8B-2

Noise-Direct: A Technique for Power Supply Noise Aware
Floorplanning Using Microarchitecture Profiling

Fayez Mohamood Michael B. Healy

Sung Kyu Lim Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332

{fayez, mbhealy, limsk, leehs}@ece.gatech.edu

ABSTRACT

This paper proposes Noise-Direct, a design methodology for power
integrity aware floorplanning, using microarchitectural feedback
to guide module placement. Stringent power constraints have led
microprocessor designers to incorporate aggressive power saving
techniques such as clock-gating, that place a significant burden on
the power delivery network. While the application of extensive
clock-gating can effectively reduce power consumption, unfortu-
nately, it can also induce large inductive noise (di/dt), resulting
in signal integrity and reliability issues. To combat these prob-
lems, processors are usually designed for the worst-case current
consumption scenario using adequate supply voltage and decou-
pling capacitances.

To tackle high-frequency inductive noise and potential IR drops,
we propose a novel design methodology that integrates microar-
chitectural profiling feedback into the floorplanning process. We
present two microarchitectural metrics to quantify the noise sus-
ceptibility of a module:self weighting and correlation weighting.
By using these metrics in a force-directed floorplanning algorithm
to assign power pin affinity to modules, we can quickly converge
to a design for average-case current consumption. By designing
for the average-case and employing dynamic di/dt control for the
worst-case, we can ensure that a chip is noise-tolerant without ex-
ceeding decap budget constraints. Our observations showed that
certain functional modules in a processor exhibit consistent and
highly correlated switching activity, that can be used to guide mod-
ule placement distance from power pins. The experimental results
demonstrate that the force-directed floorplanning technique can ef-
fectively suppress supply noise experienced by modules, reduce the
total number of supply-noise margin violations, and achieve a floor-
plan with considerably lower IR drop, as compared to a wire-length
driven floorplan.

INTRODUCTION

1.

Power efficiency is the first-order physical constraint in modern
day processor design. The excessive power demand has led to the
use of aggressive techniques such as dynamic voltage/frequency
scaling, clock or power gating, etc. Although techniques like clock-
gating can dramatically reduce dynamic power consumption for
idle modules, they also exacerbate inductive noise (di/dt) and IR
drops on the power delivery network. As a result, processor design-
ers have to account for worst-case inductive noise, typically using
an ultra-low impedance power supply network. In order to meet
the impedance target across a wide range of frequencies, multi-
stage decoupling capacitors are necessary. High-frequency noise
is handled by on-die decaps distributed across the die while low-

frequency noise is handled by package level decap.' Alternatively,

designers also incorporate fine-grained clock-gating domains whereby

modules are clock-gated in an incremental fashion in order to min-
imize abrupt current surges [6, 12]. Note that both techniques
are centered around the philosophy of designing the chip based on
worst-case switching activity.

'Note that this work focuses on the high-frequency di/dt issue.

1-4244-0630-7/07/$20.00 ©2007 IEEE.

786

Representative Benchmarks as Input
& to Microarchitecture/Current Profiler
: l
®
2 Identification of high di/dt modules
2 using SimpleScalar Performance
8 Simulator & Wattch Power Analyser
[I
= i ¥
Self-Switching Weight t Col itching Weight
for all modules Assignment for all module pairs
[J
o2 2
% % Force-directed Floorplanning to guide
oa high di/dt modules to appropriate
28 power pin locations
Power Supply Noise Analysis using
» current profile for benchmarks for
3 each module.
: I
€
5 Design evaluation for noise violation
frequency and decap budget

Figure 1: Noise-Direct Design Methodology Overview

With low supply voltages and high power consumption in newer
generations of processors, the worst-case design strategy becomes
highly inefficient. Increasing amounts of decap will consume chip
area and lead to excessive leakage current. Static control for di/dt in
the form of fine-grained clock gating will cause performance degra-
dation since modules cannot be gated-on quickly. To overcome
these issues and avoid designing for the worst case inductive noise,
we propose a design methodology, Noise-Direct, that integrates mi-
croarchitectural profiling feedback into the floorplanning process.
The basic idea involves the identification of correlated modules that
are highly likely to cause power supply noise violations and to use
such information to guide module placement. An overview of the
design flow is illustrated in Figure 1. There are three phases in-
cluding microarchitectural profiling, noise-aware floorplanning and
power supply noise analysis. This paper makes the following con-
tributions:

e We introduce two metrics called self switching weight and cor-
related switching weight for identifying modules that are highly
likely to cause large di/dt.

We present a force-directed floorplanning algorithm that incor-
porates microarchitectural feedback for module placement. It
ensures a design for the average-case along with dynamic con-
trol at the microarchitectural level to account for the worst-case
current scenario.

To evaluate the effectiveness of our noise-aware floorplan, we
apply a SPICE model of an on-chip power delivery network.
Based on the model, we present the maximal voltage swing at
each module and the overall noise tolerance of the chip.

