1-4244-0630-7/07/$20.00 ©2007 IEEE.

9B-2

An Embedded Low Power/Cost 16-Bit Data/Instruction Microprocessor Compatible
with ARM7 Software Tools

Fu-Ching Yang

Department of Computer Science and Engineering
National Sun Yat-sen University
Kaohsiung 804, Taiwan
Tel : 886-7-5254337
Fax : 886-7-5254301
e-mail : fcyang@esl.cse.nsysu.edu.tw

Abstract - A 16-bit THUMB instruction set microprocessor is
proposed for low cost/power in short-precision computing. It
achieves 40% gate count, 51% power consumption and 160%
clock frequency comparing to ARM7, even the performance is
67% better in narrow width memory at the same clock frequency.
The ARM7 software is also compatible.

I Introduction

Embedded microprocessors are divided into 3 categories:
8-bit, 16-bit and 32-bit microprocessor, depending on the
demand of performance, cost, power, and programbility. For
simple control system witch requires extremely low cost and
low power, 8-bit microprocessor is the best choice [2]. But it
often has low programbility that the software designers have
to write the program in assembly language. In contrast to 8-bit
microprocessor, 32-bit microprocessor, for example, ARM
have high programbility, high performance and are widely
used for applications need high computation such as cellular
phone and PDA [3]. As for 16-bit microprocessor, they have
higher performance power than 8-bit microprocessors [4] and
lower power consumption than 32-bit microprocessors, are
often used in 16-bit applications such as disk driver controller,
airbags and cellular communication [4].

For the demand for extreme low power and low cost in
mobile devices, many microprocessor design companies
support 32-bit and 16-bit instruction sets in a 32-bit
architecture microprocessor, for example the ARM’s THUMB
instruction set [1] and MIPS’s MIPS16e instruction set [5]. In
this paper, since ARM based embedded processors are widely
used in embedded system [3], our work is based on ARM,
especially ARM7. In ARM?7 architecture, by changing the
processor mode for executing the 32-bit ARM instruction set
or the 16-bit THUMB instruction set, trade off can be made
among the code density, performance and energy efficiency
according to application specifications. ARM instruction set
targets to high performance applications while THUMB
instruction set targets to low cost applications. THUMB
instruction set’s 16-bit instruction length allows it to approach
twice the density of standard ARM code [1].

However, for applications that are primary short-precision
operations, ARM only solves half the problem. The reason is
that although the 32-bit microprocessor can change the
processor mode to execute the 16-bit instructions compiled for
those applications, the data path inside the processor is still

Ing-Jer Huang

Department of Computer Science and Engineering
National Sun Yat-sen University
Kaohsiung 804, Taiwan
Tel : 886-7-5254337
Fax : 886-7-5254301
e-mail : ijhuang@cse.nsysu.edu.tw

32-bit width. According to the observation by Ramon et al. [6],
the upper bits of data path nearly have no change for
applications requiring only short-precision operand. In this
case, 32-bit architecture is not suitable comparing to 16-bit
architecture. Because by removing the unused 16-bit data path,
16-bit architecture has smaller chip size and lower power
consumption than 32-bit architecture.

In this paper, for the reason above, we propose a 16-bit
ARM microprocessor called SYSI6TM based on ARM?7
microprocessor architecture that has a 16-bit instruction set
and 16-bit data path. We have two challenges. One is how to
reduce the processor data path from 32-bit to 16-bit. Another
is how to maintain software compatibility of ARM7 so the
software tool chain such as the compiler and the simulator can
be reused as much as possible. Thus the ARM software
programmer can port applications to SYS16TM in a short time
and benefit of low power and low cost.

The experimental results show SYS16TM can achieve
about 49% of power and 60% of cost reduction comparing to
the original ARM7 microprocessor. Even the performance of
SYS16TM is 68% better than ARM7 when considering 16-bit
width memory.

I1. Related work

For 32-bit microprocessors, the upper 16-bit of the data
path inside the pipeline stage has no changes at most of the
time when executing short-precision applications [6]. For
those applications, 16-bit data path is better than 32-bit data
path in power consumption and cost. Since ARM is the most
popular embedded microprocessor, we decide to propose a
16-bit microprocessor based on ARM architecture. Because
the software environment of ARM can be reused, we don’t
have to create compiler and simulator on our own. And thus
achieve fast time-to-market.

