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Abstract

Logic synthesis has two stages of optimization: technology-

independent and technology-dependent. This paper surveys

state-of-the-art methods for estimation and optimization of
delays of logic circuits at technology-independent stage. Al-

though at this stage we cannot completely predict �nal delays

after technology mapping, there exist reasonably accurate es-
timation techniques. Final delays can be reduced with opti-

mization techniques that use such estimation.

1 Introduction

For many years, area optimization was the primary goal of

logic design and synthesis. After scores of signi�cant ad-

vances, today it seems that the �eld of area optimization has
matured. Instead, improving the circuit timing (or perfor-

mance) has now emerged as an important optimization goal

in logic synthesis.

Before any attempt is made to improve the delay charac-

teristics of a circuit implementation, it is imperative that one

measures its delay �rst. The true delay, however, can be mea-
sured only after the circuit has been fabricated. Therefore,

when the circuit is being designed, one has to be content with

using models of circuit delay, which predict the delay of
a given circuit representation. The delay model employed

depends directly on the stage at which the design is being

done. For instance, at the logic design stage, one popular

model is the unit delay model, which approximates delay

by the number of logic levels in the circuit. During physical

design, more accurate and sophisticated models, which take

into account the wiring delays, are used. Two such models are

Elmore [8] and Rubinstein-Pen�eld-Horowitz [14]. This step

of using delay models to predict the circuit delay is known as
delay estimation.

Once the circuit delay has been estimated, circuit trans-

formations can be applied that would reduce the delay. Typi-

cally these transformations modify the circuit structure. De-

lay of the modi�ed structure is computed; if it is less than

before, the modi�ed structure can be accepted as the new im-

plementation. This step is known as timing optimization

(delay optimization, performance optimization).

This paper presents a survey of techniques for delay estima-

tion and optimization of combinational logic circuits. Basic

de�nitions and concepts required for the rest of the paper are
presented in Section 2. Section 3 gives an overview of vari-

ous delay models used at technology-independent, logic level.

The state-of-the-art optimization techniques are described in
Section 4.

2 Preliminaries

A combinational circuit is represented as a Boolean network.

A Boolean network � is a directed acyclic graph with some
primary inputs PI(�), primary outputs PO(�), and internal

(intermediate) nodes IN(�). Primary inputs have no arcs

coming into them, and primary outputs have no arcs going
out of them. Associated with each internal node i of the

network is a variable yi and representation of a logic function

fi. The logic at each node is stored typically as a sum-of-
products (SOP) form. There is a (directed) arc from node i

to node j in the network if j uses yi or yi
0 explicitly in the

representation of fj. In that case, i is called a fanin of j, and
j a fanout of i. The set of fanins of a node i is denoted as

FI(i) and the set of fanouts as FO(i). If there exists a path

from node i to node j, then i is said to be a transitive fanin

of j, and j a transitive fanout of i. The set of transitive

fanins of a node i is denoted as TFI(i), whereas its transitive

fanout set is denoted as TFO(i).

Figure 1 shows a network with four primary inputs a; b; c,

and d, three primary outputs x, y, and z, and four internal

nodes y; w;x, and z. The primary inputs and output nodes

are drawn as squares, and the internal nodes as circles. b

and c are fanins of w, and x and z are the fanouts of w.

The function associated with w is fw (also written w) = bc.

TFI(z) = fb; c; d;wg. TFO(w) = fx; zg.

In addition, arrival time ai at each primary input i and

required time rj at each primary output j may be given,

indicating the times at which signal becomes available at the

input i and by which it is required at the output j. These

times are derived from the performance constraints on the

design: the cycle time and the set-up & hold time constraints



a

b

c

d

y

w

w = b c

y = a b

z z

x x

x = b +w’

y

z = w + c + d

Figure 1: A Boolean network

at the 
ip-
ops and latches.1

If arrival time is not speci�ed for some primary input, it is

assumed to be zero. Similarly, required times at primary out-

puts, if unspeci�ed, are forced to be the maximum required
time of an output. If no required times are speci�ed, we set

the required times of all the outputs to the maximum out-

put arrival time. The arrival times at the primary inputs,
required times at the primary outputs, and gate delays are

used to compute the arrival time and required time at each

node in the network. A forward delay trace (from inputs
to outputs) of the network determines the arrival time at each

