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Abstract| It is known that the clock-period in a

sequential circuit can be shorter than the maximum

signal delay between registers if the clock arrival time

to each register is controlled. We propose an algo-

rithm to �nd the minimum clock-period of a circuit

whose signal propagation delays are given. Experi-

mental results on LGSynth93 benchmarks show that

this technique achieves as much as about 16% reduc-

tion of clock-period compared with the conventional

maximum signal delay based methods. An application

of this technique to improve the reliability of circuits

is considered.

I. Introduction

In the design of a sequential circuit with globally
clocked registers, there are various techniques to achieve
a shorter clock-period [1, 2, 3, 4, 5, 6, 9, 13, 15].
A signal starts to propagate from a register when the

register is ticked by a clock-edge. It must arrive at the
next register before it is ticked by the next clock-edge. If
every register in the circuit is ticked exactly simultane-
ously, the maximum signal propagation delay along func-
tional elements (wires, transistors, etc.) from a register
to another register is a lower bound of the clock-period.
The purpose of retiming and performance driven layout
is to reduce this delay in the circuit. Retiming investi-
gated in [9, 12] relocates the registers of a given circuit
while preserving its functionality. In a unit delay circuit,
Papaefthymiou [12] gave an exact characterization of the
minimum clock-period that can be achieved by applying
a retiming technique in terms of the minimum cycle-mean
introduced by Karp [7].
The clock-delay of a register is the time needed for a

clock-edge to propagate from the clock source to the reg-
ister. However, by various reasons caused mainly by the
layout, a clock-edge arrives at registers with a not negligi-
ble di�erence of time each other, which brings about the
clock-skew. Conventional design usually sets the clock-
period no smaller than the maximum signal propagation

delay plus the maximum clock-skew to guarantee the cor-
rect function. Thus the clock-skew has been considered as
a negative e�ect against speeding up a sequential circuit
and e�orts have been towards its elimination, i.e. zero
clock-skew routing [3, 5, 15].
However there is a di�erent point of view which makes

use of the clock-skew to shorter the clock-period. For the
circuit whose signal propagation delays are �xed, min-
imizing the clock-period by controlling arrival times of
clock-edges to registers is called here the clock scheduling

problem. The decision version of the problem to deter-
mine if a given clock-period works correctly was formu-
lated as a feasibility decision problem of a system of linear
inequalities[1, 4]. Similar ideas are found in the multi-
phase clock scheduling problem [6, 13, 14]. Since their
algorithms only answer the decision problems, they can
only �nd a solution with precision k bits after k trials
following the binary search strategy.
Due to routings, process variations, etc., it may be hard

to estimate accurately signal propagation delays. It may
also be hard to supply clock in designated timing. In such
cases, we should take these deviations into consideration.
The clock scheduling can be used to improve the reliability
of a circuit.
In this paper, we solve the clock scheduling problem:

the exact solution is characterized graph theoretically
and a polynomial time algorithm to �nd it is presented.
The clock scheduling problem is formulated on a directed
weighted graph consisting of two kinds of edges to �nd a
particular cycle. A polynomial time algorithm is provided
to �nd it. Accordingly, the minimum clock-period and
the clock-timing of each register are determined. Exper-
imental results on LGSynth93 benchmarks revealed the
signi�cance of such considerations on clock scheduling by
showing 16% reduction of the clock-period on average.
They also show that a circuit reliability is improved by
clock scheduling when the clock-period is �xed.
To achieve such a controlled clock scheduling, tech-

niques for clock distribution routing must be developed.
For the purpose, it is believed the technology of zero clock-
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Fig. 1. A graph model of a sequential circuit.

skew routing is available [3, 5, 15].

The rest of the paper is organized as follows. Section II

analyzes the clock scheduling problem and formulates it

as a graph problem. Section III introduces some terms

which are de�ned on the graph and discusses their impli-

cations. Section IV proves the main theorem that claims

how the minimum clock-period is determined, and real-

izes the claim as an algorithm. Experimental results are

presented in Section V. Section VI is the conclusion.

II. Preliminaries

Let G be a directed edge-weighted graph. V (G) and

E(G) denote the vertex set and edge set of G, respec-

tively. An edge (u; v) with weight w(u; v) has direction

from u to v as u being the tail and v head. A (directed)

walk inG is a sequence (v0; e1; v1; . . . ; ek; vk), whose terms

are alternately vertices and edges of G such that vertices

vi and vi�1 are the head and tail of edge ei, respectively.