Current design methodologies consider inductive noise issues in
the power supply network as an afterthought. In contrast, we ad-
dress this issue early in the architectural planning phase, thereby

reducing decap requirements and design complexity. By floorplan-
ning for the average case using the techniques we propose with
dynamic di/dt control schemes [15] to account for the worst case,
we can ensure a design that is far more resistant to inductive noise
than a purely wirelength driven floorplan.

The rest of the paper is organized as follows. Section 2 out-
lines the motivation. Related works are discussed in Section 3, fol-
lowed by a design space analysis in Section 4. Section 5 describes
Noise-Direct. Section 6 presents the evaluation methodology and
Section 7 shows experimental results. Finally, Section § concludes.

2. PRELIMINARIES

Power delivery noise is a growing concern and presents a major
issue that thwarts processor designers. One reason is due to the
increasing amount of current consumption in newer chips. In addi-
tion, as devices shrink, the supply voltage is also reduced to meet
gate-oxide reliability requirement. Although the lowered voltage
offsets the current consumption to some extent, it also results in a
lower noise margin. Increasing current consumption and switch-
ing activity, coupled with lower noise margins, means that design-
ers have to meet stringent noise constraints by accounting for the
worst-case current scenario. This is typically done by using differ-
ent types of decoupling capacitors and making an extremely low
impedance path from the power supply to the chip. This procedure,
undoubtedly, is not very effective, in terms of cost or complex-
ity [1].

To mitigate dynamic power, processor vendors employ (aggres-
sive) clock-gating on their chips. Clock-gating not only reduces dy-
namic power and heat dissipation, but also can save leakage power
due to the temperature drop. However, simultaneous gating of large
modules in the chip can lead to excessive inductive noise in the
power supply. Typically, this issue is dealt with the deployment
of both off-chip and on-chip decaps [26, 18], which increases chip
area and can result in excessive leakage current. Alternatively, cer-
tain commercial processors also employ fine-grained gating do-
mains to prevent large modules from being gated on or off too
quickly [6, 12]. Note that fine-grained gating domains increase
the design complexity and lead to performance loss due to the fact
that modules cannot be gated on immediately. The inefficacy of
this technique lies in the fact that this design is aimed at the infre-
quent worst-case current consumption scenarios. This technique
also requires complex modeling of the power delivery network for
ensuring that all supply noise constraints are met. To minimize the
effort of post-design optimization for power supply noise in future
processors that have higher functionality and a lower noise margin,
alternative design methodologies need to be sought.

3. RELATED WORK

Power supply noise aware floorplanning were studied in the past [4,

5, 14, 26]. The central idea in these arena involves two concepts:
the first one involves creating a low impedance path to the chip,
and the second involves optimizing on-chip decap placement and
allocation to suppress inductive noise effects. At the microarchi-
tectural level, some techniques were proposed to address the worst
case inductive noise effects due to applying power saving tech-
niques [23, 21, 22, 19, 20, 10]. These techniques typically employ
certain types of dynamic control mechanisms that can estimate the
incoming current surges and subsequently throttle processor activ-
ity, thereby avoiding noise margin violation.

In contrast to the prior art, we are advocating a methodology that
takes inductive noise issues into account early in the architecture
planning phase of a design. By analyzing microarchitectural be-
havior of real workloads, we exploit module placement in the floor-
planning process to create a design that is inherently more tolerant
to inductive noise than a conventional wire-length driven floorplan.

4. DESIGN SPACE ANALYSIS

The main focus of this work is to target a floorplan for the average-
case current consumption scenario. Based on actual profiling re-
sults of dynamic module switching activity, our floorplan can be
inherently more noise tolerant. Nonetheless, every design still has
to guarantee the reliability by considering the worst-case scenario
even though it might be rather infrequent.

787

8B-2

The option with respect to how the worst-case scenario is ad-
dressed depends on the designers. A traditional solution could
involve deployment of sufficient decoupling capacitance to mini-
mize inductive noise. In order to reduce the increasingly growing
size of decaps on a processor, Noise-Direct is aimed to reduce de-
cap requirements by analyzing the switching correlation between
microarchitecture modules and placing each module based on the
average case di/dt distribution. However, in cases when the cur-
rent threshold is exceeded, a dynamic di/dt control mechanism at
the microarchitecture level is still needed to handle the potential
noise emergency in addition to our noise tolerable floorplan. It is
achieved by dynamically throttling a processor’s activity [10, 15,
23] at the potential cost of performance degradation. By coupling
noise-aware floorplanning with dynamic di/dt control, we can guar-

antee that our floorplan for the average case is more noise tolerant.”
Compared to prior art, Noise-Direct can both reduce the total de-
cap requirement on an overly conservative chip design and avoid
performance throttling by only invoking dynamic di/dt control for
the unlikely worst case scenarios.

5. NOISE-DIRECT METHODOLOGY

Our Noise-Direct design methodology consists of two primary
phases: (1) microarchitectural profiling and (2) Floorplanning. The
following sub-sections detail the entire procedure.