node (i.e., at its output). The arrival time at the output of

a gate is the sum of the gate delay and the maximum ar-
rival time at its fanins (under a simple gate delay model that

ignores e�ect of the fanout loading, etc). If the computed

arrival time aj at each primary output j is no more than the
corresponding required time rj , the network is said to meet

the timing requirements. Similarly, a backward trace of

the network yields the required time at each node. We com-
pute the slack si at each node i as the di�erence between

the required time ri and the arrival time ai at the node, i.e.,
si = ri � ai. A node is critical if its slack is negative. Criti-

cal nodes do not meet the timing constraints and need to be

speeded up for improving the circuit performance.

3 Delay Estimation

At technology-independent stage, in the absence of any tech-

nology information, delays through network nodes are not
known. It is not straightforward to come up with accurate

delays of gates and wires, since there is no direct correspon-

dence between Boolean networks and actual circuits based
on semi-conductor cell libraries. Delay models are used to

predict the delay of the nodes and hence through the net-

work. Under unit delay model, delay of each gate is one
unit. Since the logic function associated with a node may be

1Almost all designs are sequential in nature { they have

memory elements such as 
ip-
ops and latches. Since the

problem of sequential circuit optimization is hard, typically
only the combinational part between the memory elements is

optimized.
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Figure 2: Decomposition of z = w+ c+ d

complex or simple, it is meaningless to assign identical de-

lays to both. So the network is �rst represented in terms of

inverters, 2-input AND gates, and 2-input OR gates. Then
it is reasonable to assign unit delay to each such gate. Given

a network and a delay model, we can associate delay with

each network node (gate). Delay of a path is the sum of
delays of the gates on the path (ignoring the wiring delays).

Delay through a network is the maximum path delay in

the network. Clearly, this path goes from a primary input to
a primary output. For a network represented in terms of two-

input gates, the number of levels is the same as the delay

through the network under the unit delay model.

When decomposing given Boolean functions into two-input

gates, we have to be careful about how to decompose, since
di�erent decompositions can lead to di�erent delay estimates.

For example, node z in Figure 1 realizes a 3-input OR gate.

So it needs to be decomposed into two 2-input OR gates.
This can be done as shown in either (a) or (b) of Figure 2.

Assume that the arrival times of all primary inputs are 0. If

we decompose as shown in (a), the delay of z will be 3 using
the unit delay model. But if we decompose as in (b), its

delay will be 2. We should use the so-called timing driven

decomposition in order to get more accurate estimation, as
will be explained in Section 4.1.1.

Although number of levels is a reasonable estimate of cir-
cuit delay, it does not take into account large capacitive loads

driven by nodes having many fanouts. Large capacitance can
cause large delays. So, an alternative is to use a weighted

sum of number of levels and number of fanouts as the delay

model. This is called the unit-fanout delay model and
looks more reasonable intuitively. However, depending on

technology mappers or technology libraries, the unit-fanout

delay can be less accurate than unit delay.

The above two models, unit delay and unit-fanout delay,

along with timing driven decomposition methods, are cur-
rently the basic techniques for delay estimation. Appropri-

ateness of these delay models, however, is not clear. For ex-

ample, we estimated the delays of a set of circuits with both
models. Then, we mapped the circuits using two di�erent

technology mappers { one was a public-domain mapper and



the other, an in-house mapper. We obtained mixed results
{ unit delay model gives better estimation for one mapper

and unit-fanout delay model, better for the other mapper.
So the results are not conclusive. However, both models give

reasonably good correlation with actual delays after technol-

ogy mapping. That, along with the simplicity of the models,
explains why these models are widely used in actual timing

optimization tools.

4 Performance Optimization

The performance optimization problem can be stated as fol-

lows: Given an initial circuit function description, a library

of primitive gates, and performance constraints, generate an

implementation of the circuit using the primitive gates such

that performance constraints are met and the circuit area is

acceptable.

Various solutions have been proposed to address this prob-
lem. They can be grouped in three broad categories:

1. Circuit restructuring: The structure chosen to rep-

resent a function determines its delay. Restructuring
techniques [7, 19, 17, 3, 5, 21, 4, 16] aim at reducing the

delay of the circuit by modifying the structure. For in-

stance, a ripple-carry adder, which is a serial implemen-
tation of the carry-out, can be restructured to obtain a

more parallel carry look-ahead structure [9].

