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Abstract| In this paper, we propose a cluster-

ing based linear ordering algorithm which consists of

global ordering and local ordering. In the global or-

dering, the algorithm forms clusters from n given ver-

tices and orders the clusters. In the local ordering,

the elements in each cluster are linearly ordered. The

linear order, thus produced, is used to obtain opti-

mal k-way partitioning based on scaled cost objective

function. Experiment with 11 benchmark circuits for

k-way (2 � k � 10) partitioning shows that the pro-

posed algorithm yields an average of 10.6% improve-

ment over MELO for the k-way scaled cost partition-

ing.

I. Introduction

A circuit netlist which is well represented as a hyper-
graph can be transformed to graph using the clique net
model [3][7][9]. Because there are well-established the-
ories and algorithms, many previous partitioning algo-
rithms used the approximated graph model instead of a
hypergraph[2][6]. The transformed graph G(V;E) con-
sists of vertex set, V = fv1; v2; : : : ; vng, and n � n sym-
metric adjacency matrix, A = (aij), where aij > 0 is the
weight of (vi; vj) 2 E. If no edge exists between vertex vi
and vj , aij becomes 0. Here, we can de�ne n � n degree
matrix D = (dij), where dii is the degree of vertex vi, i:e:,
dii =

Pn

j=1 aij , and dij = 0 if i 6= j. The Laplacian of the
graph G is de�ned as Q = D �A.

General de�nition of k-way partitioning problem is as
follows: Given n modules represented as each element in
the vertex set, V = fv1; v2; : : : ; vng, a k-way partition-
ing denoted as P k is to divide n modules into a set of k
disjoint clusters represented as fC1; C2; : : : ; Ckg.

Among many cost functions for measuring the qual-
ity of the result of partitioning [4][5][8], we chose to use
the scaled cost function[4] to avoid the arti�cial size con-
straints. For a given hypergraph partitioning ,P k, the

scaled cost function is de�ned as follows;

Fscaled(P
k) =

1

n(k � 1)

kX

l=1

El

jClj
(1)

where El denotes the number of signal nets crossing the
boundary of cluster Cl, and jClj denotes the size of cluster,
i:e:, number of modules in Cl. The generalized ratio-cut
cost function which is similar to the scaled cost function
is de�ned as follows;

Fratio(P
k) =

kX

l=1

El

jClj
(2)

For a given graph partitioning P k
g , the scaled cost func-

tion and the generalized ratio-cut cost function are the
same as Eq. (1) and Eq. (2), respectively, except the
meaning of El which denotes the sum of the weight of
each edge crossing boundary of Cl, i:e:,

El =
X

vi2Cl;vj 62Cl

aij :

Spectral method uses the eigenvectors and eigenvalues
of the Laplacian of a graph G. The vertices in the graph
can be mapped into points in d-dimensional space us-
ing spectral method. Among many advancements made
in this area[2][4], one-dimensional ordering scheme has
received increasing attention[1]. Some partitioning al-
gorithms have shown optimal results for a given order
through the reduction of search space [3][7]. Thus, netlist
partitioning problem can be transformed to linear order-
ing problem for the given vertices of a netlist.
EIG1[7] uses the second eigenvector of the graph's

Laplacian matrix to place each vertex to one-dimensional
space, which corresponds to a linear order. As a 2-way
partition is obtained by cutting the linear order into two
at one of (n� 1) cut points, EIG1 obtains the best 2-way
ratio-cut partitioning among the (n� 1) partitionings. In
SFC[3], d-dimensional eigenvectors are used. For given n

points in d-dimensional space, SFC obtains a linear order-
ing using SFC(Space Filling Curve) which is a heuristic



of Traveling Salesman Problem. MELO[2] considers n
given points in d-dimensional space as vectors. Alpert et
al. showed relation between graph partitioning and vector
partitioning, which were utilized in MELO to construct
a linear order by iteratively adding a vertex. The linear
order produced by SFC and MELO are applied to DP-
RP[3] for obtaining the optimal k-way partitioning with
respect to the scaled cost function.