Before we explore the effect of reducing data path from
32-bit to 16-bit, we first consider the difference of instruction
sets in ARM7. As describe in ARM?7 specification [1], ARM7
has two instruction sets called ARM and THUMB. ARM
instruction set is 32-bit and THUMB instruction set is 16-bit.
Each THUMB instruction has a corresponding ARM
instruction. By compiling program into THUMB instructions,
it can reduce code size. The programmer should judge by
application complexity to decide which instruction set to use.

902

Related research about how to choose between ARM and
TUMB instruction set has been carried out [16]. From their
result, it shows that THUMB code is able to provide 70% of
the code size of ARM. The similar results are carried out in
our experimental result in section 6.1.

But the reduction of instruction length leads to more
execution time [17]. For example, THUMB instruction set has
shorter immediate and offset field comparing to ARM
instruction set. It also sacrifices several features that ARM
instruction set has, such as conditional execution instruction,
register file access ability and so on [16]. Because of the
limitation, more instructions required when a program is
compiled in THUMB instruction set. According to our
experimental result, the performance degradation is about 6%.

However, memory usually has narrow bandwidth in many
embedded systems. In such system, 8-bit and 16-bit
microprocessor can benefit from it. Take 16-bit bandwidth
memory for example, every instruction needs to be fetch twice
from memory in ARM mode, while in THUMB mode,
fetching one instruction takes only one memory access. From
the ARM?7 specification [1], THUMB code provides 160% of
the performance of an equivalent ARM?7 processor connected
to a 16-bit memory system. Same experimental results are
obtained in section 6.3.

From the comparison between ARM and THUMB above,
we know that THUMB consumes less memory space by code
size reduction, thus reducing power consumption. And it also
has better performance than ARM with low bandwidth
memory which is commonly used in low cost embedded
systems.

But for short-precision applications, even if we compile
them to THUMB instructions, the power and cost reduction
are not good enough. The reason is that the data path inside
ARM?7 is still 32-bit. In our paper, we not only implement
THUMB instruction set as our instruction set architecture but
also farther reduce the data path from 32-bit to 16-bit in order
to achieve further power reduction.

Related work like Ramon et al. do [6], they also reduce the
data path from 32-bit to 16-bit in his halfword-serial
architecture. In this architecture, although the
Clock-Cycle-Per-Instruction (CPI) is increased by 131%, the
power consumption can be reduced by 44~58%. In many
16-bit embedded systems, because we more care about power
and cost than performance, the loss of performance is
acceptable.

There for, in this paper, we propose a 16-bit data/instruction
microprocessor. It can achieve significant low power/cost at
acceptable performance degradation. For narrow width
memory such as 16-bit memory, even the performance is 68%
better than ARM7. And the software tool chain can be reused,
so that the ARM software engineers can still use their
experience when developing application in SYS16TM.

I1I. Programmer’s model
In order to reuse of ARM7 software environment, we only

modify what is necessary. So our microprocessor can be
compatible with ARM?7 simulator.

A. Instruction set

9B-2

16-bit 16-bit

RO RS

Rl R 32-bit 32-bit

R2 R10

Ri 16-bit Rl; l CPSR H SPSR_sve l

R —*—| RI1

RS SPH__| RI3 (SP) [SPSR_fiq || SPSR_abt |

R6 LRH R14 (LR)

R7 PCH | RI5 (PC) l SPSR_irq H SPSR_und l
General Registers and Program Program Status

Counter Registers

Fig. 1. Register file of proposed microprocessor.

T
Sytem&User FIQ Supervisor Abort RQ Undefined : System & User
32-bit 32-bit 32-bit 32-bit 32-bit 32-bit : 16:bit
I —=
) RO RO RO RO RO ! RO
RI RI RI RI RI RI ! E
R [[[[[1 [
[R3 R3 R3 R3 R3 i 3 |
Rt R4 R4 R4 R4 R4 ! [Ra |
RS RS RS RS RS RS | RS
R6 R6 R6 R6 R6 R6 ! | Ro |
[[R7 [R7 [1 R7
RS R8 R8 R8 RS R8 | =
RO R9 R9 R9 R9 R9 ! =
RI0 RI0 RIO RIO RIO RIO | 1 RI0
RI1 RIL RIL RIL RIL R | 4 [Ri1]
RI2 RI2 RI2 RI2 RI2 R | | [Ri2]
RI3 (SP) RI3 (SP) RI3 (SP) RI3(SP) RI3(SP) RI3(SP) i SPH | o)
RI4(LR) RI4(R) | [RI4(R) | [R4@R) | | RI4AR) | | RI4@CR) : LRH "::;\
RIS (PC) RI5 (PC) RIS(PO) | | RI5(PC) | | RIS@PO) RI5 (PC) : PCH ":_\
1
General Purpose Registers of ARM7 { General Purpose Registers of
! Proposed Microprocessor