2. Technology mapping: This refers to selection of gates
from the library to implement the logic of the network

without changing the global circuit structure. The se-
lection exploits the delay characteristics of the gates for

delay reduction. Key contributions in this area were

made in [10, 11, 20, 15].

3. Fanout optimization: The capacitive load driven by

a gate a�ects the delay through the gate. The fanout

optimization problem is how to redistribute this load
such that this delay is minimized. This is achieved by

building fanout-trees at the output of gates that have

high capacitive loading [2, 18, 20]. The fanout-trees
consist of inverting and non-inverting bu�ers. Bu�er

insertion is typically part of the technology mapping

process, since it is only after gate-selection that one
knows the load driven by a gate.

In this paper, we will focus only on circuit restructuring.

Many restructuring techniques have been proposed in liter-

ature. They are mostly based on transformations that de-

signers use to speed up circuits. Techniques such as LSS [6]

and SOCRATES [1] are rule-based. They use a pre-de�ned
set of local transformations based on design style and the

target technology to improve the delay. Others use an al-

gorithmic approach to optimize the circuit. For instance,
[7, 19] determine a set of nodes whose restructuring improves

the overall circuit performance. The choice of these nodes is

made so as to obtain the maximum delay improvement with a
minimum area increase. Some algorithmic techniques reduce

delay by using network don't cares and permissible functions

to re-express node functions using early arriving signals [3, 5];
some others use delay-driven clustering and subsequent col-

lapsing and optimization [21], while others either eliminate
long paths that cannot be sensitized by any input vector [4]

or reduce the delay of the longest sensitizable path [16]. It

should be noted that restructuring can be done both before
and after technology mapping.

The generic restructuring paradigm can be described as
follows.

while (circuit timing improves &&

timing constraints are not met) {

Select regions of circuit to restructure

Restructure the selected regions

}

Next, we describe some restructuring (or transformation)
techniques. We should mention that typically the input net-

work is in terms of 2-input gates. However, the transforma-

tions are e�ective on complex logic functions. Given a two-
input gate g, a complex function is obtained by collapsing an

appropriate subset of transitive fanin TFI(g) into g. This

transitive fanin subset along with g constitutes the scope

of the transformation, which represents the region to be

restructured. Larger the scope, better is the optimization

potential. However, since gates in the scope may fanout to
other parts of the network, they need to be duplicated. So a

larger scope typically results in a higher area penalty. Also,

the resulting complex logic function obtained after collapsing
may be too large to be represented. State-of-the-art systems,

such as speed up [17], de�ne scope as either the entire transi-

tive fanin up to a depth d or just the critical part. In practice,
d is assigned a value in the range 3 to 6.

4.1 Delay Reducing Transformations

We describe some transformations that alter the structure of

a part of the circuit such that the delay through the part is
reduced.

4.1.1 Tree-height Reduction: Timing

Driven Decomposition

Timing driven decomposition decomposes a complex function

f into a structure composed of 2-input functions whose delay
is minimum. This is done primarily through extraction of

divisors that are good for timing (g is a divisor of f if f can

be written as f = gh+r, where h is non-zero). The goodness
of a divisor depends on arrival times of its inputs { a good

divisor should not have late arriving signals as its inputs, and

the area saving it can lead to. The best divisor g is chosen
and substituted into f . Then, g and the modi�ed function

f are decomposed recursively. If, at some stage, f does not

have any divisors, f is necessarily a sum of disjoint-support
product terms. Its decomposition into two-input gates is then

done as follows. A Hu�man-like procedure is used to come up
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Figure 3: Timing Driven Decomposition

with an optimum 2-input AND decomposition of each prod-

uct term { at each step, two earliest arriving signals are com-
bined into an AND gate, and are replaced by the AND gate

output, whose arrival time is one more than the maximum

input arrival time (assuming the unit delay model). This
procedure is repeated until only one signal remains [22]. A

similar procedure is then used to combine the outputs of the

root AND gates realizing the product terms into two-input
OR gates.

During the recursive invocation, g is decomposed before

f . This is so that when f is decomposed, the arrival time
of its input g is known, since it is a 2-input gate. If f were

to be decomposed earlier, g could be a complex gate, and we

would not know its arrival time. The decomposition process
is shown in Figure 3. Dotted lines represent critical signals.