In this paper, we propose a new linear ordering algo-
rithm which is then applied to DP-RP. It consists of three
steps, i:e:, cluster formation, cluster ordering, and �nally,
ordering of elements within each clus ter. The cluster
formation and ordering are also called global ordering,
where the ratio-cut cost function is considered. On the
other hand, the ordering of elements within each cluster
is called local ordering.

The paper is organized as follows. Section II contains
some preliminaries and the main algorithm proposed in
this paper is described in section III. Experimental results
are shown in section IV.

II. Preliminaries

For a given graph G(V;E) and the corresponding
n � n Laplacian matrix Q, the eigenvectors are de-
noted by ~�1; ~�2; : : : ; ~�n with corresponding eigenvalues
�1; �2; : : : ; �n (�1 � �2 � : : : � �n). We assume that
each eigenvector is normalized such that ~�i

T ~�i = 1 for
all i. The n � n eigenvector matrix, U , has columns
~�1; ~�2; : : : ; ~�n, where each ~�i is n� 1 column vector. For
some constant H � �d, we can de�ne n � d matrix Vd
consisting of scaled column eigenvectors follows;

Vd = [ ~�1
p
H � �1; ~�2

p
H � �2; : : : ; ~�d

p
H � �d](3)

where d � n. Each vertex, vi, in the graph G(V;E) is

mapped to a vector ~ydi in d-dimensional space, which de-
notes the i-th row of Vd [2]. The smallest eigenvalue �1 =
0 has corresponding eigenvector ~�1 = [ 1p

n
; 1p

n
; : : : ; 1p

n
]T .

As it does not contribute to partitioning, we can disregard
the �rst column of scaled eigenvector Vd.[2]

Consider the problem of partitioning n vectors in
d-dimensional space with the vector set represented

as Y = f ~yd1 ;
~yd2 ; : : : ;

~ydng, where each graph vertex vi

corresponds to the vector ~ydi . The de�nition of k-way
vector partitioning P k

v is to divide n vectors in Y into
a set of k disjoint vectors fS1; S2; : : : ; Skg. For a given
vector partitioning P k

v , we de�ne a cost function as
follows;

Fratio(P
k
v ) =

kX

l=1

~kY n
l k

2

jSlj
(4)

, where k ~Y d
l k

2 = k
P

~y2Sl ~yk
2 and jSlj is the size of cluster

Sl, i:e:, the number of vectors in Sl. We say that a graph
partitioning solution P k

g = fC1; C2; : : : ; Ckg corresponds

to a vector partitioning solution P k
v = fS1; S2; : : : ; Skg if

and only if vi 2 Cl for every
~ydi 2 Sl. Alpert et al.[2]

has proven the following relations to hold between vector
partitioning and graph partitioning.
If d = n and P k

v corresponds to P k
g , then

kX

i=1

k ~Y n
l k

2 = nH �

kX

i=1

Ei (5)

and

kX

i=1

k ~Y n
i k

2

jSij
= kH �

kX

i=1

Ei

jCij
(6)

From the equations (4) and (6), we can say that if
Fratio(P

k
v ) is maximum, the corresponding graph parti-

tioning, P k
g , has minimum cost in terms of scaled cost and

generalized ratio-cut objective function, i:e:, Fscaled(P
k
g )

and Fratio(P
k
g ) are minimized. Thus, the minimization

problem is converted to maximization problem.

III. CBLO: A clustering based linear ordering

A. Motivation

As the proposed algorithm is based on the similar back-
ground as MELO[2], we investigate MELO before explain-
ing the motivation of the proposed algorithm. If a cluster

S maximizes k
P

~yd
i
2S

~ydi k
2, the corresponding graph par-

titioning of S and (Y � S) should be close to optimal in
terms of 2-way min-cut partitioning. From the motiva-
tion, MELO[2] starts with a set of vectors S, which is
initialized as an empty set, and iteratively adds to S the
vector ~yi 2 (Y � S) that maximizes k~yi +