5.1 Microarchitectural Profiling

The dynamic power consumption of a processor is correlated to
the characteristics of running programs. To profile current con-
sumption and module activity, cycle-level architecture simulators
such as Simplescalar can be used. Microarchitecture level power
simulation [2], incorporated inside a cycle-level simulator can be
easily extended to quantify current consumption for each module
on a per-cycle basis. This method provides a good understanding
of current demands (di) during each clock period (dt) and identifies
modules that are likely culprits of inducing high di/dt noise.

Recently, researchers [10, 15] advocated incorporating dynamic
di/dt control at the microarchitectural level to avoid excessive volt-
age ringing in the power supply. By including current calcula-
tion into microarchitectural simulations, these techniques analyzed
benchmark behavior and used it to guide the dynamic di/dt control.
Along a similar line, our methodology incorporates a fine-grained
current and switching activity profiling by the cycle-level simula-
tor to guide our noise-aware floorplanner. As described earlier, ex-
cessive and/or simultaneous gating of microarchitectural modules
can lead to reliability issues caused by inductive noise. Our mi-
croarchitectural profiling involves quantifying switching activity of
modules under ideal clock-gating. By gathering switching corre-
lation and characterizing dynamic current demands for target ap-
plications, we can provide essential metrics that can be used in the
floorplanning process to generate a noise-aware floorplan aimed for
average-case current consumption and switching activity.

To identify problematic (high switching activity) modules and
perform di/dt aware power pin assignments to them, we use two
metrics. The first metric involves measuring module activity over
the duration of a benchmark and assigning weights to modules that
is proportional to the relative number of switches and the intensity
of the switch. The second metric involves identifying the amount of
correlation between each module in the microprocessor, in terms of
simultaneous on/off gating. A detailed description of these metrics
follow.

5.1.1 Self Switching Weight Assignment

Self switching measurement is used to quantify the number of
gating occurrences in the processor for a benchmark during the
profiling period. Both gating on and off are considered as likely
events to cause di/dt fluctuation. The objective of this metric is to

2Note that we are not proposing any new type of dynamic di/dt
control, which is outside the scope of this work. Rather, we are ad-
vocating a complementary design methodology that inherently tries
to achieve a static design that is noise-tolerant for the average case
current consumption. The core of Noise-Direct is in noise-tolerant
floorplanning. For dynamic di/dt control in processors, interested
readers can refer to [10, 15, 23].

8B-2

isolate the microarchitectural modules with high switching activity.
For example, certain modules such as the I-Cache are likely to be
needed almost every cycle and hence will not be gated on/off very
often unless the instruction fetch is stalled due to misses. Such
modules will not be considered as major offenders of inductive
noise. This factor is captured and collected in the switching re-
sults generated by our extended cycle-level simulator. In addition,
the intensity of the gating activity also depends on the current con-
sumption of each module. The normalized switching activity fac-
tor and the current consumption per cycle called intensity of switch
are combined into a single weight a, represented by the following
equation. If sw; represents the raw number of switching events
for module ¢ and I; is the intensity of the switch, then the self-
switching factor «; is denoted by:

a; = sw; e I;

ey

In essence, modules with larger weights indicate higher suscep-
tibility to functional failure due to higher inductive noise. This
heuristic is applied to the force directed floorplanning technique
discussed in Section 5.2.

5.1.2 Correlated Switching Weight Assignment

In addition to the absolute self switching magnitude, di/dt issues
due to clock-gating also arise from simultaneous gating of neigh-
boring modules. If two modules that switch simultaneously have
their least impedance paths to the same power pin, this will cause
larger inductive noise effects at the modules. Our second metric,
the correlated weight, accounts for the degree of gating correlation
between microarchitectural modules. The basic idea 1s to use this
heuristic to either place highly correlated modules away from each
other, or at least assign them to different power pins. For instance,
the I-Cache and the I-TLB are two units that are likely be highly
correlated since they are almost always accessed simultaneously.
Simultaneous gating of these modules in the same direction (both
on or both off) at the same power pin is likely to induce a high di/dt
in the supply voltage.

To measure correlation, we capture the inter-cycle gating direc-
tion of each module in the profiling process. Then each module is
paired with every other module in the processor, and checked for si-
multaneous gating in the same direction. The result is a correlation
matrix with each location representing the number of simultaneous
gating events encountered.

Since switching characteristics of modules vary from each other,
the correlation factors have to be determined in a manner that en-
sures fairness. For instance, if module A and B switched only twice
throughout the execution, and if they happened to switch simulta-
neously only for one single occasion, this would indicate a corre-
lation of 50%. In contrast, if modules C and D switched 10 times
throughout the execution and happened to contain only 3 simulta-
neous switches, this means that they are correlated only 30% of the
time. Clearly, the latter case would be more susceptible to higher
inductive noise. We need to consider such occurrences prudently
in the correlation factor computation.

To ensure fairness, we begin with a correlation matrix that con-
tains raw numbers of correlated switches. We then normalize each
row with respect to a single module that is assigned to the row. In
order to ensure fair switching weights for each row, we calculate
the average of weight that is normalized to each module (in each
row). The result is a symmetric correlation matrix that will con-
tain weights that capture both correlation and ensure that they are
relative to the switching of each module. An illustration of the cal-
culation process of correlated switching events that is relative to
the modules, is shown in Figure 2. In the matrix, X;; is the number
of raw correlated switches that occurred over the profiling duration
and sw; is the number of self-switching events for module i.

