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Abstract— Because the leakage current of a digital circuit
depends on the states of its logic gates, assigning a minimum
leakage vector (MLV) to the primary inputs and the flip-flops’
output pins of the circuit that operates in the sleep mode is a
feasible technique for leakage current reduction. In this paper,
we propose a novel probability-based algorithm and technique
that can rapidly find an MLYV. Unlike most traditional
techniques that ignore the leakage current overhead of the
newborn MLV controller, our technique can take this overhead
into account. Ignoring this overhead during solution exploration
may bring a side effect that is misrecognizing a non-optimum
solution as an optimum one. Experimental results show that our
algorithm can reduce the leakage current up to 48% and can
find the optimum solutions on 22 out of 26 small MCNC
benchmark circuits.

I. INTRODUCTION

High leakage current is one of the special phenomenons of
ultra deep sub-micron (UDSM) chips. Therefore, if the
leakage current of a UDSM chip used in a portable electronic
device is not properly controlled, the chip will shorten the
operating time of the device’s battery.

Designing power-gating CMOS logic gates for low
leakage current chips is proposed in [1]-[4], etc. The new
architecture of a power-gating logic gate has additional
control pins that are used to enable or disable the power
supply of the gate. During the sleep mode, leakage current of
the gate is very small because the MOS transistors connecting
to VDD and ground are disabled. The penalties of power-
gating techniques are area and wake-up time overheads, etc.

The multi-threshold CMOS (MTCMOS) technique [4]-[9]
provides a solution to carry out high performance and low
leakage power requirements of chips. A low V, (threshold
voltage) gate has high leakage power and short delay while a
high V, gate has lower leakage power and longer delay. In
order to achieve high performance and low leakage power
requirements, we can apply low V, gates to critical paths and
put high V, gates in non-critical paths as many as possible.

The leakage current of a gate depends on the logic states of
its input pins. TABLE I shows one such example. In this
example, the leakage currents of a 65nm 2-input NAND gate
and a 65nm 2-input NOR gate are reported by HSPICE
simulator. The BSIM4 model card used in the simulator is
Berkeley Predictive Technology Model (BPTM) [10]. If the

* This research is supported by the National Science Council of R.O.C. under
contract no. NSC 95-2221-E-018-024.

input vector is (0, 0), NAND gate has the minimum leakage
current while NOR gate has the maximum leakage current.
Moreover, the leakage currents corresponding to input vector
(0, 1) and to input vector (1, 0) are different. Therefore, state
assignments of primary inputs and pin reordering of logic
gates are feasible techniques for reducing the leakage current
of a circuit that operates in the sleep mode [11]-[19].

For a digital circuit operating in the sleep mode, finding a
vector (i.e. minimum leakage vector (MLV)) of the primary
inputs that can cause the circuit to consume the minimum
leakage current is an NP-hard problem [20]. In general, the
problem is called MLV problem. For convenience of
processing, F. Aloul et al. [11] and A. Abdollahi et al. [12]
formulated MLV problems as satisfiability (SAT) problems. F.
Gao et al. [13] formulated MLV problems as integer linear
programming (ILP) problems. Because an ILP problem is
also an NP-hard problem, they furthermore proposed a
heuristic mixed-integer linear programming (MLP) method to
fast solve MLV problems. L. Yuan et al. [14] used a gate
replacement technique and a divide-and-conquer approach to
reduce the total leakage current of a design that operates in
the sleep mode. The algorithm used by L. Yuan has low time
complexity. J. P. Halter et al. [15] developed an efficient
algorithm that determines an MLV using a sampling of
random vectors. D. Lee et al. [16][17] and K. Chopra et al.
[19] used a branch-and-bound approach and implicit pseudo
Boolean enumeration algorithms, respectively, to find a better
input vector for reducing the leakage current of a circuit. For
solving MLV problem, R. M. Rao et al. [18] proposed a
greedy search that is based on the controllability of nodes in a
circuit and uses the functional dependencies among cells in
the circuit to guide the search.