P
~yj2S ~yjk

2.
The ordering scheme of MELO has a chance to produce
good result in case of 2-way partitioning. But MELO, in
general, is not proper for multi-way partitioning.
Let's take a look at the example shown in Fig. A. Here

we assume that a vector set is given as Fig. A(a). Be-
cause the largest vector is v1, MELO starts with v1 and
produces a linear order which is shown in Fig. A(c). It
is di�cult to �nd the optimal 3-way vector partitioning
in terms of ratio objective, shown in Eq. (4), by cutting
any two points in the produced linear order. The optimal
3-way vector partitioning is shown in Fig. A(b). In this
paper, a clustering method is employed to improve the
quality of multi-way partitioning. If a clustering method
appropriately groups the vectors in d-dimensional vector
space, we can improve the quality of linear ordering in
multi-way partitioning. Fig. A(e) is the clusters and lin-
ear order produced by the proposed linear ordering
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(a) An example: 15 vectors are plot-

ted in 2-dimensional space.
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(b) Optimal 3-way vector parti-

tioning in terms of ratio objective.
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(c) Linear order produced by MELO
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(d) 3-way vector partitioning using

linear order produced by MELO.
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(e) 5 clusters and linear order pro-

duced by the proposed algorithm
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(f) 3-way vector partitioning using

the linear order produced by the

proposed algorithm. Fratio(P
3
v
) =

0:883

Fig. 1. An example to show the e�ectiveness of the clustering based liner ordering algorithm

scheme, and Fig. A(f) is the result of vector partitioning
which is closer to the optimal vector partitioning than the
result of MELO shown in Fig. A(d).

B. Overview of the Proposed Algorithm

In the proposed linear ordering algorithm, n vectors,
each representing n vertices respectively, are linearly or-
dered. The linear order, thus obtained, are later used as
a basis for partitioning. The linear ordering process con-
sists of two steps : global ordering and local ordering. The
global ordering step again consists of two steps: cluster
formation and inter-cluster ordering. In the cluster for-
mation, vectors are grouped into an appropriate number
of clusters such that vectors within each cluster are rela-
tively strongly related with each other. The inter-cluster
ordering is then performed to obtain the linear order of
clusters. In the local ordering step, vectors within each
cluster are linearly ordered.

C. Cluster formation

Conceptually, we form a cluster Si by extracting vectors
in the vector set Y , i:e:, a cluster Si is formed through
greedily merging the most attractive vectors. Now we will
explain the detailed algorithm how to form a cluster Si.
The pseudo code of the cluster formation is shown in Fig.
2. In step (2.1), we choose a seed vector ~ys 2 Y , which
maximizes k~ysk

2, and move it to the Si. In step (2.2), we

select a vector ~y 2 Y , which maximizes k ~YSi +~yk2, where
~YSi =

P
y2Si ~y. If Fratio(Si [ f~yg) > Fratio(Si), i:e:, the

ratio objective shown in Eq. (4), of Si is increased by
adding the vector to the set Si, then we add the vector ~y
to Si, and go to the step (2.2). Otherwise, Si is �xed as a
cluster. The proposed clustering algorithm automatically
decides the number of clusters and tries to maximize the
ratio objective of the cluster Si, i:e:, minimize the ratio-
cut objective of the corresponding graph cluster Ci.



The Cluster Formation

Input : vector set Y = f ~yd1 ;
~yd2 ; : : : ;

~ydng
Output: cluster set S

(1) Set i = 1; S1 = empty; Flag = 1;
(2) while ( Y is not empty)
(2.1) choose a seed vector ~ys 2 Y ,

such that k~ysk
2 is maximal;

move the vector to Si;
(2.2) if (Y is empty) then Flag = 0;

else

�nd a vector ~y 2 Y ,

which maximizes k ~YSi + ~yk2;
(2.3) if (Flag = 1 and

Fratio(Si [ f~yg) > Fratio(Si)) then
add the vector to Si; go to step (2.2);

else

put the cluster Si to the cluster set S;
increment i; Si = empty;

Fig. 2. The pseudo code of the cluster formation

D. Inter-cluster ordering

Let's assume that the number of clusters formed in the
clustering step is q and the produced inter-cluster order
is represented as fS�1 ; S�2 ; : : : ; S�qg. The proposed inter-
cluster ordering algorithm incrementally orders the given
clusters. Let's de�ne a segment, �, as a contiguous piece
of the cluster order, e:g:, fS�i ; S�(i+1)