The extent of correlation is proportional to the magnitude of the
above calculated weight, and the average intensity of the gating
event. Equation 2 represents the correlation weight ; ;, between
two modules ¢ and j.

1 Xz'j

_ Xji
Yig = 5(

SWj

1
)o 5T+ 1) @)

SWw;

During power pin assignment, the modules with a high correla-
tion weight will be placed farther apart from each other for alleviat-

788

1(X1z X21 1 (Xin Xn1
X 2 (swiy + swa 2 swiy SWn,
0 X 1 Xop Xno

2 swy SWy 1
0 0 X

Figure 2: Correlated Switching Matrix

ing the inductive noise caused by simultaneous gating. The corre-
lation weights are also factored into the noise-aware floorplanning
technique to be described next.

5.2 Floorplanning Algorithm
5.2.1 Overview of the Approach

Given a set of microarchitectural modules and a netlist that spec-
ifies the connectivity among these modules, our noise-aware mi-
croarchitectural floorplanner tries to determine the location of the
modules in a chip such that (i) there is no overlap among modules,
(ii) the sum of current demand for each power pin does not exceed
its capacity, and (iii) power supply noise experienced by each mod-
ule does not exceed the given bound. Our objective is to provide
a floorplan that minimizes the area of the floorplan and total wire-
length. Microarchitectural floorplanning has drawn significant in-
terests from both the computer architecture and EDA communities
recently [13, 7, 3, 9, 17, 11]. These existing works mainly target
performance and thermal issues, but power supply noise issue has
not been addressed.

Among several methods known for floorplan optimization, we
employ the force-directed floorplanning method [8]. Compared
with other methods such as Simulated Annealing [16], slicing method
[24], and analytical approach [25], force-directed method does not
require tedious parameter tuning and converges quickly while ob-
taining high quality solutions [8]. We formulate the floorplanning
problem as finding a set of forces among and between fixed ob-
jects (such as I/0 or power pins) and movable modules in order
to optimize the objective function. The problem of finding mod-
ule position then becomes one of finding forces. Our floorplanner
consists of the following four steps:

1. Initialization: To begin, all modules are randomly distributed
throughout the placement area, without regard to overlap.

. Iteration: Our objective function is optimized in an iterative
manner, where we update a certain set of forces based on the
last iteration to guide the optimization process.

3. Stopping Criterion: The iterations are stopped when the uti-
lization of the floorplanning area is above a threshold. This
has the effect of an overlap constraint as the floorplan area is
related to the sum of the area of the blocks and the utilization
cannot go above a certain level without a corresponding drop
in the amount of overlap.

. Legalization: The legalization step removes the overlap among
modules while maintaining the quality of the solution.

Our objective function contains the following types forces (see
Figure 3 for reference): (1) net force (F,¢): all pins in the same net
are pulled closer together to minimize the wirelength objective. (2)
center force (Fren): all modules are pulled to the center of the chip
to discourage the modules to escape the chip boundary. (3) correla-
tion force (Fcor): modules with high switching activity repel each
other so that the noise caused by the modules is reduced. The cor-
relation factors ; ; described in Section 5.1.2 are used to compute
the magnitude. (4) density force (Fger): modules located in a high
density region of the chip are pushed apart to reduce the overlap.
(5) pin capacity force (Fjpin): modules are pulled into or pushed
out of each power pin so that the total demand on each power pin
is evenly distributed and its capacity is not violated. The first three
types are non-iterative, where as the last two are iterative. We fix
all the non-iterative forces during the floorplan optimization pro-
cess, whereas the iterative forces are updated based on the previous

power pin 1 region power pin 3 region power pin 1 region power pin 3 region

module 1 module 1

K‘

power pin 2 region

i~
i

module 2

power pin 2 region

—> density force
----» correlation force

iterative forces

—> net force
-==-» center force
—> pin force

non-iterative forces

Figure 3: Illustration of various forces optimized in our floor-
planner

iterations. In order to balance the impact of the five types of forces,
we optimize the following combined force:

Ftot:)\'Fnet+0'Fcen+H'FCOT+K'Fde7L+p'Fpin

where \, 6, i, K, and p are weighting constants.’

5.2.2 Force Equations
Let n be the number of free modules in the floorplan and (z;, y;)
be the = and y-coordinates of the center of module i, respectively.
A placement can be described by the 2n-dimensional vector 7 =
(Z1,...,%n,Y1,--.,Yn)". The cost of a connection is then formu-
lated such that it is proportional to the squared Euclidean distance
between its endpoints. The objective function sums the cost of all
connections and therefore can be written in matrix notation as
1. S
§pTCp + d_Tp + const 3)
where the 2n X 2n symmetric matrix C' and the vector d are pro-
duced from the module connections and their weights and the for-
mula for squared Euclidean distance. For example, the x-part of
the connection between two free modules i and j is (x; — x;)?
:cf — 2zix; + m? The first term adds to C' ;, the second term to
Ci,; and C} 4, and the third term to Cj ;. Similarly for a fixed con-
nection between free module i and fixed location f, (x; — 2 5)?

