
Fixing Design Errors with Counterexamples and Resynthesis
Kai-Hui Chang, Igor L. Markov and Valeria Bertacco

University of Michigan, Ann Arbor, MI 48109
{changkh, imarkov, valeria}@umich.edu

Abstract — In this work we propose a new error-correction
framework, called CoRé, which uses counterexamples, or bug
traces, generated in verification to automatically correct errors
in digital designs. CoRé is powered by two innovative resynthe-
sis techniques, Goal-Directed Search (GDS) and Entropy-Guided
Search (EGS), which modify the functionality of internal circuit’s
nodes to match the desired specification. We evaluate our solution
to designs and errors arising during combinational equivalence-
checking, as well as simulation-based verification of digital sys-
tems. Compared with previously proposed techniques, CoRé is
more powerful in that: (1) it can fix a broader range of error
types because it does not rely on specific error models; (2) it de-
rives the correct functionality from simulation vectors, hence not
requiring golden netlists; and (3) it can be applied to a range of
verification flows, including formal and simulation-based.

I. INTRODUCTION

The vast and growing complexity of silicon designs be-

ing developed today poses a number of challenges on veri-

fying that such designs fully deliver the expected functional-

ity. Much effort has been dedicated in the past decade to im-

prove the quality, performance, scalability and automation of

the functional verification process. However, the goal of man-

ufacturing correct designs is still far from achievable: on the

one hand industry teams often dedicate more than two thirds

of their resources to verification, but on the other hand, studies

report that functional errors are responsible for a large fraction

of first-tapeout respins [9]. While the majority of the effort in

improving design verification is dedicated to error detection,

today the correction of errors is for the most part left to the

skill and creativity of the designers, resulting in an extremely

time-consuming activity.

As of today, a few solutions have been proposed that aim to

automate the process of error correction. Some of these tech-

niques target specific types of design errors, for instance the

solutions in [2, 5, 8, 12]. Others have a broader scope but re-

quire the availability of a golden model or functional specifica-

tion to isolate the location of the error [2, 4, 6, 7, 8]. Unfortu-

nately, in many cases, such functional models are limited to a

high-level description of the system, or they are only partially

specified or, sometimes, completely unavailable. In this work

we propose a novel technique that is suitable to correct a large

number of design errors while relying exclusively on a set of

simulation bug traces, hence not requiring any type of golden

model of the design.

Automatic repair of design errors is especially important at

the gate level because it is difficult to modify automatically-

synthesized netlists manually. In some cases, it may be con-

ceivable to fix individual design errors by repetitively synthe-

sizing the entire netlist from scratch. However, such a de-

sign strategy is typically inefficient because (1) previously per-

formed physical synthesis optimizations might be invalidated,

and (2) it fails if the source of the error is the synthesis tool

itself. Additionally, a gate-level error-correction approach of-

fers possibilities not available when working with higher-level

specifications, including reconnecting individual wires, chang-

ing individual gate types, etc.

In this work we propose a novel framework for the correc-

tion of design errors, called COunterexample-guided REsyn-

thesis (CoRé). CoRé performs gate-level circuit repair based

only on error traces composed of input vectors and output

responses. Compared with other techniques, our framework

presents the following advantages:

1. It does not rely on specific error models; therefore, a large

number of error types can be corrected compared to pre-

vious solutions.

2. Since it only requires input vectors and output responses,

it can be applied to any mainstream verification flow, as

we show in Section IV-B.

Our framework derives its underlying combinational error-

diagnosis technique from the work in [11], due to its flexibility

and scalability, and it is powered by two innovative resynthesis

techniques: Goal-Directed Search (GDS) and Entropy-Guided
Search (EGS). These techniques rely on simulation signatures
to identify potential resynthesis options, which are then veri-

fied for correctness. If verification fails, counterexamples re-

turned by the verification tool are used to refine error diagnosis

and guide future resynthesis. Our empirical evaluation shows

that this framework is able to effectively guide the resynthesis

process to fix errors.

The remaining part of the paper is organized as follows. Sec-

tion II introduces background and previous work. In section

III we describe our resynthesis techniques in detail. Section

IV discusses our CoRé framework. Experimental results are

given in Section V, and section VI concludes this paper.