; : : : ; S�jg can be
a segment, where 1 � i � q and i � j � q. Initially
each segment contains exactly one cluster and the inter-
cluster order is obtained by merging two segments into
one until only one segment remains. The remained seg-
ment has q ordered clusters, which can be represented as
fS�1 ; S�2 ; : : : ; S�qg. The pseudo-code of the cluster-wise
ordering is shown in Fig. 4.
The criterion to select two segments is as follows. By

merging two segments, we can get q � 1 segments which
is the optimum with respect to Fratio(P

q�1
v ) for a given q

segments. If i-th and j-th segments are merged, then the
corresponding Fratio(P

q�1
v ) is as follows;

Fratio(P
q�1
v )

=

qX

l=1;l6=i;l6=j

~
kY�l

k
2

j�lj

+
k ~Y�i

+ ~Y�j
k
2

j�i [�j j

(7)

= Fratio(P
q

v ) +
k ~Y�i

+ ~Y�j
k
2

j�i [�j j
�
k ~Y�i

k
2

j�ij
�

k ~Y�j
k
2

j�j j
(8)

Because q segments are already given, i:e:, Fratio(P
q
v )

is �xed, we can obtain the optimum (q � 1) clusters in
terms of ratio objective by choosing two segments which
maximize the following objective.

Fselect(�i;�j) =
k ~Y�i

+ ~Y�j
k
2

j�i [�j j

�
k ~Y�i

k
2

j�ij

�

k ~Y�j
k
2

j�j j

(9)

After two segments �i and �j are selected, they are
merged into one segment according to the following pro-
cedure. Assume that segment �i and �j were obtained
by merging �i1 and �i2, and �j1 and �j2, respectively.
There are four di�erent cases to merge two segments,

∆

i

i

i

j2

j1

j

j1

j2

(c) case 3

(a) case 1

(b) case 2

∆

∆

∆

∆

∆

∆

∆

∆i j

(d) case 4

∆

Fig. 3. Four di�erent cases to merge two segments �i and �j .

which is shown in Fig. 3, where (a) and (b) show two
di�erent orientations for �j . have been decided. In the
merging step, we also try to maximize the ratio objective
shown in Eq. (4) . If Fratio(�i[�j1) > Fratio(�i[�j2),
we take the shape of �j in case 1, and case 2 otherwise.
The shape of �i can then be decided by the similar pro-
cedure as the orientation of �j has been �xed.

The Inter-Cluster Ordering

Input : q vector clusters fS1; S2; : : : ; Sqg.
Output :

ordered vector cluster fS�1 ; S�2 ; : : : ; S�qg.
(1) Initialize M = f�1;�2; : : : ;�qg such that

each segment contains exactly one cluster;
Set m = q;

(2) Find cluster �i and �j in M ,
which maximize cost function Fselect(�i;�j);

(3) Merging �i and �j into new segment �new;
(4) M = (M [ f�newg)� f�ig � f�jg;
(5) Decrement m; If m > 1 goto step 2;
(6) The remained segment has ordered q clusters,

which can be represented as fS�1 ; S�2 ; : : : ; S�qg ;

Fig. 4. The pseudo code of the inter-cluster ordering.

E. Local ordering

The motivation of the local ordering is the same as
MELO[2]. Thus, if the size of each cluster is one, the
proposed algorithm is exactly the same as MELO. The
pseudo code of the local ordering is shown in Fig. 5.
We will show how to order the vectors in the cluster S�i .
Because the sequence of clusters for each of which local
ordering is to be performed was already determined in



the inter-cluster ordering step, we assume that the vec-
tors in each cluster Sl, l < i, was stored in the set O.
The following procedure is repeated until all the vectors
in the cluster Si are ordered. A vector ~y which maximizes
k ~YO+~yk

2 is selected from Si. The vector ~y is added to the
set O and the corresponding vertex is labeled as v�j if ~y
is the j-th vector added to the set O. Thus, we obtain the
linear order of vectors in the cluster Si. The above pro-
cedure is applied for all the clusters, then we can obtain
the linear order of vertices [v�1 ; v�2 ; : : : ; v�n ].

