
Multithreaded SAT Solving

Matthew Lewis, Tobias Schubert, Bernd Becker
Institute for Computer Science

Albert-Ludwigs-University of Freiburg,
Georges-Koehler-Allee 51, 79110 Freiburg, Germany
{lewis,schubert,becker}@informatik.uni-freiburg.de

http://ira.informatik.uni-freiburg.de

Abstract - This paper describes the multithreaded MiraXT SAT
Solver which was designed to take advantage of current and
future shared memory multiprocessor systems. The paper
highlights design and implementation details that allow the
multiple threads to run and cooperate efficiently. Results show
that in single threaded mode, MiraXT compares well to other
state of the art solvers on Industrial problems. In threaded
mode, it provides cutting edge performance, as speedup is
obtained on both SAT and UNSAT instances.

I. Introduction

The Boolean Satisfiability (SAT) solvers of today, are
considerably more advanced than the original Davis-Putnam
algorithm [25]. Many performance enhancements have been
more algorithmic, such as Non-Chronological Backtracking
with Conflict Clause Learning [3,5], and novel Decision
Strategies (VSIDS [1], BerkMin [2], and VMTF [8]).
However, many changes, especially from zChaff, improved
the implementation of these algorithms by considering the
hardware that was running the solver. For example, zChaff
introduced watched literal lists [4], that effectively use the
caches of modern CPUs. Of course, the algorithm as a whole
was also implemented efficiently, allowing zChaff to get
more out of each CPU cycle.

Since Moore's prediction approximately 40 years ago [28],
chip manufacturers have been doubling the number of
transistors on a chip roughly every two years. Recently, new
processes have given chip designers an overabundance of free
transistors. To utilize all these transistors, multicored and
multithreaded CPUs were introduced. In the x86 world, Intel
started by adding Hyper-Threading, in which one CPU can
run two threads simultaneously, sharing the CPU's internal
resources. Now both AMD and Intel have taken the next step
with their X2 and Pentium 4 D lines which contain two
physical CPU's on one die, or in one package. This trend will
continue in the future, providing CPU's with 4 or more cores.
Some higher end CPUs such as SUN's UltraSPARC T1
processor (8 cores, 32 threads), or IBM’s POWER5
Quad-MCM (4 cores, 8 threads) have already done this.

Basically, future SAT solvers will be running on shared
memory multi-CPU systems. Work has been done on
parallelizing SAT solvers for use on asynchronous distributed
systems, using some form of message passing. Such
examples are GridSAT [19], PaSAT [21], PaMIRA [23], and
others [16,17,18,20,22,24]. Message passing, however, is
slow and requires a lot of overhead when compared to a well
designed shared memory system. Recently, work has been
published on a multithreaded shared memory solver called
ySat [15]. This paper concluded that these types of solvers

have a detrimental effect on cache performance, thus
degrading the overall performance of the entire solver. On the
contrary, we will show that a well designed multithreaded
shared memory solver can provide speedup on many
industrial benchmarks.

The following section will start with an overview of the
SAT problem, then describing how SAT solvers works. The
shared memory multiprocessor system used is described in
Section III. Next, our solver MiraXT will be discussed,
highlighting single and multithreaded performance features
and optimizations. Then experimental results will be shown
followed by a few closing remarks.

II. SAT and Parallel SAT

In many different research fields from Verification to
Artificial Intelligence, problems can be described as a
Boolean Satisfiability Problem and formatted in Conjunctive
Normal Form (CNF). This consists of a conjunction of
clauses, with each clause consisting of the inclusive
disjunction of literals. A literal is the occurrence of a variable
in its positive or negative form. A SAT solvers’s task is to find
a solution to the problem such that the entire formula
evaluates to 1 or to prove that no solution exists.

