Performance Test of Viterbi Decoder for Wideband CDMA System

Jang-Hyun Park

Signal Processing Section
ETRI
Daejon, Korea, 305-350
Tel: 82-42-860-5691
Fax: 82-42-860-6482
e-mail: jhpark@amadeus.etri.re.kr

Abstract —— This paper describes the design, the implemen-
tation, and the performance test of the Serial Viterbi de-
coder(SVD) using VHDL and FPGAs. The decoding scheme
assumes the transmitted symbols were coded with a K=9,
32Kbps, and rate 1/2 convolutional encoder with generator
function gg=(753)g and g1=(561)g as defined JTC TAG-7 W-
CDMA PCS standard. The SVD is designed using VHDL and
implemented using FPGAs. Main algorithm except memories is
implemented in two Altera FLEX81500 FPGAs. And the per-
formance test results with 3DB Gaussian noises show that the
function of SVD works well.

I. INTRODUCTION

The CDMA[1] cellular mobile communication system
employs the Viterbi algorithm, which is a powerful error-
correction code technique, for decoding data confidently{2].
The Viterbi decoder operates by finding the most likely
decoding sequences for an input code symbol stream. The
encoding process adds correlation to the input data stream to
produce the encoded symbol stream. The symbol stream is
subject to noise corruption and channel fading. The decoder
analyzes this corrupted stream and exploits the known corre-
lation to reconstruct the original symbol and data bit streams.

This paper describes aspects of the Viterbi algorithm ap-
prised to convolutionally encoded binary sequences, the
application of Viterbi algorithm to the serial Viterbi decoder,
and the implementation of the SVD using FPGA chip and
commercial memories. The SVD uses the Viterbi algorithm
to near optimally decode a synchronized and quantized code
symbol. The decoding scheme assumes the transmitted
symbols were coded with a K=9, 32Kbps, and rate 1/2 con-
volutional encoder with generator function go=(753)s and
g1=(561)s as defined JTC TAG-7 W-CDMA PCS stan-
dard[3]. The Viterbi decoder called a SVD because the
ACS(Add-Compare-Select) array processing is performed
serially with a single ACS pair in order to reduce the total
amount of circuitry required.

This paper is organized as follows. In section 2 we ex-
plained about Viterbi algorithm. In section 3 the major blocks
and functions of Viterbi decoder are described. In section 4

Yea-Chul Rho

Signal Processing Section
ETRI
Daejon, Korea, 305-350
Tel: 82-42-860-5444
Fax: 82-42-860-6482
e-mail: ycrho@amadeus.etri.re.kr

we describe about simulation and performance test. Finally
the conclusion is in section 5.

II. VITERBI ALGORITHM|4][5]{6]

A Viterbi decoder and a convolutional encoder operate by
finding the most likely decoding sequences for an input code
symbol stream. A convolutional encoder is selected for error-
correction with digital mobile telecommunication. Because
the structure of the convolutional encoder is simple, and the
encoder is powerful for AWGN channel environment, and it is
possible to correct the burst errors using the interleaver.

The decoding unit supports the decoding for the sync
channel, the paging channel, and the traffic channel. The
transmitting data is decoded from a channel with code rate
1/2. The sync and the paging channel data is transmitted at
32Kbps and the decoding unit receives a 160-symbol every
5ms frame(32Kbps*5ms=160 symbols). The traffic channel
data is transmitted at 72Kbps, and the decoding unit receives a
360-symbol every 5ms frame(72Kbps *5ms=360 symbols).

A. Convolutional Encoder[4]

Convolutional codes add correlation to the input data se-
quences by using sequential elements(flip-flop) and modulo
adders. Binary convolutional encoders can be implemented
with a feedforward shift register and exclusive-or gates
(modulo-2 adders) as shown in Fig.1. The encoder shown in
Fig.1 contains a shift register tapped at various positions. The
shift register taps terminate at modulo-2 adders forming
generator function(go and g;). Input bits enter the shift register
by one bit at a time. The outputs of the generator functions in
Fig.1 produce an output symbol for each input bit, which
corresponds to a code rate of 1/2.

As an example of how the encoding process operates,
consider the binary information sequence 0101110. The
resulting output sequence of the example encoder becomes
00 11 01 00 10 01 10, as shown in Fig.1.