:cz2 — 2z + :cf: adds the first term to C} 4, the second term to d;,

and the third term to the constant part of Equation (3). This cost
function is minimized by solving the linear equation system

CP+d=0 “

This formulation is equivalent to modeling connections as springs
and calculating the state of equilibrium.

Force-directed floorplanning and placement algorithms are well
known for their overlap problems. Spreading or repulsive forces are
required to make the final solution feasible, i.e. with zero overlap.
These additional forces extend Equation (4) with the force vector €
to model constant additional forces which are iteratively updated:

&)

The complexity of solving this equation is O(k - n?), where k is
the number of iterations, and n is the number of modules. Our
experiments show that k ranges from 1 to 10 and n is around 20.
Thus, our algorithm generates optimized solutions quickly.

We compute the pin capacity force as follows: The “current
drawing region” of a pin is defined as a rectangle centered on that
pin with width and height equal to the distance between pins. Then,
the pin capacity force is formulated as follows. Let ¢; be the power
consumption of module 7 located within the current drawing region
of power pin j, I; be the capacity of power pin j, (z;,y;) be the
center of module 4, (z;, y;) be the location of pin j, and d; ; be the

Cp+d+é=0

30ur empirical choice of these values is to set them all equal. We
fix these weights constant during the entire floorplan optimization
process. One can tune the weights statically or dynamically to em-
phasize desired objectives.

789

8B-2

squared Euclidean distance between module ¢ and pin j. Let o; be
the self switching weight of module ¢ defined in Section 5.1.1. The
z direction force between free module ¢ and fixed pin j is then

I

2 PR .
(4,7) = [<Z c~) - 1:| ’ |$@d. vmjl C QG (6)
; Ci 1,

A similar definition follows for the force along the y direction. This
force is proportional to the distance between the module and the
pin, negative if the sum of the current being drawn from the mod-
ules in the current drawing region of the pin are greater than the ca-
pacity of the pin and positive otherwise, and in the range (—1, c0).
Basically if the demand of block 4 is higher than the capacity of the
pin j, then the force pushes the modules away; otherwise, it pulls
the modules towards the pin.

xr
Fpin

5.2.3 Updating Iterative Forces

As mentioned previously, we update two kinds of forces dur-
ing each iteration: Fge,, and Fyir. Specifically, we first obtain the
location of the modules from the previous iteration and use them
to recompute the density of each region in the floorplan and at-
tractive or repulsive forces among the modules within a vicinity of
each power pin. The main motivation for this force update is to
satisfy the non-overlap constraint (via updating Fger,) and pin ca-
pacity constraint (via updating Fj;,). In case these constraints are
not met in the current solution, we try to minimize the amount of
violation as much as possible by attempting another iteration. We
note that the pin constraint is easily satisfied, but not the overlap
constraint. Thus, our post-process explicitly removes the overlap
among the modules. Since € consists of Fyepn and Fpin, € gets
updated and solved in each iteration.

5.2.4 Legalization

A simple heuristic is used to legalize the floorplan of the mod-
ules. Vertical and horizontal constraint graphs similar to those used
for the [16] are created based on the floorplan solution. The basic
idea is to derive the relative positions among the modules based
on the force-directed floorplanning, and use Sequence Pair [16] to
encode them to remove overlap. For each pair of modules, the hor-
izontal and vertical distance between their centers is compared. If
the horizontal distance is smaller than the vertical distance then
the appropriate constraint is added to the vertical constraint graph.
Conversely, if the vertical distance is less, the appropriate constraint
is added to the horizontal constraint graph. If the modules overlap,
then these constraints will push the modules apart in the direction
that minimizes overall movement. Thus, the legalized modules re-
main close to their original locations. The constraint graphs ensure
that the final floorplan is non-slicing and non-overlapping.

6. POWER NETWORK ANALYSIS

To evaluate the effectiveness of the two heuristics that were used
to guide noise-aware floorplanning, we use a SPICE model of the
on-chip power delivery network. We evaluate the benefits of our
technique under the worst-case current consumption scenario. The
worst-case switching activity of an application is determined by
sampling microarchitectural activity of all modules over the dura-
tion of the simulation. By comparing module activity during differ-
ent program phases, we can determine the period where the highest
module switching occurs. Once the worst-case phase is identified,
the current profile of each module is generated from the microarchi-
tectural simulator. This complex current waveform is used as input
in the SPICE module as piece-wise linear source (PWL) input. By
incorporating per-cycle current consumption profile obtained from
our microarchitecture simulation, we are able to observe induced
noise effects as a direct function of the application’s behavior.