A walk P in G is called a (directed) path if the both edges

and vertices of P are distinct. A walk (v0; e1; . . . ; ek; vk) is

closed if v0 = vk. A closed walk P is called a (directed) cy-

cle if both the edges of P and the vertices v0; v1; . . . ; vk�1
are distinct. For any walk P = (v0; e1; v1; . . . ; ek; vk), the

weight of P , denoted as w(P ), is the sum of the edge

weights of P , that is, w(P ) =
P

1�i�kw(ei).

The sequential circuit N under consideration consists

of registers and gates, and wires connecting them. Every

register is clocked equi-period but not necessarily simul-

taneously. In clocking design, only the signal propagation

delay between registers is concerned, which is not unique

because of signal propagations on various paths, di�erent

rise and fall gate delays, etc. In our discussion, only the

maximum and minimum propagation delays are signi�-

cant which are assumed to be estimatable.

We model N by a directed graph G as follows: a vertex

v 2 V (G) represents a register and an edge (u; v) 2 E(G)

does the signal transmission from register u to register

v along functional elements of the circuit. The weight

of edge (u; v) is a pair (wmin(u; v); wmax(u; v)) where

wmin(u;v) and wmax(u; v) are the minimum and maxi-

mum signal propagation delays, respectively. See an ex-

ample in Fig. 1.

A clock from the clock source arrives at each regis-
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Fig. 2. Legal clocking: A signal started from register u at

time d(u) must arrive at register v between d(v) and t+ d(v) for

correct function.

ter with some delay which is called the clock-delay. But

our concern is not with the clock-delay itself but rela-

tive di�erence. For convenience to describe it, we take

an arbitrary register s as the standard register such that

it is ticked by a clock-edge with standard clock-delay.

Then the register v is ticked d(v) time after the stan-

dard register is ticked. If the standard register s is

ticked on time (. . . ;�t; 0; t;2t; . . .) where t is the clock-

period of the circuit concerned, then v is ticked on time

(. . . ;�t+ d(v); d(v); t+ d(v);2t+ d(v); . . .). Our problem

is to �nd the minimum clock-period by clock scheduling,

that is, designing clock-timing d(v) of every register.

A signal started from u triggered by a clock-edge at time

d(u) arrives at v on time d(u)+w if the signal propagation

delay from u to v is w. Since v is clocked as above, the

arrival time d(u) + w must be between d(v) and t + d(v)

for correct function. See Fig. 2. If it is earlier than d(v),

the signal is doubly clocked by a same clock-edge. If it

is later than t + d(v), the signal is not clocked by the

next due clock-edge. Since a signal propagation delay is

between wmin(u; v) and wmax(u; v), these requirements

for all (u; v) 2 E(G) are stated as two constraints[4]:

No-Double-Clocking Constraint:

d(v) � d(u) + wmin(u; v)

No-Zero-Clocking Constraint:

d(u) + w
max

(u; v) � t + d(v):

Other technology dependent constraints related to the

setup and hold time of the registers and the deviation

of due propagation delays, etc.[14], are assumed to be

contained in the signal propagation delays. If there are

registers constrainted to be triggered simultaneously, such

as these concerned with primary inputs and/or outputs,

then we consider these registers as one register. Thus

our framework is de�ned only by the no-double-clocking

and no-zero-clocking constraints. The period t is called

feasible if there exist d(v)'s that satisfy both of them.

Note that if t is the minimum clock-period, any t0 � t is

also a feasible clock-period.

These constraints are formulized in linear inequalities

in general as d(v) � d(u) � f (u; v) where f (u; v) =
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Fig. 3. Constraint graph Gt for the circuit N shown in Fig. 1.

wmin(u;v) or = t�wmax(u; v). While we regard d(v)'s be-
ing unknown variables and f (u; v)'s given constants, the
system is called the di�erence constraint. The following
well-known fact enables us to solve the decision version of
the problem [9, 8, 11, 12].