Fig. 2. Comparison between ARM?7
proposed microprocessor register files.

register files and

In this paper, the 16-bit microprocessor is designed based
on THUMB instruction set. Following ARM7, THUMB is
RISC load-store architecture simplified for high throughput.
THUMB has complete set of logical, shift, bit manipulation,
and arithmetic operations that operate on a register and either
another register or a fixed length 3-8-bit immediate field
according to different instruction format. Program can be
executed in THUMB instructions independently without the
support of ARM instruction set.

We implement all the THUMB instructions in our
microprocessor except Branch Exchange instruction which is
designed for changing between ARM and THUMB mode.
Since we only implement THUMB instructions, this
instruction format is no use at all. We replace it with new
defined instruction.

B. Register files

For low power consumption, the data path is reduced from
32-bit to 16-bit as we mentioned in section 2. That is, the
register file is also reduced from 32-bit to 16-bit. But for
register PC (Program Counter), LR (Link Register) and SP
(Stack Point), because these three registers are used for
address recording and calculation, they have to keep in 32-bit
to have 4 G byte address space. We use two 16-bit registers
combined to form a 32-bit register for PC, LR and SP. The
16-bit register corresponding to the lower 16-bit of the 32-bit
register is accessed by THUMB instructions. The upper 16-bit
register is access by a new defined instruction call MOVH.
Fig. 1 is the register file of our microprocessor. Like it shows,
the upper 16-bit registers of PC, LR and SP are PCH, LRH
and SPH [7] respectively.

903

9B-2

Caiol Sk B ks soge Gl Sigals ram e soge

(a) Decode stage of ARM7

Fig. 3. Diagram of ARM decode stage and SYS16TM
decode stage.

(b) Decode stage of SYS16TM

Besides, in ARMY7, there are six register file for six different
modes such as System, FIQ, Supervisor, Abort, IRQ and
Undefined mode respectively. These register files are used for
fast context switch. For example, if ARM7 is interrupted,
registers don’t have to be stored in memory by software. The
hardware automatically stores them in another set of register
file. But in our design, we only implement system mode
register file while removing the other five. The primary reason
for this decision is that we care about power and cost more
than performance in 16-bit applications. It is necessary to keep
the hardware simple. This modification helps reducing power
and cost in two ways. First is that the power consumption of
register file is great. Second is that the logic for switching
among the six register files is complex. Fig. 2 is the
comparison between ARM?7 register files and SYS16TM. The
proposed register file size is only 21% of ARM?7 register file
size. By taking account of the complex logic for switching
among the different register files, the gate count can be
smaller than 21%.

IV. Micro-architecture

In this section, we compare the difference between
SYS16TM and ARM?7, and explain how SYS16TM can be
lower cost/power than ARM7. SYS16TM is designed in
verilog hardware description language following coding guide
lines [8] in top-down approach.

According to ARM?7 data sheet, ARM7 has three pipeline
stages. In order to be compatible with AMBA, SYS16TM is
implemented in the same pipeline stages.

A. Fetch stage

At the fetch stage, PC increments by 2 instead of 4 in byte
addressing memory because of the reduction of instruction
width. It means we can use a 2-bit adder instead of 4-bit adder.
Besides, PCH latch is added for address expansion of 32-bit.
The rest of the design is still the same as ARM?7. In this stage,
chip area is similar to ARM7.

B. Decode stage

In the original ARM?7 architecture, it has an ARM
instruction decoder at the decode stage. As fig. 3a shows, the
decoder decodes ARM instructions to a set of control signals
for execution stage. But for Thumb instructions, they are
translated into equivalent ARM instruction by De-compressor
module before entering the ARM instruction decoder.

In SYS16TM, we only implement Thumb instruction set. It
is unnecessary to translate THUMB instructions into ARM
instructions and then use ARM decoder to decode them. So as
fig. 3b shows, we remove De-compressor module, and modify
the decoder to decode THUMB instructions directly. In this
way, the complexity of decoder logic is much lower, and chip
area is greatly decreased.