Ex) K=3, g:=(05)s, g1=(07)

Input: 01 01110
Output : 00 11 01 00 1001 10

Fig.1. K=3 Convolutional Encoder

B. State Diagram and Trellis Diagram

The binary memory elements in the shift register define
the state of the encoder. So, an encoder containing a shift
register with n memory elements has 2" possible states. The
number of delay elements in the serial shift register plus 1
establish the constraint length, K, of a convolution encoder.
Using this formula, the constraint length of the encoder
shown in Fig.1 is 3. Correlation enters into the system be-
cause each input data bits will influence K sets of output
symbols. For example, K=3 and code rate 1/2 as shown in
Fig.1. State numbers are 2>=4 because K is 3. There exist 4
states(00, 10, 01, 11). The encoder is assumed to begin in the
zero state. First zero state moves to state 00 or state 01 with
convolutional code(c0, c1) 00 or 11.

A trellis diagram showing the possible paths of the ex-
ample encoder is shown in Fig.2. The encoder is assumed to
begin in the zero state. The left-side numbers of slash repre-
sent the input bits entering the encoder. The right-side num-
bers of slash represent Co and C,, the output code symbols.
The dark circles are called nodes, which correspond to the
state of the encoder at a given level. Each line represents a
branch. For all binary encoders using a serial shift register,
there are two possible branches entering each node, and two
possible branches leaving each node in steady
state(regardless of the code rate).

NG

»J

Fig.2. K=3 Trellis Diagram

C. Viterbi Decoding Algorithm

The Viterbi decoder operating by finding the most likely
decoding sequences for an input code symbol stream. The four
main steps in this process are :

0. Branch metric generation
0. State metric generation
0. Add-Compare select

o. Trace Back

Branch metrics are functions of probabilities. The prob-
abilities are based on groups of 2 consecutive soft decision
received code symbols for code rate 1/2. Path metrics are
calculated by adding the appropriate branch metric to the state
metric of the previous level. State metrics are the surviving
path metrics of the current state. Surviving branches (paths)
are chosen based on path metrics. Trace-Back is when the
most likely transition into each state are saved in path memory
for many bit symbols, and then the decoder traces and chains
backward in time through the most likely sequence to choose
the decoded output.

D. Decoding of W-CDMA channel

The W-CDMA channel is applied by convolutional en-
coder with code rate 1/2, constraint length K=9, and genera-
tion polynomial (753, 561)s. Input bits enter the shift register
one bit at a time. The outputs of the generator functions
produce an output symbol for each input bit, which corre-
sponds to a code rate of 1/2. If constraint length is K, the
number of state of the trellis diagram is 2%, and the number of
butterfly decision is 2*'/2 pair. One decision butterfly out of
128 pair is shown in Fig.3.

Here X is 7 bits data of the current state except MSB. And
that is not changed part from state transition. 0Ox state repre-
sents for S with convenience. Two branches are shown merg-
ing at one state at the transition.

As an example of the Viterbi decoding process, consider
the information sequence 11, that is sent through the encoder
in Fig.1, to produce the encoded sequence 11, 10. This se-
quence is transmitted to the channel where it is corrupted by
noise and fading. Suppose that the received sequence of the
soft decision symbol is as shown in Fig.4. The received signal
is quite corrupted. One of the received symbols has

r0 rl
(t-1) c0 cl ®
BMO -
(2S) X0 BMI » |0X (S)
M1
(2S+1) X1 BMO » [1X (S+128)

Fig.3. Decision Butterfly for ACS Pair

different polarity with the corresponding transmitted sym-
bols. The decoding process begins by initializing the de-
coder. It is assumed that the convolutional encoder began its
encoding in the zero state. The Viterbi decoder ensures that
the decoded sequence begins in the zero state by placing
very large state metric on every state except the zero state for
level zero. Fig.4 shows the metric calculation for the two
transitions. Surviving paths are shown as solid lines. Non-
surviving paths are shown as dotted lines. The state metric
for each state is shown above the corresponding node. Note
that after the state metric has been calculated, nonsurviving
path metrics may be wholly discarded. This process contin-
ues until the specified traceback depth is reached. Once the
traceback depth has been reached, the decoder can trace the
path with the best state metric to determine the most likely
transmitted sequence. Fig.4 shows the decoded sequence
with a bold line. Decoded symbols are simply the hypotheses
of the most likely path. Decoded information bits can be
determined by stepping through each level, and recording the
most significant bit in the for each level in the most likely
path.