Lemma 1 Let L be a di�erence constraint in the form of

x(v) � x(u) � gu;v. Let ~G be a directed graph obtained

from L as follows: V ( ~G) = fu j L contains x(u)g, and

E( ~G) = f(u; v) j L contains x(v) � x(u) � gu;vg where

weight w(u; v) = gu;v. Then the di�erence constraint is

feasible if and only if any directed cycle C in ~G satis�es

w(C) � 0.

Our problem is to �nd the minimum clock-period e�-
ciently. We de�ne the constraint graph Gt, where t is a
variable standing for the clock-period, is obtained from
the graph model G of the circuit by replacing each edge
(u; v) 2 E(G) with two edges (u; v) and (v;u) with weight
wmin(u;v) and t � wmax(u; v), respectively. The former
edge is called the D-edge and the latter the Z-edge, respec-
tively. D-edges (Z-edges) correspond to the No-Double
(No-Zero) Clocking Constraints. For example, the con-
straint graph Gt for the circuit shown in Fig. 1 is shown

in Fig. 3. We claim that the minimum t and associated
clock scheduling are determined from this graph.
Once a feasible t is given, we can determine clock-timing

d(v) of every register by solving shortest path problems
on Gt. The clock-timing of d(v)'s that makes t feasible
will be in some range. We can use this margin to improve
the reliability of the circuit by choosing the clock-timing
appropriately. A related discussion with experiments will
be given.

III. Formulation of the Minimum Clock-Period

Let Gt be the constraint graph. For a subgraph or an
edge set S of Gt, EZ(S) denotes the set of Z-edges con-
tained in S. For an edge set S which contains at least
one Z-edge, w(S)=jEZ(S)j is called the Z-mean of S, and
denoted as wZ(S). Particularly, if S is a cycle, it is called
a Z-cycle and wZ(S) is called the cycle Z-mean. Its min-
imum over all Z-cycles in Gt, called minimum cycle Z-

mean of Gt and denoted as Z(Gt), is a key index in the
following discussion.

In the following, we assume that the weight of each
D- and Z-edge is �nite since the signal propagation de-
lay is naturally so assumed. Due to the hold time, etc.,
the weights of some D-edges may be negative. However,
if there is a negative weight cycle which consists only of
D-edges, there is no feasible clock-period by Lemma 1.
Therefore our concern is the circuits in which the weight
of any cycle which consists only of D-edges is zero or pos-
itive. However if there is a zero weight cycle the follow-
ing discussion becomes unnecessarily lengthy although the
similar discussion is possible. Therefore, for compactness
of presentation here, we assume that the weight of any
cycle which consists only of D-edges is positive. (Note
that a negative or zero cycle is easily checked.)

Our problem is to determine the minimum clock-
period �N of the circuit N by clock scheduling. The fol-
lowing theorem is claimed by Lawler [8, 14] but we state
it di�erently for our purpose. A proof is given for com-
pleteness.

Theorem 1 For any sequential circuit N and the con-

straint graph Gt for N with t = 0, �N = �Z(G0).

Proof: Let C be a Z-cycle of G0 and C0 be the Z-cycle of
G�N corresponding to C in a natural way. Then w(C0) =
w(C) + �N jEZ(C)j. Since w(C0) � 0 by Lemma 1 and
jEZ(C)j � 1, we have �N � �wZ(C). Since it holds for
any Z-cycle, �N � �Z(G0).

Next we show that �N � �Z(G0). The weight of each
Z-cycle of C0 of G�N is non-negative by Lemma 1. There
exists a Z-cycle C0 of G�N such that w(C0) = 0, other-
wise we can reduce the clock-period further without vi-
olating the feasibility (Lemma 1), which contradicts �N
being minimum. Let C be a Z-cycle of G0 corresponding
to C0. Then w(C0) = w(C)+�N jEZ(C)j = 0 and we have
�N = �w(C)=jEZ(C)j = �wZ(C) � �Z(G0). 2

IV. Computation of the Minimum Cycle Z-Mean

A. Main Algorithm

Now our problem is to provide a polynomial time algo-
rithm to compute the minimum cycle Z-mean Z(G0).

Graph G0 is a very special graph such that every edge
has a parallel edge of opposite direction and di�erent type.
The weights of these two edges correspond to the mini-
mum delay and the maximum delay with minus sign, re-
spectively. An example shown in Fig. 4 is the one derived
from a circuit in Fig. 1.