At this stage, the register file is also reduced. The reason
why and how it is reduce is explained in section 3.2.

C. Execute stage

At the execute stage, functional units take control signals
from the decode stage to execute. Their functionalities are still
the same to ARM7, but the bandwidth is reduced to 16-bit
including multiplier, shifter and adder.

In the original ARM7, multiply instructions take at most
four cycles to complete. The multiplier is based on Booth
algorithm [9] that uses a 32 x 8 multiplier internally. The
multiplier calculates the result of a 32-bit multiplicand times a
8-bit multiplier at each cycle. According to Booth algorithm, if
the upper 24 bits of multiplier are all ones or zeros, it takes
only one cycle to complete calculation. But it can also take
four cycles to complete in the worst case if the multiplier is
not so formatted.

In SYS16TM, we use a 16 x 8 multiplier as core multiplier.
Since the data path is reduced to 16-bit, the multiplier takes at
most two cycles to complete. The finite state machine logic in
ARM7 decoder that is responsible for generating the control
signals for third and fourth cycle can be removed. Besides,
Thumb instruction set doesn’t have MLA instruction like
ARM?7 dose that sums up the result of multiply with another
operand. So the logic of adder is also removed. After all the
modification made to multiplier, the gate count of multiplier is
greatly reduced to 24% of the original design.

Besides reducing the width of functional unit to 16-bit,
certain functional units are removed entirely. Because Thumb
instruction set is a subset of ARM instruction set, functional
units operate by only ARM instructions are no long need in
SYS16TM. For example, coprocessor instructions defined in
ARM instruction set is not supported by Thumb instruction set,
thus the coprocessor interface is removed in SYS16TM. Other
instructions such as MLA, MRS, MSR, RSB, RSC, SWP and
TEQ are treated in the same way.

V. Reuse of software tools

In order to reuse ARM7’s software environment instead of
designing the compiler and the simulator on our own, there are
some coding guide lines to be followed. With little
modification to coding style, we can reuse ARM7’s compiler
and simulator as much as possible. The software tools we used
here is ARM Developer Suite (ADS) licensed from ARM [10].

A. Coding guide line 1: declare “short” instead of “int” in
C language

C compiler treats integer variable as 32-bit and short
variable as 16-bit. For example, if a variable is declared as
short, compiler uses 16 bits memory space or 16 bits register
to store it. Since SYS16TM only has 16-bit width, C compiler

904

000000a8 mov 10,#0 /fvariable i
000000aa b 0xb2
000000ac add 10,#1 /lincreasei by 1
000000ae 1sl 10,10,#16 //shift left by 16 bits
int main() 000000b0 ast 10,10,#16 //shift right by 16 bits
000000b2 cmp 10,#0xa
short i=0; 000000b4 ble Oxac
000000b6 mov 10,#0 /lend of loop
for(i=0;i<=10;i++); 000000b8 bx 114 /fend of main function
} :
(&) C code (b) Assembly code

Fig. 4. Example C code and the corresponding assembly
code.

shorta = 100;

0000 0064

Left shift by 16

bits
0064 0000

Right shift by 16

bits
0000 0064

(a) ARM7

(b) SYS16TM

Fig. 5. Effect of the pair of shift instructions on ARM7
and SYSI6TM.

0x00000000 B
0x00000002 NOP
0x00000004 B
0x00000006 NOP
0x00000008 B
0x0000000A NOP
0x0000000C B
0x0000000E NOP
0x00000010 B
0x00000012 NOP
0x00000014 NOP
0x00000016 NOP
0x00000018 B
0x0000001A NOP
0x0000001B B
0x0000001C NOP

18t_srv //reset exception
//mon operation
undef srv /fundefined exception

SWI /fsoftware int. exception

Abtp_srv //prefetch abort exception
Abtd_srv //data abort exception
/lreserve

IRQ stv //IRQ exception

FIQ srv //FIQ exception

Fig. 6. Example of exception vector table of SYS16TM.

TABLE I
Address of exception vectors

Address Exception
0x00000000 Reset
0x00000004 Undefined instruction
0x00000008 Software interrupt
0x0000000C Abort (prefetch)
0x00000010 Abort (data)
0x00000014 Reserved
0x00000018 IRQ
0x0000001C FIQ

must be aware of this limitation so that the registers are not
overflow during the execution. In order to tell the compiler to
operate on 16-bit, be sure to declare variables as “short”. We
run several benchmarks to confirm this solution in several
ARM compilers such as TCC (Thumb C Compiler) [10] and
GNU C compiler [11].