F(x1,..,xn)=(¬x1+x2)·(¬x1+¬x2+x3)·(¬x1+¬x2+¬x3)·…

A single threaded SAT solver starts with all the variables in
an undefined state. Then, using a heuristic, a decision is made
assigning a variable to a value (1 or 0). Such a variable is
called a decision variable. After every decision, a Boolean
Constraint Propagation (BCP) procedure is run to find
implications resulting from that decision. Most solvers
maintain a chronological list of decision variables and the
implication found by the BCP procedure in a decision stack.
Each decision and resulting implications are referred to as a
decision level, with the first decision and its implications on
level 1. Decision level 0 however, contains implications that
do not depend on a decision (e.g. implications from so called
unit clauses). As the BCP procedure runs, it can also find
conflicts, evoking a conflict analysis procedure to find the
reason for conflict. This procedure would then try to resolve
the conflict by backtracking to a previous decision level. It
would also record a conflict clause to prevent the conflict
from being repeated. If the conflict analysis procedure finds a
conflict on decision level 0, the problem is unsatisfiable.
Otherwise, if the BCP procedure finishes and no conflicts are
found and all variables are defined, the problem is solved. For
an in-depth overview of a modern SAT solver, refer to [6].

1-4244-0630-7/07/$20.00 ©2007 IEEE.

9C-1

926

In a parallel SAT solver, each thread or process operates in
the same way; however there are a few points that should be
highlighted. First, conflict clauses can be exchanged between
parallel running solvers. This exchange of knowledge allows
all solvers to benefit from what each other has learnt.
Secondly, for a parallel SAT solver, the problem space must
be divided. The most obvious way is to use decision variables,
as both possible values of every decision variable must be
searched in order to prove unsatisfiability. Normally, the
chronologically first decision variable is chosen. Fig.1 shows
how a solver with two threads could operate. Once the search
space is divided, both solver processes can operate like
normal single threaded solvers. If one solver finds a solution,
the search is over. However, if one solver proves its half is
unsatisfiable, the remaining subproblem from another solver
can be re-divided in the same manner. This method of
dividing the decision stack is referred to as the guiding path
method by PSATO [24].

Fig. 1. Boolean SAT problem splitting.

III.Multiprocessor System and Solver Designs

A. AMD Opteron System

This section will cover the AMD Opteron shared memory
system used in the experiments in this paper, providing a
quick overview of the hardware so that the reader can better
understand the following sections, discussing the
optimizations made to the threaded solver MiraXT.

Fig. 2. AMD dual processor system [27].

In Fig.2, the AMD Uniform Memory Access (UMA)
multiprocessor system is shown. In this system, each
processor has its own local memory, and the processors are
connected to each other with a HyperTransport bus. This bus
allows processors to access other processor's local memory.
Even though the memory is separated, the programmer only
sees one continuous block. However, the farther the memory
is away from the current processor, the slower it is. The
programmer can easily allocate memory to insure that each
thread or process is running in the local memory of its current
CPU. Cache coherency between the memory and the different
processor cache's must also be enforced over the
HyperTransport bus.

B. High Level Solver Designs

When designing a parallel SAT solver, there are many
aspects that make it inherently more complex than a single
threaded solver. First, all solver threads must be controlled in
some manner such that a SAT problem can be loaded and
divided dynamically amongst all the solver threads. This
control system must also be able to start and then terminate
the threads. Secondly, conflict analysis with conflict clause
recording is a powerful part of any SAT solver, and in order to
take full advantage of this in a parallel solver, some
mechanism must allow for the exchange of conflict clauses
between solver threads. Furthermore, the solver must still
maintain good single threaded performance with these parts
included, otherwise the speedup achieved through the use of
multiple processors might be negated. For example, PaSAT
achieved an excellent speedup of 40 on a benchmark set
called longmult using 24 processors [18]. However, the single
threaded solver took thousands of seconds to solve each
instance in the benchmark set. Good single threaded solvers
such as MiraXT and SatELite [7] can solve all 8 instances in
this benchmark set in a few hundred seconds on our AMD
system, making them faster than PaSAT with 24 processors,
although a direct comparison cannot be made as PaSAT was
run on older hardware. Lastly, as a side note, MiraXT also
achieves super linear speedup on these benchmarks in
threaded mode (as do most parallel solver we have seen).

There are many different ways of implementing a parallel
SAT solver to realize the points mentioned above, each
having its respective advantages and disadvantages. To
compare designs, we are going to focus on how different
solvers implement clause sharing. This is because clause
sharing can significantly improve performance and generally
makes up the vast majority of the communication between
threads. Here, we will discuss the three main ways we have
seen that allow the solver’s threads to communicate.

