGAL  prmGAZ  s9734 b But alwa_\ys DDP produces_ be;‘,t RatioCut values. So in_corpo-
MCNC benchmark circuit rating hierarchy information into thpresented clustering
strategy promise additional improvement of results.
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Fig. 6: Cutsize for bi-partitioning of clustered designs with standard FM

TABLE 4
EFM BFM oFM EMBC NRW-ST @FMC #ZRCut 1.0 BI-PARTITIONING RESULTS FOR STANDARIF-M, FM USING HIERARCHY ANDDDP APPROACH
mRCut 1.0 @IG Match OEIG1 IG BEIG1  EParaboli mDDP
5 0 = design cutsize RatioCut
FM CH+FM DDP FM CH+FM DDP
4 ind1 141 47| 128| 8,75E-05| 1,72E-04| 6,92E-05
ind2 559 515 258| 1,95E-05| 1,79E-05| 8,96E-06

To handle designs with large sequential parts, clustering of
the clocktree usingranking information will be added.
Thereby, a defined number of largdock nets will be
handled as global neésxdcut by default. Also, cluster qual-
ity rating andcluster growing steps will be enhanced to
pimSCL  prmSC2  primGAL  primGA2 $9234 bio control growing for specific FPGA demands. Finally we will
MCNC benchmark circuit . . . . .
extend this approach to distribute a given desigto a
Fig. 7. RatioCut for bi-partitioning of clustered designs with standard FM  minimum number ofFPGAs byusing only the growing
process without the need of a following partitioning step.

RatioCut value (10-5)
7227777

777777777777,
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