In this paper, we propose a probability-based algorithm to
reduce the leakage current of a digital circuit that operates in
the sleep mode. By using the expected value of each explored
solution’s leakage current as a cost function, our algorithm
can rapidly construct an MLV controller for a circuit. The
new circuit that consists of the original circuit and the MLV
controller consumes less leakage current than the original
circuit and nearly does not consume any dynamic power

TABLEI
LEAKAGE CURRENT OF LOGIC GATES

Input Vector
Gate Type
0,0 [(UNY) 1,0 an
NAND 0.79 nA 5.38 nA 3.03 nA 7.23 nA
NOR 7.71 nA 2.38 nA 4.78 nA 0.72 nA
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under the sleep mode. Experimental results show that our
algorithm can find the optimum solutions on 22 out of 26
small MCNC benchmark circuits.

In the next section, we describe our algorithm. Some
experimental results on a set of benchmarks are presented in
Section III. Finally, we conclude this paper and describe
future work in Section I'V.

II. PROBABILITY-BASED ALGORITHM

Before we disclose the leakage current reduction algorithm,
we will introduce notations, terminologies, definitions and a
theorem that are used in the algorithm.

A. Notations, Terminologies, Definitions and a Theorem

We are given a logic design D with m gates G = {g;, g,...,
gunt, where g, is the h-th gate of D. Let CPV = (i;, i,,..., iy,
Joi, foz,..., fo,) be a control-point vector (CPV) for D in the
sleep mode, where i, is the logic value of the A-th primary
input of D, and fo, is the logic value of the output pin of the
h-th flip-flop. Therefore, i), and fo, are always ZERO, always
ONE, or unfixed. For example, the primary input named
RESET is always ZERO' and the output of a data register
may be unfixed. An unfixed control-point may be logic 0 in
the current sleep mode while it may be logic 1 in the next
sleep mode. In this paper, an unfixed value is denoted as X.
Always ZERO and always ONE are denoted as 0 and 1,
respectively.

A given control-point vector CPV is nondeterministic if it
has at least one element that is X; otherwise CPV is
deterministic. A deterministic control-point vector can be
denoted as DCPV. The set of all feasible deterministic
control-point vectors for a given CPV is denoted as
FDCPV(CPV) = {DCPV,;, DCPV,,..., DCPV}}, where each
member of FDCPV(CPV) is deterministic. For example, if
CPV = (1, X, 0, X), then FDCPV(CPV) = {DCPV;, DCPV,,
DCPV;, DCPV,} ={(1,0,0,0), (1,0,0,1),(1,1,0,0),(1, L,
0, 1)}.

The logic states of all input pins and all output pins of each
gate in a design are deterministic if the control-point vector of
the design is deterministic. Therefore, the exact leakage
current of a design associated with any DCPV can be
computed.

Definition 1 Lkg of dsgn(D, CPV) is defined as the
leakage current of D with the control-point vector CPV.
Obviously, Lkg_of dsgn(D, CPV) is unknown if CPV is
nondeterministic. However, the expected value of the leakage
current for a nondeterministic control-point vector is not
unknown because it can be calculated.

Definition 2 Let E/Lkg_of dsgn(D, CPV)] be the expected
value of Lkg of dsgn(D, CPV).

Definition 3 Lkg of gate(g,, D, CPV) is defined as the
leakage current of the gate g;, of D with the control-point
vector CPV. Let E[Lkg_of gate(g;, D, CPV)] be the expected
value of Lkg_of gate(g;, D, CPV).