Since the divisors are extracted from an SOP representa-
tion of the function f , it can happen that the SOP of the

complement of f is better for divisor extraction. It may then

be useful to extract divisors from the complement.

Figure 4 illustrates the basic idea behind tree-height re-

duction. The network shown is in terms of two-input gates.

Node n has an arrival time of 6 and is to be speeded up (a
unit delay model is assumed). The critical edges and paths

are shown with dotted lines. The scope of the transforma-

tion is the critical part of TFI(n) and is shown enclosed in
the curve. The logic functions in the scope are collapsed into

n. Since node m fans out to some node outside the scope,

m and its transitive fanin gates in the scope (i.e., j and h)
need to be duplicated. Now, n is a complex function and can

be redecomposed using timing driven decomposition. This

results in a reduction of arrival time from 6 to 4. Note that

the decomposition keeps the late arriving input e close to the

root node n.

4.1.2 Timing Driven Cofactoring

Given a function f , the latest arriving input x is determined.
Then, f is decomposed as f = xfx + x0fx0 [3] (fx is f with

input x set to 1, and fx0 is f with x set to 0). A multiplexer

is used with its select line tied to x; fx and fx0 are realized,
and tied to the 1 and 0 data inputs respectively of the multi-

plexer. A straightforward implementation realizes fx and fx0
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Figure 4: Collapsing and Timing Driven Decompo-

sition

independently, which may result in a large overhead in area.
The overhead can be reduced if logic sharing between fx and

fx0 is considered. This technique is a generalization of the

design of a carry-select adder.

4.1.3 Generalized Bypass Transform

The basic idea in this method is to change the structure of the

circuit in such a way that transitions do not propagate along

the long paths in the circuit [13]. Given a function f and a

late arriving input x, g = fx�fx0 represents conditions under

which f depends on x. g is then used as the select signal of

the multiplexer, whose output is f . If g is 1, the output f is

simply x or x0. If g is 0, the output is the function f with
x set to 0 or 1. The long path that depended on x has been

replaced by the slower of the two functions: g and f with x

set to a constant. This transform is a generalization of the
technique used in a carry-bypass adder.

4.1.4 Timing Driven Simpli�cation

Simpli�cation computes a smaller sum-of-products (SOP)

representation of a function using a don't care set that is



derived from the network structure and also possibly from
the external environment. The goal of timing driven simpli-

�cation is to compute an SOP that leads to a smaller delay
implementation. This is achieved by removing late arriving

signals from the current SOP using appropriate don't care

minterms, and substituting early arriving signals instead [5].

4.1.5 Clustering and Partial Collapsing

reduce depth [21] is a technique based on clustering, partial
collapsing, and subsequent timing optimization. It is founded

on the premise that at technology-independent level, in the

absence of technology information and wiring delays, any de-
lay model is going to be inaccurate. So it assigns a zero

delay to all the gates, thus treating all input-output paths

uniformly. However, whenever a signal crosses cluster bound-
aries, a delay of one unit is incurred.

First, a clustering is performed using an algorithm pro-

posed in [12], which minimizes the maximum number of times
an input-output path has to cross cluster boundaries. The

maximum size of a cluster is �xed a priori . Each cluster

is then collapsed into its root node. The logic within each
cluster is then factored and simpli�ed without increasing the

number of logic levels. Alternately, one could use transforms

proposed earlier, such as timing driven decomposition of Sec-
tion 4.1.1.

It turns out that in the cluster-generation step, gates can

be replicated many times over. So the associated area penalty
could be huge. A redundancy removal phase is invoked to re-

cover area. However, this phase can be very time consuming.

4.2 Where to Restructure?

One crucial issue in restructuring is to determine circuit re-
gions that should be transformed. A natural choice is the

most critical outputs and their transitive fanins. However,

one problem with this approach is that after the most criti-
cal outputs have been optimized, outputs that were close to

being critical earlier could become critical now (for instance,

in Figure 4, after n is optimized, m, with the arrival time
of 5, becomes critical). And many useless CPU cycles may

be spent optimizing only the most critical outputs { by more

than needed amount, and this could also result in an unnec-
essary area penalty. Thus, it makes sense to optimize close-

to-critical nodes along with the most critical nodes. This led

researchers to introduce the concept of �-criticality [7], ac-
cording to which a node is deemed �-critical if its slack falls

within � of the minimum slack in the network. By selecting

an appropriate value of �, the designer can ensure that all
�-critical outputs are optimized, potentially leading to better

optimization. If � is a user-speci�ed parameter, as is the case

in [7, 19], the user can control the outputs to speed up.