For assembly programming, software programmers can still
use the same experience already learned from ARM?7. One

9B-2

thing programmer should keep in mind is that the registers are
now 16-bit.

B. Coding guide line 2: remove LSL, ASR pairs

By our observation, when variables are declared as “short”,
the compiler generates a pair of instruction consisting of LSL
and ASR instructions. For example, fig. 4b is the assembly
code compiled from C code in fig. 4a by thumb compiler.
From the assembly code, every time the variable i increases,
the pair of shift instructions are added after.

The reason why inserting this instruction pair is to make
sure that value is not more than 16-bit. As fig. 5a shows, the
32-bit register storing 100 is left shifting by 16 bits and then
right shifting by 16 bits. In the original ARM7 program model,
it is necessary for making sure the upper 16 bits of the 32-bit
register is zero. But for SYS16TM, registers is only 16 bits,
fig. 5b shows this pair of instructions clean the registers to
Zero.

For SYS16TM, such pair of instructions should be taken
care of after compiling. Without modification to thumb
compiler, we develop a simple tool to replace the pair of
instructions with NOP (No Operation) instructions.

C. Coding guide line 3: keep the exception vector addresses
the same

Table 1 shows the address of exception vectors in ARM7.
When exception occurs, program jumps to the specific address
according to specific type of exception. At each exception
vector address, there exists a branch instruction to jump to
corresponding exception service routine (srv). In order to be
compatible with ARM?7 simulator, SYS16TM’s hardware is
designed in the way that has the same exception vector
addresses comparing to ARM?7. For software developers, there
is one coding guide line to follow. That is after inserting
branch instructions at each exception vector address, a NOP
instruction should be inserted after each branch instruction.
The reason is that the Thumb instruction length is two bytes,
but the address space between two exception vectors is four
bytes.

The left two bytes space should be inserted by a NOP
instruction, so the program can jump to the correct address.
Fig. 6 is the example of exception vector table of SYS16TM.
Every entry of exception vector has a branch instruction that
jumps to the corresponding service routine. Followed by each
branch instruction is a NOP instruction.

By following the three coding guide line above, programs
compiled from ADS thumb compiler can be executed on
SYS16TM. But there is one limitation. It is that the compiler
and simulator are not aware of the new defined instructions
for accessing PCH, LRH and SPH discussed in section 3.2.
Unless the applications are written in assembly code, the
address space of SYS16TM is limited to 64 k due to compiler.
In the future work, this problem will be solved by developing
custom software tools for SYS1TM.

VI. Experimental Result

We implement both ARM7 and SYS16TM in verilog
language following nLint design rules [12]. We verify both

905

9B-2

designs in RTL level by comparing the result of RTL
simulation with ARM7 simulator [13]. The test patterns used
to verify both designs can achieve 100% of code coverage
measured by VN-cover [14]. Further more, both designs are
verified in FPGA.

The benchmarks we use are collected by their features in
embedded system such as sort, image, network, math, and
others.

A. Cost

We use Synopsys design compiler to synthesize in UMC
0.18 technology. Table 2 is the result after synthesis of both
ARM?7 and SYS16TM. As we can see, the gate count of
SYS16TM is only 40% of ARM7 while the clock frequency is
51% faster than ARM7.

The great reduction of gate count is contributed primarily
from the reduction of data path. For example, table 3 is the
synthesis result of multiplier and register file of both ARM7
and SYS16TM. After the modification mentioned in section
4.3, the gate count of multiplier is reduced to 24% of the
original design.

The other contributors of gate count reduction are the
decoder and register file at the decode stage. Table As we can
see from table 3, the gate count reduction of register is huge
that is only 21% of ARM7 register file.