The Local Ordering

Input : vector set fS�1 ; S�2 ; : : : ; S�qg
Output : linear ordering fv�1 ; v�2 ; : : : ; v�ng

(1) O = empty;
(2) for i = 1 to q

while (S�i is not empty)
Find a vector ~y 2 S�i ,

which maximizes k ~YO + ~yk2;
Move the vector to O and label
the corresponding vertex of the vector as v�j
if ~y is the j-th vector added to the set O;

Fig. 5. The pseudo code of the local ordering

Time complexity of the proposed linear algorithm is
O(dn2 + q3), where q is the number of clusters. In the
worst case, q is proportional to n. But in our experiment,
the number of clusters is 16 in average case.

IV. Experimental Result

We implemented the proposed algorithm, called as
CBLO, and compared with MELO and SFC for multi-way
partitioning with the objective of minimizing the scaled
cost function. The scaled cost function is widely used be-
cause it avoids the arti�cial size constraints and provides,
as a single quantity, a measure of the quality of linear
ordering[2].
Each netlist is transformed into the graph by clique

model and a weight of w is assigned to each edge in the
clique, where w is de�ned as

w =
4

p(p� 1)

2p � 2

2p

After the hypergraph is transformed into the graph, eigen-
vectors were computed.
In this experiment, ACM/SIGDA benchmarks were

used as test examples, which are shown in Table 1. The
�rst column is test examples. The second, third and forth
columns are the characteristics of benchmark circuits.
The �fth column shows the number of clusters formed
in clustering step. The sixth and seventh columns report
Sun Ultra Sparc 1 runtime, whose unit is second, of pro-
posed linear ordering algorithm and DP-RP, respectively.

Test # of # of # of # of runtime runtime
Case modules nets pins clusters (CBLO) (DP-RP)

19ks 2844 3282 10547 15 6.6 110.6
prim1 833 902 2908 13 0.6 7.4
prim2 3014 3029 11219 13 7.2 126.0
test02 1663 1720 6134 17 2.4 32.8
test03 1607 1618 5807 19 2.1 31.2
test04 1515 1658 5975 20 1.8 27.5
test05 2595 2750 10076 18 5.3 95.2
test06 1752 1541 6638 10 2.9 38.3
balu 801 735 2697 17 0.5 6.6
struct 1952 1920 5471 12 3.1 47.0
biomed 6514 5742 21040 16 35.6 669.0

SUM 25090 24897 88512 170 68.1 1191.6

TABLE I

Benchmark list and statistics.

The runtime of proposed algorithm is to construct linear
ordering after eigenvectors have been computed. We used
10 eigenvectors, ~�2; ~�3; : : : ; ~�11, to produce the data in
Table 1 except characteristics of examples.
In the next experiment, we used d eigenvectors, where

2 � d � 11, and then produced linear order for each value
of d, i:e:, d = 2 uses eigenvector ~�2; d = 11 uses eigenvec-
tors, ~�2; ~�3; : : : ; ~�11. When all the eigenvectors are not
used it was shown that the selection of H a�ects the re-
sult of linear ordering. MELO proposed some scheme to
select H . In MELO, it was shown that H = �2+�d yields
slightly better solution. We also used the same H as the
MELO in the experimental result.
The linear order produced through the proposed algo-

rithm is then applied to the DP-RP[3] which produces op-
timal k-way partitioning with respect to the scaled cost
function for a given linear ordering. In Table II, the pro-
posed algorithm, CBLO, yields the best solution among
those obtained by running DP-RP. The data in Table II
except CBLO were obtained in MELO[2]. The proposed
algorithm yields an average of 10.6% and 28.1% improve-
ment over MELO and SFC in terms of the scaled cost
function.