The first and most common way is by using Message
Passing. A library such as MPICH [13] is normally used. This
method allows for best scaling, allowing for solver threads to
be located anywhere as long as they are all connected to some
sort of network. This setup was used in GridSAT [19], and in
our previous work [23], with both papers showing that
speedup can be achieved. However, due to the overhead
associated with sending messages, and the limited network

Thread 1
Thread 2
Decision
Implication

Split

9C-1

927

bandwidth, only short clauses are sent (e.g. of length 3 or less
in GridSAT), and they are sent in bundles introducing more
latency into the clause sharing system.

The second method uses a shared memory “Clause Store”
to share clauses. In this system, each thread occasionally
sends clauses to the clause store while also checking to see if
other new clauses have been added by other threads. PaSAT
[21] and ySat [15] both use this design. One difference
between the two, is that ySat shared physical copies of each
clause, while in PaSAT each thread made its own physical
copy of each clause. While the clause store is not as scalable
as message passing, the use of shared memory allows longer
clauses to be shared (e.g. PaSAT achieved the best speedup
sharing clauses with 5 to 10 literals). This system also reduces
the latency within the clause sharing system. Note, PaSAT
later combined Message Passing and the “Clause Store” in
[18] to allow better system scaling.

The third way is the shared memory clause database design
that MiraXT uses. Here, the database contains only one
physical copy of each clause that threads share. All conflict
clauses are added to the database, and each thread selects
which clauses it wants to use. This is the reverse of the clause
store, in which each thread chooses which clauses it wants to
offer or send to the other threads. MiraXT’s design allows
each thread to consider its current decision stack and status
when selecting which conflict clauses it wishes to use. The
thread can now decide to add very long clauses that will force
implications or cause conflicts, while ignoring short clauses
that are already solved by the thread’s current variable
assignment. This design takes full advantage of the low
latency and bandwidth a shared memory database provides.
PaSAT did something similar in [18] with mobile agents that
contain thread specific information. This information
however, was incomplete and not always up-to-date.

IV.The MiraXT Solver

MiraXT is a zChaff class solver based on MIRA [10,11]
but significantly enhanced and modified to allow it to run
with multiple threads. MiraXT contains the original MIRA’s
Early Conflict Dection BCP (ECDB) and Implication Queue
Sorting (IQS). In MiraXT, a modified VSIDS algorithm is
used, in which all scores over 512 are concatenated so that a
bucket sort can be used to sort the list in O(n) time. This
allows us to sort the list more frequently keeping it up-to-date,
and makes the decision heuristic less greedy. Lastly, it was
implemented in C++ using POSIX threads.

A. Shared Clause Database

As mentioned above, MiraXT has one master clause
database that stores pointers to the original problem clauses,
plus pointers to all the conflict clauses generated by each
thread. Each clause is only present once in memory, and is
shared between threads. In order to insure coherency within
the database, a lock must be acquired before a thread inserts a
pointer to its newly generated conflict clause. As soon as the
pointer is inserted and the database clause counter is

incremented (two simple operations) the lock is released. All
clauses, once generated, are read-only, so that sharing can be
done without locks. These steps are important as we want to
reduce the amount of locks needed by the solver, and remove
any lock contention and wait times that might result from the
remaining locks. Also, each thread has one lock associated
with it that is used when the thread requests a new clause
from the master clause database. This lock is used to
increment its current database position pointer. This pointer
keeps track of which clauses the thread has already looked at,
and those that can still be added. Fig.3 shows a top level
diagram with threads inserting pointers to clauses into the
master clause database. In Fig. 3, Cx represents a pointer to a
conflict clause.

Fig. 3. Shared clause database structure.

Clause deletion is also an important issue. In MiraXT, each
thread deletes clauses using an algorithm similar to Berkmin
[2] in which older inactive clauses are easier to delete. To
facilitate clause deletion efficiently on a multiprocessor
system, each thread has one Boolean variable associated with
it for every clause. Each clause consists of an array of literals
with the first few spots in the array being reserved. These
reserved spots specify the clause length, and its unique master
database reference number. When a thread deletes its
references to a clause, it must set its Boolean variable for that
clause using the clause’s reference number. Because the
Boolean variable for the clause is specific for that thread, no
global lock is required when deleting clauses.