II. BACKGROUND

In this section, we first define basic terminology and de-

scribe previous work. The error-diagnosis technique used in

CoRé is introduced next, after which a commonly used error

model is described as a baseline comparison to our work.

A. Terminology

When considering a digital circuit under logic simulation,

we define a simulation signature as a bit-vector of simulated
values for a wire, or internal node, where the n-th bit of the
signature vector corresponds to the stable value observed on

that wire for the n-th input pattern. In this paper we strive to

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9C-4

944

correct a design by re-generating the functionality of incorrect

wires using other internal wires as inputs. In this context, we

call the signature of the wire that needs to be resynthesized

the target signature, and we call the signatures of wires to be
considered as new inputs the candidate signatures.
Given a target signature st and a collection of candidate
signatures sc1 , sc2 ,...,scn , we say that st can be resynthe-
sized by sc1 , sc2 ,...,scn if st can be expressed as follows: st=
F(sc1 ,sc2 , ...,scn), where F(sc1 ,sc2 , ...,scn) is a Boolean func-
tion called the resynthesis function. We also call a netlist that
implements the resynthesis function the resynthesis netlist.
In this paper, we use s[i] to denote the i-th bit of signature
s. The following theorem states a necessary and sufficient con-
dition for a resynthesis function to exist. This theorem is a

special case of Theorem 4.1 in [14]1.

Theorem 1 Consider candidate signatures sc1 , sc2 ,...,scn and
a target signature st . Then a resynthesis function F, where
st = F(sc1 , sc2 ,...,scn), exists if and only if no bit pair {i, j}
exists such that st [i] �= st [j] but sck [i] = sck [j] for all 1≤ k ≤ n.

Based on Theorem 1, we say that a pair of bits {i, j}, where
st [i] �= st [j], can be distinguished by signature sck if sck [i] �=
sck [j]. We call bits {i, j} a Pair of Bits to be Distinguished
(PBD). We also define the distinguishing power of a signature
as the PBDs that can be distinguished by the signature. In other

words, it is the information needed to distinguish two bits with

different values in the target signature. Work based on SPFDs
[13] also utilizes similar concepts.

B. Previous Work

Error repair involves two steps. In the first step, the circuit

is diagnosed to identify potential changes that can fix the error.

In the second step, the changes are implemented by resynthe-

sis. The first step is called Error Diagnosis (ED), and the sec-
ond step is called Error Correction (EC). A comparison of our
work with previous error diagnosis and correction techniques

is given in Table I. In the table, “Num. of errors” is the number

of errors that can be corrected by the technique.
TABLE I

A COMPARISON OF ERROR DIAGNOSIS AND CORRECTION TECHNIQUES.
Technique ED/ Num. of Error Scalability Require-

EC errors model ment

ACCORD Both Single SLDE Moderate Func

[2] (BDDs) spec.

AutoFix Both Multiple None Moderate Golden

[4] (BDDs) netlist

Kuo [5] ED Single Abadir Good (ATPG) Test vec.

Lin [6] Both Multiple None Moderate Golden

(BDDs) netlist

Madre [8] Both Single PRIAM Moderate Func. spec.

Smith[11] ED Multiple None Good (SAT) Test vec.

Veneris[12] Both Multiple Abadir Good (ATPG) Test vec.

CoRé Both Multiple None Good (SAT, Test vec.

(Ours) signatures)

C. Error Diagnosis

The error-diagnosis technique used in our CoRé framework

is based on the work by Smith et al. [11]. Given a logic netlist,
a set of test vectors and a set of correct output responses, this

1All proofs of theorems are omitted due to space limitations.

technique will return a set of wires, also called error sites,
along with their values for each test vector that can correct the

erroneous output responses. Our CoRé framework corrects de-

sign errors by resynthesizing the error sites using the corrected

values as the target signature.

D. Error Model

Error diagnosis and correction are difficult problems. As

a result, error models have been introduced to classify com-

mon design errors. Abadir’s model [1] is commonly used in

previous work. This model includes: (1) wrong gate, (2) ex-

tra/missing wire, (3) wrong input, and (4) extra/missing gate.