For the consideration of cost, memory size is also an
important issue. Table 4 is the experiment result we obtain
from running ARM7 compiler for code size comparison. The
result shows that THUMB code size is average 61 % of ARM
code size [1]. In other words, the memory size needed for
SYS16TM is 39% less than ARM7. So not only the gate

TABLE II
Report after synthesis in UMC 0.18 technology

ARM7 SYS16TM SYS16TM/ARM?7
Gate count 50,612 20232 40 %
Frequency 91 MHz 137 MHz 151 %
TABLE III

Gate count of multiplier and register file

ARM7 SYS16TM | SYS16TM/ARM?7
Multiplier 8800 2128 24 %
Register file 166,46 3453 21%
TABLE IV
Code size of ARM/THUMB instruction
Benchmark Tl}umb code ARM code | Relative density
size (byte) size (byte) (Thumb/ARM)
gsort 96 144 0.67
dijkstra 124 244 0.51
Hanoi 88 180 0.49
ged 34 64 0.53
Fibonacci 48 76 0.63
knight 438 120 1.04
jpeg_encoder 3,728 6,660 0.56
Geometry mean 0.61

count of microprocessor is reduced, but also the required
memory size.

B. Power

We use Synopsys PrimePower [15] for power estimation.
Table 5 is the result obtained from running the same
benchmarks on ARM7 and SYS16TM. The result shows that
the power of SYS16TM is only 51% of ARM7.

For the power consumption of memory, we use Artisan’s
memory generator to estimate the power. The experimental
result shows that even if the code size reduction of SYS16TM
achieves 61%, the memory power reduction due to smaller
memory size is not great. The factor effects the memory
power is primarily memory clock frequency.

C. Performance

Because of the simplicity of logic and the reduction of data
path, the critical path in SYS16TM is shorter than ARM?7,
resulting higher clock frequency than ARM?7. From table 2, it
shows that SYS16TM is 51% faster than ARM7.

Although SYS16TM is faster than ARM?7, it suffers from
longer execution path. As we discus in section 2, since the size
of immediate fields, effective address offsets in Thumb
instruction set is smaller than ARM instruction set, SYS16TM
could take longer execution path than ARM7 to complete the
same program. Table 6 is the number of instruction executed
for the seven benchmarks. From the result, SYS16TM has to
execute an average instruction of 12% more than ARM?7. For
embedded systems that concern about low cost/power
primarily, the performance degradation is acceptable. Since
SYS16TM achieve 60% less gate count, 39% less required
memory size and 49% less power consumption, the
performance degradation of 12% is tolerable.

D. For 16-bit bandwidth memory

For low cost embedded systems, low bandwidth memory is
commonly used. In such systems, the performance and power
consumption of SYS16TM can be better than ARM7. Table 7
is the result we obtain from ARM7 simulator. We simulate

TABLE V
Power of ARM7 and SYS16TM
ARM7 SYS16TM | SYS16TM/ARM?7
Average power 533 mW 2.7 mW 51%
TABLE VI
Executed instruction count of different benchmarks
Benchmark (SYSi# 6(31"fl\ldrjikM7) Inst. Ratio

qgsort 60720 /50707 1.20
dijkstra 1393 /1340 1.04

Hanoi 21492 /21489 1
ged 200/ 161 1.24
Fibonacci 4760389 /4171137 1.14
knight 91971/71223 1.29
jpeg_encoder 1488009 / 1483328 1.00
Geometry mean 1.12

906

TABLE VII
Cycle count of SYS16TM and ARM7 equipped 32-bit
and 16-bit bandwidth memory (ARM-32 : ARM7 with a
32-bit bandwidth memory; ARM-16 : ARM7 with a
16-bit bandwidth memory)

Benchmark | ARM-32 ARMAG | sysigmm | ARMSY | ARMAO

gsort 91024 173262 101060 0.90 1.71
dijkstra 2344 4130 2513 0.93 1.64
Hanoi 49210 75732 42989 1.14 1.76
ged 256 510 295 0.87 1.72
Fibonacci 9428047 | 16106249 | 9624465 0.98 1.67
knight 129678 244073 161026 0.81 1.52
jpeg 2361939 | 4346607 | 2481146 0.95 1.75

encoder
Geometry mean 0.94 1.68

ARM7 and SYS16TM respectively with different bandwidth
of memory running at same clock frequency. The result shows
that when bus bandwidth is 32-bit, ARM7 only needs 94%
cycle count of SYS16TM. But if we consider 16-bit
bandwidth memory, ARM7 require 68% more cycle count
than SYS16TM. In other words, SYS16TM requires only 60%
(1/1.68) cycle count of ARM7. For real time applications,
smaller cycle count means the processor can operate at smaller
clock frequency. So the power consumption can be lower.