Once a thread has deleted all the clauses it wants to delete,
it will ask the master database to see if a master delete should
be run, as the threads only delete their references to clauses,
and not the actual clauses themselves. In MiraXT, a simple
test based on how many threads there are, and how many
deletion processes have been run, is used to decide if a master
delete is required. If the master database needs cleaning, the
thread grabs a lock and proceeds to delete clauses that are no
longer used by any thread, relinquishing the lock when it is
finished. This lock is used to insure that no two threads run a
master clause deletion procedure at the same time. When the
master clauses are deleted, spaces are left in the array the
master database uses to keep track of all the clauses. When
there are too many open spaces, the array must be compacted
to save memory. During this compaction the master clause
database is shutdown so that no clauses can be added or
retrieved. However, this procedure is done as a quick array
copy, and is only very rarely called.

Thread
2

Thread
1

New Conflict Clauses
Threads Current Position
Clause Database

C1

...

Cn

Cn+1

Cn+2

9C-1

928

Using the fine grained lock system described above,
practically all lock contention issues were removed, and in
testing we saw no signs of even light lock contention. This
seemed to be one of the problems the solver in [15] suffered,
as its authors report that with 4 threads, an average of 10% of
the time was spent waiting for locks. This number should be
only fractions of a percent, as is indeed the case for MiraXT
on most problems. This means that in MiraXT, the majority of
the time (over 99% on average) is spent actually solving the
problem. This is also good indicator of scalability wrt. future
CPU’s that contain multiple cores.

B. Important Supporting Data Structures

In most solvers, to keep track of the watched literals, the
original clause is modified in some way (e.g. by using the first
two literals in the clause). This is not possible in MiraXT,
because clauses are read-only. So, each thread creates a
second data structure called the Watched Literal Reference
List (WLRL). For each clause, this structure contains two
watched literals, and a third literal called a cache variable.
The cache variable (CV), is assigned by using the previous
watched literal the BCP procedure replaced when it examined
the clause. The WRL basically allows each thread in MiraXT
to have a condensed reference or copy of every clause. This is
done because on the AMD system, when a thread creates a
new conflict clause, that clause is located in that CPU's local
memory. If other threads want to access it, they must copy it
from that thread's local memory into their cache. Reading
clauses across the HyperTransport bus can slow the solver
down. To combat this problem, the WLRL lists are stored in
each threads local memory. In testing on a selection of BMC
problems, 84% of clauses with 3 literals or more can be
directly evaluated with only the WLRL. This means the
original clauses are not needed 84% of the time. Also, on
many problems, clauses with 3 literals or less are fairly
common and the entire clause can be stored here. In any case,
this allows MiraXT to better utilize each CPUs cache and
local memory. Lastly, this is similar to the work in [10,11,12],
however, in these papers, the clauses were directly used.

C. Preprocessing

In this paper, the SatELite solver [7] was used to
preprocess all benchmarks. Preprocessors like SatELite or
NiVER [26], can greatly reduce the number of variables and
clauses in the problem. In addition to this, MiraXT runs a
Boolean unit propagation look ahead procedure on all free
variables before starting the actual solver. This procedure can
eliminate variables by observing that some variables can
force the same implications, irrelevant of whether the
variable is set to 1 or 0. This is discussed in detail in [14], and
used in SAT Solvers like Oepir [9]. This technique is also
used in MiraXT during the SAT solver phase when each
thread receives a new subproblem, or when the solver has
assigned a large number of variables to decision level 0. In
these situations, the procedure will only look at variables
which could be directly affected by the new variable

assignments such as free variables that are in unsolved
clauses which contain decision level 0 variables.

These preprocessor techniques eliminate many bad
splitting variables (i.e. variables that have no real effect when
dividing the problem space, for example, variables that only
appear in clauses that are already solved). These variables, if
used to divide the problem, will not force new implications,
solve new clauses, cause conflicts, or really change the state
of the solver in a meaningful way, and in essence, solver
threads will end up redundantly searching the same part of the
problem space. Also, preprocessing normally improves the
solver’s single threaded performance.

D. Multithreaded Solver Control

MiraXT contains no controlling master process unlike
most other parallel solvers. Instead a master control object
(MCO) allows the threads to communicate with each other.
All communication is done in a passive way, such that the
MCO will not interfere with the threads. It will only store
messages and suspend threads which ask for it to do so.
Solver threads poll the MCO occasionally to see if there are
any messages, or idle threads waiting for a new subproblem.