As we will show in Section III, our resynthesis techniques

subsume all the errors in this model. In addition to being suc-

cessful in practice, CoRé is guaranteed to rectify any netlist if

the test vectors are applied exhaustively. However, exhaustive

enumeration of test vectors may not be practical. As a result,

we assume that the discrepancy between the erroneous and the

correct netlist is small, so that an acceptable fix can be found

using a reasonable number of test vectors.

III. COMBINATIONAL RESYNTHESIS TECHNIQUES

Our approach to fixing errors includes two resynthesis tech-

niques: Goal-Directed Search (GDS) and Entropy-Guided

Search (EGS) The former directs the search from the target sig-

nature towards promising candidate signatures, while the latter

uses entropy to guide the selection of signatures. In addition,

we develop techniques to exploit full observability don’t-cares

during resynthesis. We first define the entropy of a signature,
which will be used in our resynthesis techniques.

A. Entropy of a Signature

To measure the distinguishing power required by the target

signature and the power possessed by a candidate signature, we

define the concept of entropy in this subsection. To simplify
bookkeeping, we order bits in the signatures so that the target

signature is composed of 0s followed by 1s. Therefore, the

target signature always resembles “00...0011...11”.

Definition 1 Suppose that there are x 0s and y 1s in the target
signature st . We define the “entropy” of the signature as “x×
y”, which is the number of Pairs of Bits to be Distinguished
(PBDs) in the target signature. Given a candidate signature sc,
suppose that there are p 0s and q 1s in the first x bits, as well
as r 0s and s 1s in the last y bits, we then define the “entropy
of sc with respect to st” as “p× s+ q× r”. In other words,
it is the number of PBDs in the target signature that can be
distinguished by the candidate signature.

Signature st sc1 sc2 sc3 sc4
Pattern 00111 01011 10110 00101 00001

Fig. 1. Signatures and their bit patterns used in Example 1.

Example 1 Figure 1 shows five signatures, where st is the tar-
get signature and sc1 to sc4 are candidate signatures. Signa-
ture st can be generated by sc1 , sc2 and sc3 because all the
PBDs in st can be distinguished, and the resynthesis function
is sc1 · sc2+ sc3 . However, st cannot be generated by sc1 and sc2
because bit pair {5, 3} cannot be distinguished. The entropy
of st is 6, and the entropy of sc1 , sc2 , sc3 and sc4 are 3, 3, 4 and
2, respectively. It is obvious that st cannot be generated using

9C-4

945

sc1 and sc4 , because the total number of PBDs distinguishable
by sc1 and sc4 is smaller than the number of PBDs in st .
Based on Example 1, the following theorem states a neces-

sary but not sufficient condition to determinewhether the target

signature can be generated from a set of candidate signatures.

Theorem 2 Consider a target signature st and a set of can-
didate signatures sc1 ...scn . If st can be generated by sc1 ...scn ,
then entropy(st) ≤ ∑ni=1 entropy(sci).
B. Goal-Directed Search

GDS searches for resynthesis functions of the target signa-

ture using combinations of gates and candidate signatures. To

reduce the search space, we devise two effective pruning tech-

niques: the entropy test and the compatibility test. Currently,

inverters and 2-input AND, OR and XOR gates are supported.

The entropy test relies on Theorem 2 to reject resynthesis

opportunities when the selected candidate signatures do not

have enough entropy. In other words, a collection of candi-

date signatures whose total entropy is less than the entropy of

the target signature is not considered for resynthesis.

The compatibility test is based on the controlling values of

logic gates. For example, it is impossible to generate 1 on the

output of an AND gate if one of its inputs is 0. To generate 1

on the output, all its inputs must be 1. We use compatibility
constraints to encode such criteria, which can prune the selec-
tion of inputs according to the output constraint and the gate

being tried. A compatibility constraint consists of a type and a

signature. Currently, three types of constraints are used.

Identity constraints specify an equivalence relationship be-
tween the input and the output of a gate. For example, the

output of a buffer must be the same as its input, and the output

of an inverter must be the same as the complement of its input.