Further, if we consider cycle count with average power,
SYS16TM can achieve significant low power consumption.
As we can see from table 6, the power consumption of
SYS16TM is only 51% of ARM7. Since the total energy for a
given application is the average power consumption times the
total execution time, the energy consumption of SYS16TM is
about 0.51 x 0.60 = 30.6% of ARM7.

VII. Conclusion

In midrange performance embedded system applications,
16-bit microprocessor is sufficient. Especially when
considering low bandwidth memory such as 8-bit or 16-bit
memory, which comes up often in embedded systems, 16-bit
instruction set has greater advantage than 32-bit instruction set.
Although there are many 32-bit microprocessors, for example,
ARM7 has the capability to execute programs in 16-bit
instructions and achieves 39% code size reduction. But for
short precision applications, the upper 16-bit of 32-bit
microprocessor is rarely used, thus resulting waste of cost and
power. By this observation, we propose a microprocessor
architecture called SYS16TM that is derived from ARM?7 to
achieving lower cost/power and high performance. After some
optimization of SYS16TM, it requires only 40% cost and 51%
power of ARM?7. Especially for low cost embedded systems
that are wusually equipped 16-bit bandwidth memory,
SYS16TM takes only 60% cycle count of ARM7 to complete
a same program. Thus, the total energy SYS16TM consumes
is only 30.6% of ARM?7. At last, unlike many microprocessors,
SYS16TM still can reuse software environment as much as
possible. Although there is one limitation on software tools
reuse, in the future work, we will solve this problem by
developing compiler and simulator for SYS16TM.

9B-2

References

[1] “ARM7TDMI Data Sheet”, Advanced RISC Machines Ltd.,
199s.

[2] Cross, J. E. and Soetan, R. A., “Teaching microprocessor design
using the 8086 microprocessor,” in Proc. IEEE Conf. on
Southeastcon ’88, pp. 175-180, April 1998.

[3] Dac pham, et al, “A 12 W 66 MHz superscalar RISC
microprocessor for set-tops, video games, and PDAs,” in Proc.
IEEE intl. Conf. on Solid-State Circuits, pp. 180-181, Feb. 1995.

[4] Bannatyne, R., “Migrating from 8- to 16-bit processors,” in proc.
Northcon /98 conf., pp. 150-158, Oct. 1998

[5] “MIPS32 Architecture for Programmers Volume IV-a : The
MIPS16e Application-Specific Extension to the MIPS32
Architecture”, MIPS Technologies, Inc., 2005.

[6] Canal, R., Gonzalez, A., and Smith, J.E., “Very low power
pipelines using significance compression,” in Proc. 33rd
IEEE/ACM intl. Symp. On Microarchitecture, pp. 181-190, Dec.
2000.

[7] “PIC16C63A/65B/73B/74B Data Sheet”, Microchip Technology
Inc., 2000.

[8] Michael Keating and Pierre Bricaud, “Reuse Methodology
Manual for System-on-a-Chip Designs. 2nd Edition”, KLUWER
ACADEMIC PUBLISHERS, 2002.

[9] David A. Patterson, John L. Hennessy, “Computer Organization
and Design: The Hardware/Software Interface, Third Edition,”
Morgan Kaufmann, 2004.

[10] Advanced RISC Machines Ltd., “ARM Developer Suite :
Compilers and Libraries Guide”, Advanced RISC Machines Ltd.,
2001.

[11] GNU, “GNU Compiler Collection”, http://gcc.gnu.org/.
[12] NOVAS, “nLint”, http://www.novas.com/Products/nLint/

[13] Advanced RISC Machines Ltd., “ARM Developer Suite : AXD
and armsd Debuggers Guide”, Advanced RISC Machines Ltd.,
2001.

[14] TransEDA, “VN-Cover”,
http://www.transeda.com/products/vn-cover/details.php

[15] Synopsys, “PrimePower”,
http://www.synopsys.com/products/power/primepower ds.pdf

[16] Arvind Krishnaswamy and Rajiv Gupta, “Profile guided
selection of ARM and thumb instructions,” in Proc. the joint
conference on Languages, compilers and tools for embedded
systems: software and compilers for embedded systems, pp.
56-64, 2002

[17] Bunda, J., Fussell, D., Athas, W.C. and Jenevein, R., “16-bit Vs.
32-bit Instructions For Pipelined Microprocessors,” in Proc. 20th
Annual International Symposium on Computer Architecture, pp.
237-246, May. 1993

907

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