Based on the power supply noise of each module, we also calcu-
late the amount of decap required for the floorplan [26]. If Vioise
is the noise of a given module, Vj;m;¢ is the noise margin, Q is the
amount of charge drawn by the module, then the amount of decap
required (C), can be estimated according to the following:

‘/noise)
)
‘/limit

O]

0 = max(1

8B-2

Q
‘/limit

C=(1-07" ®)

7. QUANTITATIVE ANALYSIS

We used SimpleScalar 3.0 and Wattch for microarchitectural pro-
filing and simulation. We incorporated extensions to generate both
self and correlated module switch weights to be used in our floor-
planner. The power and current consumptions were based on a 5
GHz processor with 70nm process. Nine integer programs from
the SPEC2000 benchmark were used in this study. Each simula-
tion was fast-forwarded by 4 billion instructions and simulated for
100 million instructions.

O Wire-length m Noise-aware

Voltage Swing (V)
o
&
1

(RN A2 S Jd YL > S P P
CIFIFLSTT TS S
60'25’ s 9

[LSQ[RUUBTB ALUO JALU1 ALU3[ALU4 L11$ | Bpred ITLB [FALUO
1SQ [28] 0 |20 13]2 10 | 10 10 [10 | 10 | 11] 20 1] 10
RUU 26| 8 (413 2 [0 |0 o o] o | o|s5]s 2 | 5 0 0 5
BTB i8] 7 |29] 17 | 13 | 13 i3 | 13 | 18 |37 | 100 | 17 | 37 | 13 13
12§ 28 | 12 | 12 12 |12 | 12 [21 | 7 | 26 | 2t 4 4 7

3 3
1 1

ALUZ ALUS

F]L1DS DTLB FALUT
2 0 10

IRF 17 7 7 7 7 7 7 17 8 8
110§ 71 6 | 6 93 5 5 | 6
ALUO 3 [100 | 100 | 100 66
ALU1 3 100 100
ALUZ 700
ALU3
ALU4
ALUS
L5 3 2 |1
Bpred 3| 17
DTLB 2

29
17
1 1

2
8

7
T
1
1
1

@

~[z|a(z(2]8]2]2]2
8
IS

T8 7
FALUO
FALUT 7
Freg

Figure 4: Self and Correlated Switching Weights of All Mod-
ules

7.1 Self and Correlated Switching Weights

Figure 4 shows the both the average self switching weight and
correlated weight of all modules in a symmetric matrix table. The
forward diagonal in the matrix represents the self-switching weights
of each module and all the remaining locations represent the cor-

related switching weights.* The rows and columns are sorted in
the descending order of self-switching weights from left to right.
A higher self-switching weight indicates higher susceptibility to
di/dt problems. As shown, the load/store queue (LSQ) and regis-
ter update unit (RUU) carry more weights in comparison to other
modules. On the other hand, the weights of the modules that are
likely to be accessed every cycle (turned on mostly) such as the L1
I-Cache and the I-TLB are lower. Some modules that are dormant,
only accessed once in a long while e.g. FPU register file, also have

lower weights.

The correlation weights are used to place modules that switch si-
multaneously, away from each other in the floorplan. As expected,
branch predictor and BTB, I-Cache and I-TLB and D-Cache and
D-TLB are all highly correlated modules. In addition, it is also
observed that the first six ALU modules are also highly correlated
for concurrency exists in integer instructions. These modules will
be directed away from each other to lessen the inductive noise by
removing clustering of modules.

7.2 Power Supply Noise Analysis

The noise-aware floorplan algorithm used both microarchitec-
tural metrics to guide module placement. In order to demonstrate
the noise-tolerance of the force-directed floorplan, we compare our
noise-aware floorplan to a baseline floorplan that minimizes total
wirelength. In our noise analysis, we assumed a Vg4 of 1 volt
(for 70nm), and a maximum allowed noise margin of 10%. To
illustrate the noise analysis in more details, we depict the worse-
case noise for each module using gzip, a compute-bound program.
They are shown in Figure 5. Note that this graph is sorted from left
to right in the decreasing order of module self-switching activity.
As shown, the noise-aware floorplan significantly suppresses the
noise experienced by modules with high switching activity as well
high current consumption. Almost all the ALUs that exhibit a fair
amount of switching activity and extremely high correlation with
each other, show significant voltage noise reductions. For the inte-
ger register file (iregfile), the voltage noise was reduced by 81.7%

*Note that this matrix shows both self as well as correlated switches
which is why the diagonal is non-zero.

5 Although we profiled only SPECint2000, there are certain bench-
marks (e.g. data compression) that use floats and doubles.

790

Descending order of Self Switching Factor

Figure 5: Power Supply Noise at Modules for gzip

4
btb
+
Isq & Id/st
. scheduler
ruu & inst N
scheduler ruu & inst '5|u4
dcache2 scheduler [dcache?
s +
dc?che a gfp eqfil dchen a7
a7 iregfilffmu%falﬂ
+ 4@'3 +

(a) wirelength-driven floorplan (a) noise-aware floorplan

Figure 6: Noise Tolerance for gzip. (Darker module has higher
noise)

in the noise-aware floorplan. We do observe that the L1 Data Cache
(dcache) and ALUQ have a higher noise violation in the noise-aware
floorplan as compared to the baseline, although it has a high self-
switching factor. This is due to the fact that other units, especially
the remaining ALUs that will have a higher priority when it comes
to being directed towards power pins because of their strong cor-
relation. The L1 D-Cache does not exhibit a high correlation with
other units and will hence is less important than other modules that
have a higher potential of noise margin violations. Nonetheless,
it is also be noted that the increased violations in the noise-aware
floorplan are only slightly above the allowed 10% margin, making
the overall solution much more noise tolerant.