Need-one constraints require that specific bits in the input
signature must be 1 whenever the corresponding bits in the

constraint’s signature are 1. They are used to encode the con-

straints imposed by AND gates. Similarly, need-zero con-
straints encode the constraints imposed by OR gates.
These constraints, which propagate from the outputs of gates

to their inputs during resynthesis, need to be recalculated for

each gate being tried. For example, an identity constraint will

become a need-one constraint after it propagates through an

AND gate, and it will become a need-zero constraint if it prop-

agates through an OR gate. The rules for calculating the con-

straints are shown in Figure 2, and the GDS algorithm is given

in Figure 3. In the algorithm, level is the level of logic being
explored, constr is the constraint and C returns a set of candi-
date resynthesis opportunities. Initially, level is set to 1, and
constr is set to be identical to the target signature st . Function
update constr updates constraints according to Figure 2, and
entropy returns the entropy of the signature or the signature of
the candidate resynthesis function.

Our GDS technique subsumes the fixes required to correct

the errors described in Section II-D: since we try all possible

gate combinations, we will replace a wrong gate with the cor-

rect one, remove an extra gate or insert a missing gate when-

ever necessary; similarly, extra wire, missing wire or wrong in-

put are handled by trying all possible wire combinations. Fur-

Identity Need-one Need-zero

INVERTER Signature complemented

BUFFER Constraint unchanged

AND Need-one Need-one None

OR Need-zero None Need-zero

XOR None None None

Fig. 2. Given a constraint imposed on a gate’s output and the gate type, this
table calculates the constraint of the gate’s inputs. The output constraints are

given in the first row, the gate types are given in the first column, and their

intersection is the input constraint.

Function GDS(level,constr,C)
1 if (level == max level)
2 C= candidate signatures comply with constr
3 return;
4 foreach gate ∈ library
5 constrn= update constr(gate,constr);
6 GDS(level+1,constrn,Cn);
7 foreach c1,c2 ∈Cn
8 if (level=1 & (entropy(c1)+entropy(c2))< entropy(st))
9 continue;
10 Calculate signature sn according to gate, c1 and c2;
11 if (sn complies with constr)
12 C =C+gate(c1,c2);
Fig. 3. The GDS algorithm.

thermore, we can handle errors not modeled in Section II-D,

such as swap of wires or gate types.

The major limitation of GDS is the weakening of constraints

with each additional level of logic. For example, no constraints

exist on the inputs of an AND gate if it is connected to the input

of an OR gate. Therefore, our current implementation of GDS

considers at most two levels of logic at a time, and we rely on

EGS to find more complex resynthesis functions.

C. Entropy-Guided Search

EGS is based on Theorem 1, which states that a resynthe-

sis function can be generated when a set of candidate signa-

tures covers all the PBDs in the target signature. However, the

number of collections that satisfy this criterion may be expo-

nential. For example, any collection of signatures that involve

all the primary inputs is valid. To identify possible candidate

signatures effectively, we first limit our search to m signatures
near the target wire, and then we use the following heuristics

to select candidate signatures from those m signatures.
1. We choose n signatures closest to the target wire. This
heuristic is based on the assumption that the discrepancy

between the original netlist and the correct one is small,

therefore possible signal sources for the resynthesis func-

tion should be close to the target wire.

2. We choose o signatures that cover the least-covered
PBDs, which are the PBDs covered by a small number

of signatures.

3. We select p signatures with high entropy. In other words,
we select signatures that cover a large number of PBDs.

4. For the PBDs that remain uncovered, we cover them by

selecting one signature for each PBD.

5. If the required function can not be generated using the

selected signatures, we increase parametersm, n, o and p.

In our implementation, we setm=200, n=20, o=10 and p=10
initially according to our empirical observations. Although

9C-4

946

we may select more signatures than needed for resynthesis,

the logic optimizer we use in the next step is usually able to

identify the redundant signatures and use only those which are

essential. The input to the optimizer is the truth table of the

resynthesis function, which is constructed as follows:

1. Each signature is an input to the truth table. The i-th input
produces the i-th column in the table, and the j-th bit in
the signature determines the value of the j-th row.