We assume that G0 is strongly connected since other-
wise we can determine the minimum cycle Z-mean as the
minimum of cycle Z-means of all strongly connected com-
ponents of G0.

Let n = jV (G0)j. Let s be an arbitrarily chosen vertex
ofG0. For every vertex v 2 V (G0) and every non-negative
integers i and j (0 � i � j � n), let P(v; i=j) be the set of
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Fig. 4. Constraint graph Gt with t = 0 for N shown in Fig. 1.

Step 1: Choose a vertex as s, and compute F (v; i=j)
for every triple (v; i; j).

Step 2: Compute X(v; i) for each v 2 V (G0) and i.

Step 3: Compute Q(v; i) for each v 2 V (G0) and i.

Step 4: Take the minimum of all Q(v; i) over all
pairs (v; i). Then, output its minus as �N .

Step 5: Find a shortest path in G�N from s to each
vertex v, and determine d(v) as the length of the
shortest path from s to v.

Fig. 5. Algorithm computing the minimum clock-period and clock

scheduling.

walks P from s to v such that jEZ(P )j = i and jE(P )j = j.
(Necessarily, j�i edges are D-edges.) We de�ne F (v; i=j)
as the minimum of weights of all walks from s to v that
use exactly i Z-edges and j edges (0 � i � j � n), i.e.,

F (v; i=j) = minfw(P ) j P 2 P(v; i=j)g [ f1g:

In terms of F (v; i=j), two more indexes X(v; i) (0 � i �

n) and Q(v; i) (1 � i � n) are de�ned.

X(v; i) = min
i�j�n

F (v; i=j):

That is, X(v; i) denotes the minimum of weights of all
walks from s to v that use exactly i Z-edges and at most
n edges. While Q(v; i) is the upper bound of the Z-mean
of a cycle contained in a walk whose weight is minimum
in P(v; i=n). Formally,

Q(v; i) = max
0�i0�i�1

F (v; i=n) �X(v; i0)

i � i0

if F (v; i=n) = X(v; i) 6=1, Q(v; i) =1 otherwise.
Our proposing algorithm is shown in Fig. 5. In the

following, we show the correctness of the algorithm.

B. Theorem, lemmas, proofs, and complexity analysis

The correctness of Step 5 in Fig. 5 comes from
Lemma 1. Then the main theorem claims that the al-
gorithm in Fig. 5 outputs the minimum clock-period.

Theorem 2 For any sequential circuit N ,

�N = � min
v2V (G0)

min
1�i�n

Q(v; i);

where G0 is the constraint graph for N with t = 0.

We prove Theorem 2 by a series of lemmas.

Lemma 2 For any vertex v 2 V (G0) and any integer i

(1 � i � n), Z(G0) � Q(v; i).

Proof: If F (v; i=n) = 1 or F (v; i=n) > X(v; i), then
Q(v; i) = 1. Since Z(G0) is �nite, Z(G0) � Q(v; i), so
the proof completes. Thus we assume that F (v; i=n) is
�nite and F (v; i=n) = X(v; i).
Let P be a walk whose weight is minimum in P(v; i=n),

i.e., w(P ) = F (v; i=n). Since the number of edges of P is
n, P contains cycles. Let arbitrary one of them be C. For
simplicity of terminology, let i� = jEZ(C)j, j

� = jE(C)j,
w� = jw(C)j. Notice that 0 � i � i� � n � j� < n. Let
P 0 be the walk obtained from P by deleting the edges of
C. (Note that a walk minus a cycle is a walk.) Then, the
number of Z-edges, the number of edges, and the weight
of the walk P 0 are i � i�, n � j�, and F (v; i=n) � w�,
respectively. Since P 0 is a member of P(v; i � i�=n � j�)
and since F (v; i � i�=n � j�) is the minimum weight of
such walks, F (v; i=n)� w� � F (v; i� i�=n� j�).
If i� = 0, then w� > 0 by the assumption that the

weight of a cycle consisting only of D-edges is positive.
We have F (v; i=n) > F (v; i=n � j�) � X(v; i). This con-
tradicts the assumption that F (v; i=n) = X(v; i). Thus
we have i� � 1. Then the cycle Z-mean of C, which is
wZ(C), is w

�=i�. Since Z(G0) is the minimum of such
averages, we have

Z(G0) �
w�

i�
�
F (v; i=n) � F (v; i� i�=n� j�)

i�

�
F (v; i=n)�X(v; i� i�)

i � (i� i�)

� max
0�i0�i�1

F (v; i=n)�X(v; i0)

i � i0
= Q(v; i):

Thus Z(G0) � Q(v; i) for any v and i. 2

Lemma 3 If Z(G0) = 0, there exist a vertex v 2 V (G0)
and an integer i (1 � i � n) such that Q(v; i) � 0.