In principle, MiraXT’s threads and the MCO function as
follows. Thread 0 starts the solving process on the decision
stack given to it after the preprocessing is complete. All other
threads start by requesting a subproblem from the MCO and
are now waiting to be signaled. Idle threads are not wasting
CPU cycles polling, they are put to sleep and awakened using
the POSIX cond_wait / cond_signal commands. Periodically,
running threads ask the MCO for any new global events (e.g.
problem solved, waiting threads, or time limit). This is done
without a lock, and with a simple Boolean variable. If
something has happened, a more complicated procedure with
a lock will be run. In our example, when thread 0 checks the
MCO, it will realize that other threads are waiting for a
subproblem. It will then ask the MCO for the decision stack
queue lock. This queue contains decision stacks that need to
be searched. Once the thread has acquired this lock, it will
split its decision stack at decision level 1, and add a decision
stack to the queue. It will then signal a sleeping thread,
release the decision queue lock, and then continue solving its
part of the problem. If there are more threads waiting, they
will be randomly served by running threads. No heuristic is
used to decide which thread should split its decision stack. If
a thread proves its subproblem is unsatisfiable, it will request
a new subproblem. If all the threads are waiting for a new
decision stack, the problem is unsatisfiable.

E. Multithreaded Conflict-Driven Learning

The conflict analysis procedure in MiraXT is based on the
first Unique Implication Point [3]. However, a separate clause
addition procedure was added. In MiraXT, the conflict
analysis procedure will add a clause pointer to the master
clause database. Then the clause addition procedure will be
run, asking the master clause database for all new clauses;
this includes clauses generated by other threads and its newly

9C-1

929

generated conflict clause. It will then process these clauses,
deciding which clauses should be added. Currently, all
conflict clauses, undefined clauses, or really short clauses (10
literals or less), are added. The clause addition procedure will
assign watched literals, search for implications, and perform
conflict driven backtracking as needed. Both the conflict
analysis procedure and the clause addition procedure can
signal that the current subproblem is unsatisfiable. Note,
sometimes the thread might decide not to add the conflict
clause it just generated because clauses generated by other
threads were better, allowing the solver to backtrack further.

The shared memory database MiraXT uses, allows each
thread to easily look at all conflict clauses in an efficient
manner. Unlike other parallel solvers, MiraXT can be more
generous when selecting which clauses to share as there is no
real performance penalty associated with sharing. In other
parallel solvers, threads are limited to databases that contain
only their conflict clauses. So, in other solvers, each thread
(or master thread) decides which clauses to distribute, using
some simple criteria such as clause length. However, these
strategies have a serious drawback in that each thread's
current state is not taken into account when sharing clauses.
This means useful clauses might not be sent (e.g. because the
master process thinks they are too long), and/or useless
clauses are sent (e.g. because the threads current decision
stack solves the clause). Also, other solvers share clauses by
sending them in bundles as messages, or occasionally
checking a clause store. Both these designs introduce latency
in the knowledge sharing scheme meaning that sometimes
clauses are not immediately available where they are needed.
In our scheme, these problems are avoided. The shared
memory database is what differentiates MiraXT from all
other parallel SAT solvers that we know of.

V.Results and Performance

The results on the IBM BMC 2004 [30] and Industrial
2005 [29] benchmarks are shown in Table 1 and Fig.4. This
mix of over 1200 benchmarks contains both SAT and UNSAT
instances. The Industrial 2005 benchmarks contain all the
grieu05, maris05, narain05, and velev05 sets. The AMD
Opteron machine used in this benchmarking section was
running a Linux SMP enabled kernel (kernel 2.6.*), contained
two Opteron 252 (@2.6 GHz) processors, and had 4 GB of
main memory (2 GB of local memory per CPU). The
benchmarks were all preprocessed with SatELite first, and
then each solver was given 1800 seconds per benchmark. To
remove the preprocessing time SatELite required and insure a
fair comparison, SatELite was restarted on the preprocessed
benchmark with a time limit of 1800 seconds. zChaff version
2004.11.15 and SatELite version 1.0 were used. In Table 1, T1

is the total time used by the solver in thousands of seconds. T2

is T1 minus the time for all the benchmarks that no solver
solved, and #S is the number of benchmarks solved. Mira1T
and ySat1T are running with 1 thread. Mira2T and ySat2T are
running with two threads. The ‘a’ and ‘b’ times for MiraXT
are different runs of the same solver, included to show the
variation in multiprocessor solving times.