2. If the j-th bit of the target signature is 1, then the j-th row
is a minterm; otherwise it is a maxterm.

3. All other terms are don’t-cares.

Signature Truth table

st=0101 s1 s2 s3 s4 st
s1=1010 1 0 1 0 0

s2=0101 0 1 1 0 1

s3=1110 1 0 1 0 0

s4=0001 0 1 0 1 1

Minimized 0 - - - 1

Fig. 4. The truth table on the right is constructed from the signatures on the
left. Signature st is the target signature, while signatures s1 to s4 are candidate
signatures. The minimized truth table suggests that st can be resynthesized by
an INVERTER with its input set to s1.

Figure 4 shows an example of the constructed truth table.

The truth table can be synthesized and optimized using existing

synthesis software to produce a resynthesis netlist.

D. Utilizing Don’t-Cares

Controllability don’t-cares are used in our framework by

construction. To utilize observability don’t-cares, we comple-

ment the signature of the target wire and perform resimulation,

which is fast because only downstream logic will be resimu-

lated. If the change of the signature does not propagate to any

primary output, it is a don’t-care and is not considered during

resynthesis. Since we observe the changes at primary outputs,

complete observability don’t-cares are obtained.

IV. ERROR-CORRECTION FRAMEWORK

Fig. 5. Flow chart of the CoRé framework.

In our error-correction framework, CoRé, the netlist pro-

duced by the circuit-repair engine is checked by a verifica-

tion engine, and the results are used to refine error diagnosis

and guide resynthesis. Since the error-diagnosis technique we

adopted supports combinational logic only, we assume that the

state values are knownwhen correcting errors in sequential cir-

cuits. This framework is outlined in Figure 5 and will be dis-

cussed in detail below.

A. The CoRé Framework

In CoRé framework, a test vector is called a preserving vec-
tor if its output responses are correct, and the vector is called
an error-sensitizing vector if its output responses are incorrect.
Error-sensitizing vectors are often called counterexamples.
framework CoRé(CKT,vectorsp,vectorse,CKTn)
1 calculateCKT ’s initial signatures using vectorsp and
vectorse;

2 diagnose CKT to generate f ixes using vectorse;
3 foreach f ix ∈ f ixes
4 produce CKTn by resynthesizing f ix;
5 counterexample=veri f y(CKTn);
6 if (counterexample is empty)
7 returnCKTn;
8 else
9 if (veri f y(CKT,counterexample) failed)
10 rediagnose CKT using counterexample and update

f ixes;
11 simulate counterexample and update CKT ’s signatures;

Fig. 6. The CoRé framework.

Our CoRé framework is described in Figure 6. The inputs

to the framework are the original netlist (CKT), the initial pre-
serving vectors (vectorsp) and the initial error-sensitizing vec-
tors (vectorse). The output is the rectified netlist CKTn. The
framework first uses the error-diagnosis technique described

in Section II-C to generate potential fixes. Each fix consists

of one or more error sites along with their signatures. The

bits in those signatures that correspond to the error-sensitizing

vectors are corrected according to the diagnosis results, while

the bits that correspond to the preserving vectors remain un-

changed. These fixes are then implemented by our resynthesis

techniques to produce a new circuit CKTn as shown in lines
3-4. CKTn is then checked by the verification engine. If verifi-
cation fails, error-sensitizing vectors forCKTn will be returned
in counterexample. If no such vectors exist, the circuit is rec-
tified successfully andCKTn will be returned as shown in lines
5-7. If such vectors exist,CKTn is abandoned, andCKT is ver-
ified against counterexample. If verification fails, the vectors
are considered error-sensitizing and are used to refine error di-

agnosis; otherwise they are preserving vectors. These vectors

are then simulated to updateCKT ’s signatures so that the same
resynthesis attempt will not be tried again. By considering both

preserving and error-sensitizing vectors, our corrections will

not introduce new errors.

B. Applications

We now develop applications of our techniques in three dif-

ferent verification contexts.

Application 1: combinational equivalence checking and
enforcement. This application fixes an erroneous netlist so
that it becomes equivalent to a golden netlist. In this appli-

cation, the verification engine is an equivalence checker. Test

vectors on which the erroneous circuit and the golden model

agree are preserving vectors, and the remaining test vectors

are error-sensitizing. Initial vectors can be obtained by random

simulation or equivalence checking.