7.3 Floorplan and Decap Requirement

We now present the baseline wire-length driven floorplan and the
noise-aware one in Figure 6. The color code in each module repre-
sents the degree of noise tolerance. The cross (+) in the figure rep-
resents the location of the power pins. The area of the wire-length

driven floorplan is 69.35 mm? with a total wirelength of 804.86

0 Wire-length mNoiseAware

Noise Violation Occurences

bzip crafty eon 9ap gzip mef perl wolf Average

Figure 7: Noise Margin Violation

all4

O Wirelength B Noise-aware

24

20

Decap (nF)

bzip crafty eon gap mcf twolf

Figure 8: Decap Budget for SPEC2000 Integer benchmarks

gzip perl Average

mm while the noise-aware floorplan has an area of 67.97 mm?

with a total wirelength of 825.87 mm. We classify modules in the
floorplan based on the worst-case noise they experience, with the
darkest modules representing modules with the highest noise. The
noise tolerance for the modules are shown for the same benchmarks
used in Figure 5. It is observed that the RUU has improved noise
tolerance and most of the ALUs are completely below the noise
margins for both benchmarks. It is to be noted even though we in-
duce a slightly higher number of violations for certain modules in
the noise-aware floorplan, the overall noise tolerance of the chip, in
fact, is greatly improved. To demonstrate the noise tolerance over
the whole chip using our floorplan, we present the number of noise
margin violations in Figure 7. This figure compares the frequency
of voltage swings over the 10% noise margin accumulated for all
modules. The reduction of noise violations ranges from 46.3% for
eon to 66.7% for mcf with an average of 56.3%. The results also
indicate the alleviation of applying dynamic di/dt control, which
comes at the cost of performance degradation due to throttling. By
reducing the total number of violations, the need for dynamic di/dt
control will be only needed in the infrequent worst cases.

As described earlier, suppressing power supply noise has two
implications. First, it can reduce the amount of decap required,
and second, it can bring down design complexity for certain mod-
ules that require fine-grain clock gating. The choice to address
the worst-case current consumption is dependent on the designer,
whereby noise can be addressed by decap alone, or by the incor-
poration of dynamic di/dt control. To show the advantages in re-
ducing the decap needed on a chip using our noise-aware floorplan,
we also present the decap budget requirement based on Eq(7) and
Eq(8). Figure 8 compares our noise-aware floorplan against the
baseline. It shows that the decap budget is significantly reduced in
the noise-aware floorplan for all the benchmarks we evaluated. In
the best case, an improvement of 33% reduction in decap budget
are observed for bzip, crafty and gap with an average reduction of
28%. Please note that we use this analysis to merely illustrate the
potential decap budget improvement that can be obtained using our
methodology. Decap allocation or placement is beyond the scope
and focus of this work.

Finally, we also examined the impact of performance with our
noise-aware floorplan. The inter-module latencies as a result of our
floorplan remain unchanged from the baseline. It is also to be noted
that pushing apart certain modules that switch together like Caches
and TLBs 1s not unrealistic. Therefore, the IPC will not alter. In
fact, as we mentioned earlier, our floorplan will substantially de-
crease the invocations of architectural throttling for dynamic di/dt
control, thereby reducing the likelihood of slowing down the pro-
cessor. We did not quantify this benefit of our technique in this
paper due to the page limitation.

8. CONCLUSIONS

As processor designers aggressively battle between performance
vs. power efficiency trade-offs, power delivery and supply noise
considerations will play a larger role in the design process from
reliability standpoint. In addition, with smaller devices and lower
supply voltage, processors will become less tolerant to inductive
noise induced by abrupt current fluctuation (di/dt). To address
this issue in the early design phase in a cost effective manner, we
propose a design methodology called Noise-Direct that incorpo-

791

8B-2

rates microarchitectural feedback to guide module placement in the
floorplanning process.

As noise margins in a processor reduce and the worst-case de-
sign becomes inefficient on the cost budget, Noise-Direct provides
a systematic approach to significantly reduce supply noise effects
by incorporating metrics derived from microarchitectural feedback
into the floorplanning process. As the results show, our technique
can effectively lower the magnitude of runtime inductive noise as
well as alleviate the decap requirement.

9. REFERENCES

[1] K. Aygun, M. J. Hill, K. Eilert, K. Radhakrishnan, and A. Levin. Power
Delivery for High-Performance Microprocessors. Intel Technology Journal,
9(4), 2005.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proc. Int’l Symp. on
Computer Architecture, 2000.