II1. THE DESIGN OF THE SVD

A. The Specification and Organization of the SVD

1) Serial Viterbi Decoder with 5 MHz Bandwidth

2) Code Rate : 1/2

3) Constraint Length : K=9

4) Generator Polynomials : go : (753)s, g:1:(561)s

5) Trace Back Depth : 64

6) 1 frame : 5 ms (input and decoding)

7) Data Rate : 32Kbps(Sync and Paging Ch.)
72Kbps(Traffic Ch.)

8) 4 bits soft decision and 2's complement format

Data: 11
Transmitted : 1110 (Convolutional Codes)
Received : 1010 (+3 -4 +5 -4 : 4 bits soft decision)

r=(+3-4)
0b=3p=3

390 11 b=4 p=50:
-0 700 b=3.p=503 ~ 0
Lb=7p=507 590 .- N

.................. »>
11 O i b7 p=s07 01 =0 p=509
Decoding Data : 11

Fig.4. Example of Viterbi Decoding

9) Data Transmission format : Continuous Only

10) Depunctured data from Deinterleaver

11) Clock : 4.096 MHz * 8

12) Output: CPU : 8 bits Data Bus using Interrupt
ADPCM : 1 bit data using IMHz and 8KHz clock

The five major blocks of the SVD are shown in Fig.5. They
are the input block, the BM/ACS block, SM/TB biock, Control
block, and Output and Interface block. The input block
collects the soft decision symbol data from the deinterleaver.
The BM/ACS block takes the soft decision symbols from input
block for decoding. The received symbols are processed by
ACS logic, and the result are stored as state metrics in external
RAM. Decisions from ACS process are stored into an external
path memory. Traceback process through the path memory
determines the data bits after tracing backward in time through
the decision words. After decoding, the output data is trans-
ferred to CPU and ADPCM directly. The control block ar-
ranges all of the control signals in the decoding sequence.

Fig.5. SVD Block Diagram (on the last page)

B. The Implementation of SVD

Logic design of the SVD is applied with top-down design
methodology using VHDL, and simulated by VHDL logic
simulator. The logic timing is verified using output VHDL file
by VHDL synthesis and Altera FPGA place and routing. VHDL
source code is about 6 thousands lines. The implementation
time used is 8 months/2men.

Altera EPF81500AGC280-2 FPGA and commercial
RAMs are used for the implementation of SVD. Main
Viterbi algorithm except memories is implemented in two
Altera FLEX81500 FPGAs. One FPGA utilization is 68%
and the other is 13%. That means that about 12 thousands
gates are used for implementation of the SVD.

IV.SIMULATION AND PERFORMANCE TEST
A. Simulation Procedures

Procedures of the SVD simulation are as foliows:

1) Logic design using VHDL and logic simulation using
VHDL simulator

2) Automatic VHDL synthesis with Altera library and
generation of EDIF netlist file for Altera FPGA

3) Altera FPGA place and Route using EDIF netlist and
VHDL file generation with timing information

4) VHDL post-simulation for logic timing confirm

5) Downloading Altera FPGA

B. Performance Test Vector Generation
Input vector files are generated by C program for simula-

tion of total SVD and each unit. First the convolutional en-
coder is made with K=9 and rate 1/2. This encoder makes

| AWGN |
Ni
s,
Di—» i > >4 Bi
Ch. Coding U leli\%),l]
N| Compare le

o

BER

3

Di : Random Number Generator

Si : Convolutional Codes

Ni: AWGN (3 dB Noise)

Ri: Si+Ni

R'i : 16 level quantization(SVD Input)
D'i : Decoded Output

Fig.6. Test Vector Generation

convolutional codes(0 or 1) using random function. The
coded data are added by the 3DB AWGN (Additive White
Gaussian Noise), and are represented 4 bits data for 16-
level soft-decision as shown in Fig.6. These 4 bits data are
used for SVD input.

C. SVD Test Environment

We construct the test environment using system emula-
tion tool in order to test the SVD function which is imple-
mented with Altera FLEX81500AGC280-2. This test envi-
ronment can reduce the test timing, the effort of PCB art-
work, and the test cost by FPCB programming for the con-
nection of all components. SVD test environment using
Aptix tool is shown in Fig. 6. And the logic analyzer displays
the wave form of each unit.