Application 2: fixing errors found by simulation. This
application corrects design errors that break a regression test.

9C-4

947

TABLE II

ERROR-CORRECTION EXPERIMENT. THE BENCHMARKS IN THE TOP-HALF COMPLY WITH ABADIR’S ERROR MODE, WHILE THE BOTTOM-HALF DO NOT.
NUMBER OF ITERATIONS IS THE NUMBER OF ERROR-CORRECTION ATTEMPTS PROCESSED BY THE VERIFICATION ENGINE.

Benchmark Gate Type of injected error GDS EGS
count Runtime (sec) Number Runtime (sec) Number

Error Error Verifi- of Error Error Verifi- of
correction diagnosis cation iterations correction diagnosis cation iterations

S1488 636 Single gate change 1 3 1 1 1 4 1 1

S15850 685 Connection change 1 5 1 2 2 5 1 1

S9234 1 974 Single gate change 1 10 1 1 1 9 1 1

S13207 1219 Connection change 1 5 1 1 1 5 1 1

S38584 6727 Single gate change 1 306 83 1 1 306 81 1

S838 1 367 Multiple gate changes N/A 1 6 1 1

S13207 1219 Multiple missing gates N/A 3 12 3 6

AC97 CTRL 11855 Multiple connection changes N/A 2 1032 252 5

TABLE III

ERROR-CORRECTION EXPERIMENT. THE NUMBER OF INITIAL PATTERNS IS REDUCED TO 64 IN THIS EXPERIMENT TO MIMIC DIFFICULT ERRORS.
Benchmark Gate Type of injected error GDS EGS

count Runtime (sec) Number Runtime (sec) Number
Error Error Verifi- of Error Error Verifi- of
correction diagnosis cation iterations correction diagnosis cation iterations

S1488 636 Single gate change 1 5 3 13 1 4 1 3

S15850 685 Connection change 1 3 1 5 53 4 5 42

S9234 1 974 Single gate change 1 8 3 6 1 10 3 4

In this application, the verification engine is the simulator and

the regression suite. Test vectors that break the regression are

error-sensitizing vectors, and all other vectors are preserving

vectors. Initial vectors can be obtained by collecting the inputs

applied to the netlist while running the regression.

Application 3: fixing errors found by formal verification.
This application assumes that a formal tool proves that a prop-

erty can be violated, and the goal is to fix the netlist to prevent

the property from being violated. In this application, coun-

terexamples returned by the tool are error-sensitizing vectors.

V. EXPERIMENTAL RESULTS

We implemented our CoRé framework using the OAGear

package [16] because it provides convenient logic representa-

tions for circuits. We adopted Smith’s [11] algorithm and in-

tegrated MiniSAT [3] into our system for error diagnosis and

equivalence checking. We use Espresso [10] to optimize the

truth table returned by EGS, and then we construct the resyn-

thesis netlist using AND, OR and NOT gates. Our testcases

are selected from IWLS2005 benchmarks [15] based on de-

signs from ISCAS89 and OpenCores suites. In our implemen-

tation, we limit the number of attempts to resynthesize a wire

to 30, and we prioritize our correction by starting from wires

closer to primary inputs. We conducted three experiments on a

2.0GHz Pentium 4 workstation. The first two experiments are

in the context of equivalence checking, and the third one deals

with simulation-based verification.

Equivalence checking: our first experiment employs Ap-
plication 1 described in Section IV-B to repair an erroneous

netlist by enforcing equivalency. Inputs and outputs of the se-

quential elements in the benchmarks are treated as primary out-

puts and inputs, respectively. The initial vectors are obtained

by simulating 1024 random patterns. One error is injected to

each netlist. In the first half of the experiment, the injected er-

rors fit in the error model described in Section II-D; while the

errors injected in the second half involve more than 2 levels of

logic and do not comply with the error model. We apply GDS

and EGS separately to compare their error-correction power

and performance. Since GDS subsumes existing techniques

that are based on error models, it can be used as a comparison

to them. The results are summarized in Table II. As expected,

GDS cannot repair netlists in the second half of the experi-

ment, showing that our resynthesis techniques can fix more

errors than those based on Abadir’s error models [5, 12].