Proof: Let C be a Z-cycle of weight 0 in G0. Let v
0 be a

vertex in V (C) and P 0 be a minimum weight walk from s

to v0. Since the weight of C is 0, a walk, P 0 followed by
any number of repetitions of C is also a minimum weight
walk. Any initial part from s to a vertex on the way of a
minimum weight walk is also a minimum weight walk from
s to the vertex. So there exists a vertex v� 2 V (C) such
that a walk that comprises exactly n edges is a minimum
weight walk from s to v�. Let P be such a minimum
weight walk.



Let i
� = jEZ(P )j. Notice that 1 � i

� � n.
Since F (v�; i�=n) = X(v�; i�), Q(v�; i�) is �nite de�ned

as max0�i0�i��1
F (v�;i�=n)�X(v�;i0)

i��i0
. Furthermore, since

F (v�; i�=n) � X(v�; i0) for any i
0 (0 � i

0 � i
� � 1), we

have Q(v�; i�) = max0�i0�i��1
F (v�;i�=n)�X(v�;i0)

i��i0
� 0. 2

Lemma 4 There exist a vertex v 2 V (G0) and an integer

i (1 � i � n) such that Q(v; i) � Z(G0).

Proof: Letting t = Z(G0), G0 is a graph obtained from
G0 by reducing each Z-edge weight by t. Then an impor-
tant fact is that Z(G0) = 0.
Let F 0(v; i=j) be the minimum weight of a walk from

s to v in G
0 using i Z-edges and j edges (i.e. elements of

P(v; i=j) de�ned in G
0). X

0(v; i) and Q
0(v; i) for G0 are

similarly de�ned.
Another important fact is that a minimum weight walk

from s to v in G
0 using i Z-edges and j edges is also

such a minimum weight walk in G. Hence F (v; i=j) =
F
0(v; i=j)+ i � t if F 0(v; i=j) 6=1, and X(v; i) = X

0(v; i)+
i � t if X0(v; i) 6= 1. By Lemma 3, there exist a vertex
v
� 2 V (G0) and an integer i

� (1 � i
� � n) such that

Q
0(v�; i�) � 0. Since F

0(v�; i�=n) = X
0(v�; i�), we have

F (v�; i�=n) = X(v�; i�). Thus

Q(v�; i�) = max
0�i0�i��1

F (v�; i�=n) �X(v�; i0)

i� � i0

= max
0�i0�i��1

F
0(v�; i�=n)�X

0(v�; i0)

i� � i0
+ t

= Q
0(v�; i�) + t � t:

Thus Q(v�; i�) � Z(G0). 2

Since �N = �Z(G0), Theorem 2 comes from Lemmas 2
and 4. Notice that Theorem 2 is naturally described inde-
pendently from the choice of s, the standard register used
for clock-timing reference. Notice also that the minimum
cycle Z-mean can be computed for any graph G consisting
two types of edges, D-edges and Z-edges, if the weight of
any cycle consisting only D-edges is positive.
Finally, we show that �N and the corresponding clock-

timing d(v) for all register v in N can be computed in
O(n2e) time where n = jV (G0)j and e = jE(G0)j: Step 1
can be executed in O(n2e) time. The following steps to-
tally take further O(n3) times. Since N is strongly con-
nected, n � e, so, the minimum cycle Z-mean can be
computed in O(n2e) time.

C. Example

The constraint graph Gt with t = 0 is shown in Fig. 4
for a sequential circuit N in Fig. 1. The minimum cycle
Z-mean of G0 is �9 which cycle (a; b); (b; d); (d; a) attains.
Then, the clock-timing d(v) of each v is obtained as fol-
lows: taking register a as the standard,

d(a) = 0; d(b) = �3; d(c) = 4; d(d) = 3:
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Fig. 6. Constraint graph Gt with optimum clock-period t = 9.