V. Conclusion and future work

In this paper, we proposed clustering based linear or-
dering for netlist partitioning. The proposed algorithm
consists of global ordering and local ordering. The global
ordering again consists of cluster formation and cluster
based ordering. By clustering, the proposed algorithm
has more global partitioning information than MELO,
thus the proposed linear ordering scheme produces bet-
ter results than MELO for multi-way partitioning.
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Test Various Number of Clusters,k SUM

Case algorithms 10 9 8 7 6 5 4 3 2

SFC 15.1 14.3 13.8 13.2 12.2 11.1 8.37 7.48 5.44 100.99

19ks MELO 9.85 9.10 8.31 7.87 6.84 6.14 5.32 4.99 4.79 63.21

CBLO 8.92 7.87 6.90 6.30 6.09 5.89 5.50 5.08 4.79 57.34

SFC 38.9 36.7 35.2 31.7 28.8 26.0 21.8 14.6 13.4 247.1

prim1 MELO 44.6 41.9 39.7 37.0 34.0 29.4 22.5 17.1 13.4 279.6

CBLO 32.8 30.2 28.4 26.1 23.9 20.7 16.2 14.0 13.4 205.7

SFC 13.7 13.3 12.8 12.1 11.0 9.43 7.95 6.86 5.05 91.19

prim2 MELO 13.7 12.7 12.0 11.2 10.1 9.18 7.95 6.76 4.71 88.30

CBLO 11.5 10.9 10.0 9.68 9.05 8.40 7.67 6.42 4.64 78.26

SFC 25.5 24.1 22.8 20.9 18.5 16.1 13.4 10.9 8.07 160.27

test02 MELO 21.1 19.9 18.5 17.0 15.4 13.9 12.4 10.7 8.07 136.97

CBLO 20.0 18.8 17.6 16.1 14.5 13.0 11.7 10.5 8.07 130.27

SFC 22.6 21.1 19.2 17.1 16.2 15.2 14.3 13.0 10.2 148.90

test03 MELO 19.0 17.6 16.7 15.3 14.6 13.7 12.5 11.6 9.25 130.25

CBLO 17.4 16.5 15.8 14.9 14.0 12.7 11.3 10.3 9.19 122.09

SFC 22.2 19.9 17.8 17.6 16.5 15.1 11.6 8.17 5.78 134.65

test04 MELO 13.2 12.3 11.5 10.8 9.97 9.32 8.21 6.83 5.78 87.91

CBLO 13.6 12.5 11.2 10.2 9.53 8.65 7.39 6.45 5.70 85.22

SFC 9.88 8.66 8.06 7.84 7.32 6.56 5.49 4.90 3.09 61.80

test05 MELO 7.42 7.03 6.53 6.11 5.79 5.50 4.85 4.35 3.09 50.67

CBLO 6.58 6.26 6.02 5.71 5.15 4.72 4.37 3.96 3.06 45.83

SFC 27.1 25.1 23.7 20.2 18.4 16.5 13.7 11.3 9.21 165.21

test06 MELO 21.3 20.2 18.5 16.7 14.7 13.5 11.3 9.54 8.80 134.54

CBLO 19.4 18.3 16.8 15.1 13.5 12.4 11.6 9.92 8.15 125.17

SFC 82.0 79.1 74.1 70.3 64.9 62.2 49.4 47.3 17.6 546.90

balu MELO 54.0 50.1 46.5 43.2 40.0 36.7 32.3 24.4 17.6 344.80

CBLO 49.7 44.4 42.3 40.4 37.7 34.3 28.1 25.6 17.7 320.20

SFC 12.1 11.2 10.5 9.41 8.65 7.93 7.05 6.42 4.85 78.11

struct MELO 12.9 12.0 10.9 9.82 8.46 7.56 6.53 5.54 4.25 77.96

CBLO 11.8 11.0 10.0 9.29 8.60 7.95 7.43 5.93 4.70 76.70

SFC 1.84 1.69 1.59 1.47 1.51 1.48 1.25 1.15 0.85 12.83

biomed MELO 1.87 1.73 1.62 1.49 1.34 1.23 1.11 0.89 0.61 11.89

CBLO 1.63 1.54 1.43 1.29 1.20 1.08 0.94 0.89 0.61 10.61

SFC 270.92 255.15 239.55 221.82 203.98 187.60 154.31 132.08 83.54 1748.95

SUM MELO 218.94 204.56 190.76 176.49 161.20 146.13 124.97 102.70 80.35 1406.10

CBLO 193.33 178.27 166.45 155.07 143.22 129.79 112.20 99.05 80.01 1257.39

TABLE II

Comparisons of the proposed linear ordering algorithm with MELO and SFC for 11 test circuits with various number of

clusters, k, in terms of the scaled cost function with the scaling factor of 10�5
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