From the results in the first half, we observe that both GDS

and EGS perform well in the experiment: the resynthesis time

is short, and the number of iterations is typically small. This

result shows that the error-diagnosis technique we adopted is

effective and our resynthesis techniques repair the netlists cor-

rectly. Compared with the error-correction time required by

some previous techniques that enumerate possible fixes in the

error model [2, 12], the short runtime of GDS shows that our

pruning methods are efficient, even though GDS also explores

all possible combinations. We observe that the program run-

time is dominated by error diagnosis and verification, which

highlights the importance of developing faster error-diagnosis

and verification techniques.

Errors that are difficult to diagnose and correct often need

additional test vectors and iterations. In order to evaluate our

techniques on fixing difficult errors, we reran the first three

benchmarks and reduced the number of their initial patterns to

64. The results are summarized in Table III, where the number

of iterations increased as expected. The results suggest that our

techniques continue to be effective for difficult errors, where

all the errors can be fixed within two minutes. We also observe

that EGS may sometimes need more iterations due to its much

larger search space. However, our framework will guide both

techniques to the correct fix eventually.

In our second experiment, we inject more than one error into

the netlist. The injected errors comply with Abadir’s model

and can be fixed by both GDS and EGS. To mimic difficult

errors, the number of initial vectors is 64. We first measure

the runtime and the number of iterations required to fix each

error separately, we then show the results on fixing multiple

errors. Time-out is set to 30 minutes in this experiment, and

9C-4

948

TABLE IV

MULTIPLE ERROR EXPERIMENT. TIME-OUT IS SET TO 30 MINUTES AND IS MARKED AS T/O IN THE TABLE.
Benchmark Runtime (sec) Number of iterations

Error1 Error2 Error3 Error1+2 Error1+2+3 Error1 Error2 Error3 Error1+2 Error1+2+3

S1488 (GDS) 4 6 4 10 t/o 8 5 2 22 t/o

S1488 (EGS) 14 5 5 34 9 32 4 2 45 14

S13207 (GDS) 10 10 6 12 75 11 5 1 10 19

S13207 (EGS) 7 9 6 14 74 4 5 1 16 15

S15850 (GDS) 4 3 4 5 7 1 1 1 1 1

S15850 (EGS) 4 3 5 5 10 1 1 13 1 11

the results are summarized in Table IV. Similar to other error

diagnosis and correction techniques, runtime of our techniques

grows significantly with each additional error. However, we

can observe from the results that the number of iterations is

usually smaller than the product of the number of iterations

for each error. It shows that our framework tends to guide the

resynthesis process to fix the errors instead of merely trying

all possible combinations of fixes. Another interesting phe-

nomenon is that EGS can simultaneously fix all three errors in

the S1488 benchmark, while GDS cannot. The reason is that

EGS found a fix involving only two wires even though three

errors were injected. Since GDS could not fix the netlist us-

ing only two error sites, three-error diagnosis was performed,

which was extremely slow. The reason is that in addition to

fixes involving three error sites, any combination of wires con-

sisting of two error sites and one “healthy” site (site with its

function unchanged) is also a valid fix. As a result, the number

of possible fixes increased dramatically and evaluating all of

them was time consuming. This explanation is confirmed by

the following observation: error diagnosis returned 8, 7 and 9

possible fixes for error1, error2 and error3 respectively, while

the number of fixes for all three errors using three sites was

21,842. This situation suggests that EGS is more powerful than

GDS, as well as many techniques subsumed by GDS.

TABLE V

ERROR CORRECTION IN THE CONTEXT OF SIMULATION-BASED
VERIFICATION. WE SIMULATE 1024 PRESERVING AND m

ERROR-SENSITIZING VECTORS, WHERE THE ERROR-SENSITIZING
VECTORS RANDOMLY CHANGE ONE OUTPUT PER VECTOR.