TABLE I
Comparison of Solvers

IBM BMC 2004 Industrial 2005 Solver
T1 T2 #S T1 T2 #S

Mira2Ta 279.4 81.4 923 67.0 18.4 183
Mira2Tb 284.5 86.5 923 69.3 20.7 182
Mira1T 318.2 120.2 900 75.0 26.4 178
SatELite 314.9 116.9 901 77.1 28.5 176
zChaff 525.4 327.4 784 84.5 35.9 175
ySat2T 707.6 509.6 709 148.0 99.4 136
ySat1T 813.0 615.0 649 148.7 100.1 135

Fig. 4. BMC/Industrial problems solved vs time required.

From Table 1, Mira1T and SatELite are significantly faster
than the other solvers on the IBM benchmarks, and all solvers
excluding ySat are competitive on the industrial benchmarks.
However, Mira2T is significantly faster than the other solvers.
ySat is considerably slower then the other solvers on both
benchmarks, even when using two processors. Using time T2,
MiraXT had an average speedup of 1.43 on the IBM, and 1.36
on the industrial Benchmarks with 2 threads. Focusing only
on problems solved by MiraXT (excluding the other solvers
results), the speedup is even more pronounced at 1.45 for
IBM, and 1.44 for industrial. Speedup was also attained for
both SAT and UNSAT instances. On the IBM benchmarks,
average speedups of 1.55 and 1.41 were attained for the SAT
and UNSAT instances respectively. Remember, these are
general benchmarks and not just a select few like the
longmult example discussed in Section III.

9C-1

930

Next, as can be seen in Fig.4, the curves for Mira1T and
SatELite are similar, and zChaff’s and ySat’s stumbling
performance on the IBM benchmarks is quite clear. MiraXT’s
performance advantage when running with two threads is
easy to see. Also, it’s interesting that while ySat2T achieved
speedup over the single threaded version on the BMC
benchmarks, no speedup was attended on the industrial
benchmarks, unlike MiraXT.

VI.Future Perspectives

Preliminary work has also been done on a dual CPU Intel
Pentium 4 XEON Machine. It uses a shared memory bus
architecture in which both CPU's must share one memory bus.
On this system, MiraXT also scales well from one to two
threads, providing a performance increase that is just slightly
less then the AMD system. This is most likely due to
increased memory bus contention. The Intel system however,
should be more indicative of dual core CPU performance as
dual core CPU's will also share one memory bus. With this in
mind, we believe that dual core CPU's should scale almost as
well as the AMD system presented here. As for further
scaling beyond 2 processors, we foresee no issues. Based on
experimental results with 2 processors, MiraXT did not suffer
from any lock contention issues, and the amount of work
done by the solver (e.g. the number of clauses examined per
second) scales almost perfectly. Lastly, roadmaps from both
Intel and AMD seem to show future CPU's with significantly
larger caches, and faster memory buses. Both should improve
MiraXT’s multithreaded performance.

VII. Conclusion

As was shown in this paper, a modern SAT solver can be
parallelized using threads to achieve speedup. Significant
speedup of 44-45% on both SAT and UNSAT benchmarks
was shown when two processors were used. Implementation
details that allow the MiraXT solver threads to efficiently
work together were discussed, including features that
increase single threaded performance. Threaded solvers will
likely be the way of the future as Intel, AMD, IBM, and SUN,
have all introduced CPUs that contain multiple cores.
Utilizing the extra power of these CPUs is and will continue
to be a major area of interest in computer science. SAT
solvers will have to adapt and become threaded in order to
compete with other forms of formal verification. This paper
and the ideas presented should provide a good starting point
for future research in this area.

References

[1] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.
Malik, “Chaff: Engineering an Efficient SAT Solver”, Proceedings
of the 38th DAC, July 2001.
[2] E. Goldberg and Y. Novikov, “BerkMin: a Fast and Robust
Sat-Solver”, DATE, 2002.
[3] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik,
“Efficient Conflict Driven Learning in a Boolean Satisfiability
Solver”, ICCAD, 2001.