See a clock realization in Fig. 6. It is easily veri�ed that
the clock assignment as above works correctly.

V. Experiments

The clock scheduling technique was applied to
LGSynth93 benchmarks using JCC JS5/70 (equivalent to
SUN SPARC 5). Results are presented in Tables I and II.

The �rst experiment is to see the e�ect of the clock
scheduling. In Table I, \Regs" include registers them-
selves and IO terminals. \wmax" is the maximum delay
between registers estimated by the sum of the maximum
gate delays along a path where the maximum gate delay
is de�ned as the larger of raise and fall delays. Similarly,
minimum delay is estimated by the sum of the minimum
gate delays along a path. While \�N" is our result. The
reduction of clock-period to the maximum signal propa-
gation delay is 16.1% on average.

The second experiment is to see the allowance in clock
schedule design. In Table II, the minimum clock-periods
are shown in cases that a certain deviation from the es-
timated propagation delay is inevitable. They are within
�2:5%, �5%, or �10% of each signal propagation delay.
The last column shows the allowance of the deviation of
propagation delay in percent precision in the case that the
clock-period is set equal to the maximum signal propaga-
tion delay in the circuit. This shows that the clock-period
which equals to the maximum signal propagation delay
can be achieved if the deviation of each signal propagation
delay is at most 13:7% (average) in the case of LGSynth93
benchmarks. We can also show that we can achieve the
clock-period which equals to the maximum signal propa-
gation delay if the deviation of due clock-timing is at most
3:5% (average) of the maximum signal propagation delay
(Experimental results are omitted here).

VI. Concluding Remarks

Considerations of this paper are fully standing on the
expectation that some way is available which can control



TABLE I
Results of clock scheduling. (u: unit delay)

name
# Regs
(# IO)

wmax[u] �N [u] red.[%] CPU [s]

s27 8 ( 5) 3.01 2.39 20.6 0.00

s208 21(13) 7.11 5.01 29.5 0.01

s298 23 ( 9) 4.94 3.89 21.3 0.02

s349 35(20) 9.24 6.53 29.3 0.10

s382 30 ( 9) 5.78 4.07 29.6 0.08

s386 20(14) 6.81 6.68 1.9 0.02

s400 30 ( 9) 5.94 4.22 29.0 0.07

s444 30 ( 9) 6.43 4.72 26.6 0.09

s510 32(26) 6.02 5.74 4.7 0.06

s526 30 ( 9) 4.94 3.89 21.3 0.07

s641 78(59) 30.92 27.49 11.1 1.72

s713 77(58) 32.12 28.99 9.7 1.66

s820 42(37) 6.65 6.29 5.4 0.20

s838 69(37) 25.34 23.51 7.2 0.90

s953 68(39) 7.59 6.19 18.4 0.88

s1196 46(28) 12.93 10.96 15.2 0.36

s1238 46(28) 13.26 11.58 12.7 0.36

s1423 96(22) 35.72 32.45 9.2 9.61

s1488 33(27) 10.34 9.45 8.6 0.12

s1494 33(27) 10.75 9.60 10.7 0.12

avg. 42(24) 12.29 10.68 16.1 0.82

the clock distribution with arbitrary clock-timing to ev-

ery register. Though such a technology falls beyond the

scope of this paper, it seems probable that zero clock-skew

routing is available for the purpose. In fact, some of zero

clock-skew routing algorithms, for example [3], are con-

sidered. When a large amount of clock-skew is requested,

combination of the multi-clock source and clock routing

techniques may be valid for our purpose. The idea in [10]

may be helpful in which the non-zero clock-skew routing

problem is discussed.

The larger the di�erences of the maximum and mini-

mum propagation delays, the severer the constraints are,

so the reduction of the clock-period tends to be smaller.

Thus our results have created a new problem to reduce

the di�erence of the maximum and minimum propaga-

tion delays from registers to registers.

For reliability concerned, it is essential to take an

enough margin for clock-period to ensure a correct per-

formance of a sequential circuit. The idea in this paper

will be useful to improve circuit reliability in this way.

The urgent future work in this direction should be to

develop a layout optimization techniques based on the

clock scheduling technique.
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