Bench- Runtime (sec) Number of error sites
mark m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4
S1488 3 4 10 10 1 2 3 3

S15850 3 4 4 6 1 2 2 4

S13207 3 6 8 19 1 2 3 5

Simulation-based verification: in our third experiment, we
simulate n preserving vectors and m error-sensitizing vectors,
where m<< n. Error-sensitizing vectors are produced by ran-
domly changing one output per vector. We then check whether

our framework can produce a netlist that is adaptive to the new

responses. This is similar to fixing errors found by simulation-

based verification, where a few vectors break the regression

test while most vectors should be preserved. In this experi-

ment, we set n=1024 while changing m, and the results are
summarized in Table V. We can observe from the results that

additional error-sensitizing vectors usually require more wires

to be fixed, and the runtime is also longer. However, our frame-

work is able to repair all the benchmarks within a short time

by resynthesizing only a small number of wires. This result

suggests that our framework works effectively in the context

of simulation-based verification.

VI. CONCLUSIONS

In this paper we proposed the CoRé framework to correct

functional errors in combinational circuits using only error

traces. This framework is powered by two innovative resyn-

thesis techniques, GDS and EGS, also presented in this pa-

per. Because CoRé does not rely on specific error models, it

offers more error-correction capabilities than many previous

solutions. The experimental results show that our framework

corrects more error types than solutions based on specific error

models, and provides better performance. Furthermore, our ex-

periments in the context of simulation-based verification show

that CoRé can always produce a rectified netlist which elim-

inates the erroneous responses while maintaining the correct

ones. In addition, CoRé can be easily adopted in most verifi-

cation flows. We are currently work on extending CoRé to fix

errors in sequential circuits.

REFERENCES
[1] M. S. Abadir, J. Ferguson and T. E. Kirkland, “Logic Verification via

Test Generation”, IEEE TCAD, pp. 138-148, Jan. 1988.
[2] P.-Y. Chung and I. N. Hajj, “ACCORD: Automatic Catching and COR-

rection of Logic Design Errors in Combinational Circuits”, ITC’92, pp.
742-751.

[3] N. Eén and N. Sörensson, “An Extensible SAT-solver”, Theory and Ap-
plications of Satisfiability Testing, SAT, 2003, pp. 502-518.

[4] S.-Y. Huang, K.-C. Chen and K.-T. Cheng, “AutoFix: A Hybrid Tool

for Automatic Logic Rectification”, IEEE TCAD, pp. 1376-1384, Sep.
1999.

[5] S.-Y. Kuo, “Locating Logic Design Errors via Test Generation and

Don’t-Care Propagation”, EDAC’92, pp. 466-471.
[6] C.-C. Lin, K.-C. Chen and M. Marek-Sadowska, “Logic Synthesis for

Engineering Change”, IEEE TCAD, pp.282-202, Mar. 1999.
[7] C.-H. Lin et al., “Design and Design Automation of Rectification Logic

for Engineering Change”, ASPDAC’05, pp. 1006-1009.
[8] J. C. Madre, O. Coudert and J. Pl. Billon, “Automating the Diagnosis

and the Rectification of Design Errors with PRIAM”, ICCAD’89, pp.
30-33.

[9] Prakash Rashinkar, Peter Paterson, and Leena Singh. System-on-a-chip
Verification: Methodology and Techniques. Kluwer Academic Publish-
ers, 2002.

[10] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimiza-

tion for PLA optimization”, IEEE TCAD, pp. 727-750, Sep. 1987.
[11] A. Smith, A. Veneris and A. Viglas, “Design Diagnosis Using Boolean

Satisfiability”, ASPDAC’04, pp. 218-223.
[12] A. Veneris and I. N. Hajj, “Design Error Diagnosis and Correction via

Test Vector Simulation”, IEEE TCAD, pp. 1803-1816, Dec. 1999.
[13] S. Yamashita, H. Sawada and A. Nagoya, “SPFD: A new method to

express functional flexibility”, IEEE TCAD, pp. 840-849, Aug. 2000.
[14] J. Zhang, S. Sinha, A. Mishchenko, R. Brayton and M. Chrzanowska-

Jeske, “Simulation and Satisfiability in Logic Synthesis”, IWLS ’05, pp.
161-168.

[15] http://iwls.org/iwls2005/benchmarks.html

[16] http://www.openedatools.org/projects/oagear/

9C-4

949

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