[4] L. Zhang, and S. Malik, “Cache Performance of SAT Solvers: A
Case Study for Efficient Implementation of Algorithms”, SAT, 2003.
[5] J. P. Marques-Silva,K. A. Sakallah, “GRASP: A Search
Algorithm for Propositional Satisfiability”, IEEE Transactions on
Computers, Vol. 48, pp. 506-521, 1999.
[6] N. Eén, and N. Sörensson, “An Extensible SAT-Solver”, SAT,
2003.
[7] N. Eén, A. Biere, “Effective Preprocessing in SAT through
Variable and Clause Elimination”, SAT, 2005.
[8] R. Lawrence, “Efficient Algorithms for Clause-Learning SAT
Solvers”, Simon Fraser University Master's Thesis, 2004.
[9] J. Alfredsson, “The SAT Solver Oepir”, SAT Competition: Solver
Descriptions, 2004.
[10] M. Lewis, T. Schubert, and B. Becker, “Early Conflict
Detection Based BCP for SAT Solving”, SAT, 2004.
[11] M. Lewis, T. Schubert, and B. Becker, “Speedup Techniques
Utilized in Modern SAT Solvers - An Analysis in the MIRA
Environment”, SAT, 2005.
[12] I. Lynce, J. and Marques-Silva, “Efficient Data Structures for
Fast SAT Solvers”, Technical Report, 2001.
[13] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A
high-performance, portable implementation of the MPI message
passing interface standard”, Parallel Computing, 1996.
[14] D. Le Berre, “Exploiting the Real Power of Unit Propagation
Lookahead”, SAT, 2001.
[15] Y. Feldman, N. Dershowitz, and Z. Hanna, “Parallel
Multithreaded Satisfiability Solver: Design and Implementation”,
PDMC, 2004.
[16] M. Böhm, and E. Speckenmeyer, “A Fast Parallel SAT-Solver -
Efficient Workload Balancing”, Annals of Mathematics and
Artificial Intelligence, 1996.
[17] W. Blochinger, C. Sinz, W. Küchlin, “A Universal Parallel SAT
Checking Kernel”, PDPTA, 2003.
[18] W. Blochinger, C. Sinz, and W. Küchlin, “Parallel Propositional
Satisfiability Checking with Distributed Dynamic Learning”,
Parallel Computing, 2003.
[19] W. Chrabakh, and R. Wolski, “GridSAT: A Chaff-based
Distributed SAT Solver for the Grid”, Proceedings of the ACM/IEEE
Conference on Supercomputing, 2003.
[20] B. Jurkowiak, Chu Min Li, and G. Utard, “Parallelizing Satz
Using Dynamic Workload Balancing”, SAT, 2001.
[21] C. Sinz, W. Blochinger, W. Küchlin, “PaSAT - Parallel
SAT-Checking with Lemma Exchange: Implementation and
Applications”, SAT, 2001.
[22] W. Blochinger, C. Sinz, and W. Küchlin, “Distributed Parallel
SAT Checking with Dynamic Learning using DOTS”, PDCS, 2001.
[23] T. Schubert, M. Lewis, B. Becker, “PaMira - a Parallel SAT
Solver with Knowledge Sharing”, International Workshop on
Microprocessor Test and Verification, 2005.
[24] H. Zhang, M. Bonacina, and J. Hsiang, “PSATO: A
Distributed Propositional Prover and its Application to Quasigroup
Problems”, Journal of Symbolic Computation, 1996.
[25] M. Davis, G. Logemann, and D. Loveland, “A Machine
Program for Theorem-Proving”, Communications of the ACM, vol. 5,
pp 394-397, 1962.
[26] S. Subbarayan, D. Pradhan, “NiVER: Non Increasing Variable
Elimination Resolution for Preprocessing SAT instances.”, SAT,
2004.
[27] http://www.amd.com/us-en/assets/content_type/Downloadable
Assets/ PID30291H_2P_server_competitive_comp.pdf
[28] G. Moore, “Cramming More Components Onto Integrated
Circuits”, Electronics, 1965.
[29] SAT2005 benchmarks, SATLIB: http://www.satlib.org
[30] IBM BMC Benchmarks: http://www.haifa.il.ibm.com
/projects/verification/RB_Homepage/bmcbenchmarks.html

9C-1

931

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