M. Casu and L. Macchiarulo. Floorplanning for throughput. In Proc. Int. Symp.
on Physical Design, 2004.

H. Chen, L. Huang, I. Liu, M. Lai, and D. Wong. Floorplanning with power
supply noise avoidance. In Proc. Asia and South Pacific Design Automation
Conf., 2003.

Y. Chen, K. Roy, and C.-K. Koh. Current Demand Balancing: A Technique for
Minimization of Current Surge in High Performance Clock-Gated
Microprocessors. IEEE Trans. on VLSI Systems, pages 75-85, 2005.

J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, D. Plass, J. Dawson,

P. Muench, L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Goulet, J. Wagoner,
N. Schwartz, S. Runyon, G. Gorman, P. Restle, R. Kalla, J. McGill, and

S. Dodson. Design and implementation of the power5 microprocessor. In
Proceedings of the 41st Design Automation Conference, 2004.

J. Cong, A. Jagannathan, G. Reinman, and M. Romesis. Microarchitecture
evaluation with physical planning. In Proc. ACM Design Automation Conf.,
2003.

H. Eisenmann and F. M. Johannes. Generic global placement and floorplanning.
In Proc. ACM Design Automation Conf., pages 269-274, 1998.

M. Ekpanyapong, J. Minz, T. Watewai, H.-H. S. Lee, and S. K. Lim.
Profile-guided microarchitectural floorplanning for deep submicron processor
design. In Proc. ACM Design Automation Conf., 2004.

E. Grochowski, D. Ayers, and V. Tiwar. Microarchitectural simulation and
control of di/dt-induced power supply voltage variation. In Proc. IEEE Int.
Symp. on High-Performance Computer Architecture, 2002.

M. Healy, M. Vittes, M. Ekpanyapong, C. Ballapuram, S. K. Lim, H.-H. S. Lee,
and G. H. Loh. Microarchitectural Floorplanning Under Performance and
Temperature Tradeoff. In Proc. Design, Automation and Test in Europe, 2006.
H. Jacobson, P. Bose, Z. Hu, A. Buyuktosunoglu, V. Zyuban, R. Eickemeyer,
L. Eisen, J. Griswell, D. Logan, B. Sinharoy, and J. Tendler. Stretching the
limits of clock-gating efficiency in server-class processors. In Proceedings of
the 11th International Symposium on High-Performance Computer
Architecture, 2005.

C. Long, L. Simonson, W. Liao, and L. He. Floorplanning optimization with
trajectory piecewise-linear model for pipelined interconnects. In Proc. ACM
Design Automation Conf., 2004.

J. Minz, S. K. Lim, and C. K. Koh. 3D Module Placement for Congestion and
Power Noise Reduction. In Proc. Great Lakes Symposum on VLSI, 2005.

F. Mohamood, M. B. Healy, S. K. Lim, and H.-H. S. Lee. A Floorplan-Aware
Dynamic Inductive Noise Controller for Reliable Processor Design. In
Proceedings of the 39th International Symposium on Microarchitecture, 2006.
H. Murata, K. Fujiyoshi, and M. Kaneko. VLSI/PCB placement with obstacles
based on sequence pair. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, pages 60-68, 1998.

V. Nookala, Y. Chen, D. Lilja, and S. Sapatnekar. Microarchitecture-Aware
Floorplanning Using a Statistical Design of Experiments Approach. In Proc.
ACM Design Automation Conf., 2005.

M. D. Pant, P. Pant, and D. S. Wills. On-chip decoupling capacitor optimization
using architectural level prediction. IEEE Trans. Very Large Scale Integr. Syst.,
10(3):319-326, 2002.

M. D. Pant, P. Pant, D. S. Wills, and V. Tiwari. An architectural solution for the
inductive noise problem due to clock-gating. In Proc. Int. Symp. on Low Power
Electronics and Design, 1999.

M. D. Pant, P. Pant, D. S. Wills, and V. Tiwari. Inductive noise reduction at the
architectural level. In Proceedings of the 13th International Conference on VLSI
Design, 2000.

M. D. Powell and T. N. Vijaykumar. Pipeline damping: a microarchitectural
technique to reduce inductive noise in supply voltage. In Proceedings of the
30th International Symposium on Computer Architecture, 2003.

M. D. Powell and T. N. Vijaykumar. Pipeline muffling and a priori current
ramping: architectural techniques to reduce high-frequency inductive noise. In
Proceedings of the Int’l Symp. on Low Power Electronics and Design, 2003.
M. D. Powell and T. N. Vijaykumar. Exploiting resonant behavior to reduce
inductive noise. In Proceedings of the 31st International Symposium on
Computer Architecture, 2004.

L. Stockmeyer. Optimal orientation of cells in slicing floorplan designs.
Information and Control, pages 91-101, 1983.

S. Sutanthavibul, E. Shragowitz, and J. Rosen. An analytical approach to
floorplan design and optimization. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, pages 761-769, 1991.

S. Zhao, C. Koh, and K. Roy. Decoupling capacitance allocation and its
application to power supply noise aware floorplanning. /EEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, pages 81-92, 2002.

[2]

3]
[4]

[5]

(6]

(7

(8]
91

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