P5/SP PC
(Aptix Development S/W)

|

Logic Analyzer Host Interface
(HP16500A) Module

FPIC/D

Fig.6. SVD Test Environment

D. SVD Performance Test Procedures

We modify the original circuit to test SVD function, and
construct the test environment to verify the coding results of
one frame using Aptix FPCB. FPGA, ROM and RAMs are
put on FPCB, and they are connected by 2 FPIC program-
ming. First SVD gets the input data from ROM stored origi-
nal data. After entering input data, SVD executes decoding
procedure using input RAM, state RAM, trace-back RAM in
FPCB. Self test circuit is designed to display LEDs which are
the value of difference between the decoding data and the
original input data. Test results show that the designed SVD
works well with 3DB Gaussian noises.

V. CONCLUSION

This paper describes the design and the implementation of
the serial Viterbi decoder(SVD) using VHDL and FPGAs. The
SVD uses the Viterbi algorithm to near optimally decode a
synchronized and quantized code symbol. The decoding
scheme assumes the transmitted symbols were coded with a
K=9, 32Kbps, and rate 1/2 convolutional encoder with genera-
tor function go=(753ys and g,=(561); as defined JTC TAG-7 W-
CDMA PCS standard. The SVD which employs Viterbi
algorithm is selected for error-correction at decoding of
convolutional code. The SVD input data come from deinter-
leaver and decoding data is transferred to CPU and ADPCM
directly. :

The SVD is designed using VHDL and implemented using
FPGAs. Main algorithm except memories is implemented in
two Altera FLEX81500 FPGA. One FPGA utilization is 68%
and the other is 13%. That means that about 12 thousands gates
are used for implementation of SVD. We test the product with
real 32MHz clock and 3DB Gaussian noise data. Performance
test results show that the error-correction of 3DB noise is exact.

REFERENCES

[1] William C. Y. Lee, "Overview of cellular COMA", /EEE Transac-
tions on Vehicular Technology, Vol. 40, No. 2, May 1991

[2] TIA/EIA Interim Standard(IS-95), Mobile Station - Base Station Com-
patibility Standard for Dual-Mode Wideband Spread Spectrum Cellu-
lar System, July, 1993

[3] Proposed Wideband CDMA PCS Standard, Wideband CDMA(W-
CDMA) System for Wideband Spread Spectrum Digital 1.80~1.99
GHz PCS Micro- cellular System, October, 1994

[4] Jerrold A. Heller, Irwin Mark Jacobs, "Viterbi decoding for satellite
and space communication", /[EEE Transactions on Communication
Technology, Vol. COM-19, No. 5, October 1971

[5] Andrew J. Viterbi, Jim K. Omura, "Principles of digital communica-
tion and coding”, McGraw-Hill, Inc., 1979

[6] LM. Onyszchuk, K.-M. Cheung, O. Collins, "Quantization loss in
convolutional decoding”, JEEE Transactions on Communications,
Vol. 41, No. 2, February, 1993

wesgerq Yooid gAS 'S 814

[o:€lomg

ed 4L /NS >m¢mh:oo._.
—
NOdav
R Tp——— 3NO LnooL AIg [onuo) adejrau] oL
TIV 1LNOOL —
WWVY 41Y31H _“Il_ Y5001l g nding lonuo) NI D3d
+ [onuo) i 10O indyng AATO
HMIDAVI 4L = thanior SOV A jonu0) WINTO
I. TIAVY 988 “HIoL| TTV LNOOL WV » JdINI
— ~ d
I IAVY 3els _u“_ WSOL [onu0) ANO 10001 1Ano [0:2]
Y. Ag 810 [o:L)Y .—-<A—% > hOmewvz . L «MMQ
1D VY 38§ — < L pedy |
N0V 8Xx¢€7)
vivd > WVEINO 1938139 |«
[[Lomm /SO
_ NdNIOL gaonNI
_ _o”m_x_zmn 19138
aredwo) ndo
fo:dar iy €L R dwd MEd [9onu0) o /uioay
: VY
199]98 1) _
[0:€]XONS aredwo) g41S J43d
I MaAu0) (¥ X 09¢) 1340 _
0L — NDIS WV anduy ,, ONAS 0odd
hdd ~—7— WAS 03
Tt yoopg nduy JIABIIIUIR(
[0:€]1g | +18d NE wolg

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