The next question is: Given � and the �-critical outputs,

where should the transformations described in the last sec-

tion be applied? One can de�ne the concept of an �-critical

network, which consists of all the nodes and edges that are

�-critical. In order to improve the delays at the �-critical out-

puts, it is not necessary to speed up the entire transitive fanin;
an appropriate separator set of �-critical network would do.

A separator set (or cut-set) in a network is a set of nodes
such that each path from a primary input to a primary output

goes through some node in the separator set. A separator set

in the �-critical network cuts each �-critical path. If the delay
at each node in the separator set is improved (using trans-

formations described in the last section), the entire network

speeds up. The idea therefore in [19] was to select a good sep-
arator set. Each node in the �-critical network was assigned

a weight that represents potential for delay improvement and

estimated area penalty if the node along with some transitive
fanin logic is restructured. A minimum-weight cutset proce-

dure was used to determine the separator-set. However, there

are two problems with this approach:

1. The weight assigned to a node is a combination of area

penalty and delay improvement. Since area and delay

are measured in di�erent units, they are non-additive
and it is not clear how to combine them e�ectively into

one weight number.

2. The delay improvement through a separator set is re-
lated to the minimum delay improvement at a node in

the set. The weight of a separator set, however, is the

sum of the set-node weights, and that includes sum of
the delay improvements at the nodes. Thus a minimum-

weight cutset, whose weight includes the cumulative de-

lay improvements of the nodes and not the minimum de-
lay improvement, may not be the best way of identifying

a choice of nodes to transform from timing viewpoint.

These problems, along with a somewhat arbitrary value of
�, prompted Singh [17] to propose

1. an automatic technique for determining �, and

2. a better weighting mechanism.

In the new algorithm, � is determined as follows. First, for

each primary output Oi, a lower bound in delay improvement

�(i) is computed. The network is traversed topologically and
for each node being visited, all possible transforms are eval-

uated and the best transform is selected (the best being de-

termined by the cost function { either the maximum delay
improvement or maximum delay improvement per unit area

increase). By propagating this information about delay sav-

ing at a node, it is possible to compute the guaranteed saving
�(i) for each output Oi. � values determine the new slack S

that is achievable, and hence � = S� s(O), O being the most

critical output currently. The weight assigned to a node is
in�nity if its delay improvement is less than �, otherwise it is

equal to the area increase as a result of the best transforma-

tion. It turns out that to guarantee that the new S is achiev-
able, a minimum-weight separator set may not be su�cient.

Instead selection sets have to be enumerated and the best

one picked (a selection set is simply a set of nodes where
transforms should be applied). This is computationally more

expensive, but yields good quality solutions. Note that the

new weights are only in terms of area penalties, and not delay
improvement. Finally, each node on the chosen selector set is

restructured using the best transform, as determined earlier.



5 Discussion

We have presented a survey of delay estimation and optimiza-

tion techniques for combinational logic circuits at technology-
independent level. The delay models used today are not very

accurate. Furthermore, with the advent of sub-micron tech-

nology, wiring delays are becoming increasingly signi�cant
contributor to the circuit delay. Since the models currently

used do not incorporate wiring delays, inaccuracies are going

to get worse. Better delay models that can predict wiring
delays are needed. Among various optimization techniques,

tree-height reduction seems to be the most powerful and ef-

fective transformation. One problem, however, is that state-
of-the-art timing optimization tools that use such transfor-

mations tend to be really slow. Further research needs to be

done to speed up the optimization process itself. Finally, in-
stead of applying transforms at the technology-independent

level, one can apply them on the mapped circuit. The hope is

that with the delay being more accurately known, these tech-
niques should yield accurate improvements. Unfortunately,

preliminary experiments performed in [17] are not encour-

aging. We, however, believe that this approach deserves a
more careful and thorough study, and hopefully signi�cant

opportunities for further optimization will be discovered.
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