"Ina chip, there are many always ZERO and always ONE signals, for
example, JTAG signals, control signals for memory BIST circuits, etc.
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Theorem 1 Given any CPV, then E[Lkg_of dsgn(D, CPV)]

m
= Z E[Lkg_of gate(g;, D, CPV)]

j=l
Proof: Assume FDCPV(CPV) = {DCPV,, DCPV,,..., DCPV,},
and let P(V=DCPV}) be the probability that DCPV), is chosen from
FDCPV(CPV), where V is a random variable. By probability
theorem, we know that

E[Lkg_of dsgn(D, CPV)]

= Zk: [P(V=DCPV,) « Lkg_of dsgn(D, DCPV;)] 6

i=1

k m
-y {Pr=DcPv) « S [Lkg_of gate(s;, D, DCPV,)] 1}
i=1 Jj=1
m k
= Z Z [P(V=DCPV,) * Lkg_of gate(g;, D, DCPV;)]
j=1 =l
= i E[Lkg_of_gate(g;, D, CPV)]

J=1

B. Time Complexity of Computing E* [Lkg_of dsgn(D, CPV)]

In a design D, the probabilities of logic values of all input
pins of all gates are computable if the probabilities of logic
ONE and logic ZERO of all primary inputs and all flip-flops’
outputs are known. The worst-case time complexity of this
computation is only O(m) if D has m gates and each gate of D
only has probability-independent input pins. The reason is
that the probability of being ONE or being ZERO of the
output pin of each gate can be computed by O(2F), where p is
the number of the input pins of the gate. O(2") can be
rewritten as O(1) because p is a small constant for each gate
in a typical standard cell library. Therefore, calculating the
probability data of m gates takes O(m) (= O(2P)*O(m)). In our
algorithm, all input pins of each gate are treated as
probability-independent pins for achieving the requirement of
O(m) time complexity. Hence, in our algorithm, the computed
probability data of those gates that have probability-
dependent pins are approximate values rather than exact ones.

Fig. 1 illustrates how to calculate the probability data of net
C. In this figure, let P(C=0) (P(C=1)) be the probability of net
C being logic ZERO (ONE). The probability data of each
primary input (i.e. TEST, A, and B) are given by us. We can
directly calculate the probability data of net C by taking O(1)
(= 0(2%) because the probability data of ports A and B are
known. As with the probability data of net C, then, we are
able to calculate the probability data of ports Y and Z. Fig. 2
shows the final result.

Similarly, we can calculate the expected value of leakage
current of a gate by constant time (O(1)) if the probabilities of
logic values of all input pins of the gate are known. By
Theorem 1, we know that the expected leakage current of a

Design D, CPV=(0,X,X)

TEST
0:100%, 1:0%

0:50%, 1:50%
A

to-y  P(C=0)=P(A=I) * P(B=1)
=50% * 50%
=25%
Z  P(C=1)=1-P(C=0)
=75%

B
0:50%, 1:50%

Fig. 1: An illustration of how to calculate the probability data of net C.
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design is the sum of the expected values of all m gates’
leakage currents, so the total time complexity of computing
E[Lkg_of dsgn(D, CPV)] is O(m) (= O(1)*O(m)+O(m),
where the last O(m) is consumed in computing the
probabilities of logic values of all input pins of all gates).
However, if we use (1) rather than Theorem 1 to calculate the
expected leakage current of this design, the time complexity
of the worst case is O(m*2") rather than O(m), where n is the
dimension of CPV of the design. The reason is that the value
of kin (1) is 2" under the worst case.

E[Lkg of dsgn(D, CPV)] is a cost function used in our
algorithm to judge the quality of an explored CPV. Fig 2
illustrates how to compute the value of E/Lkg_of dsgn(D,
CPV)]. In this illustration, the probability data have been
computed and labelled in each net. The leakage current data
of NAND gate and NOR gate are listed in Table I. Because
E[Lkg of dsgn(D, CPV)] used in our algorithm may be an
approximate value rather than an exact one if design D has
any gate that has probability-dependent input pins, we use
E'[Lkg_of dsgn(D,  CPV)]  notation  instead  of
E[Lkg_of dsgn(D, CPV)] notation in the algorithm in order
to avoid confusion of readers.

C. Algorithm

In this subsection, we propose an algorithm for leakage
current reduction. For an inputted original design D, with a
given CPV; (i.e. Inherent CPV) in the sleep mode,
ALGORITHM 1 tries to find a deterministic CPVy (i.e.
Minimum Leakage CPV) that is used to construct a new
design Dy from Dy such that E/Lkg_of _dsgn(Dy, CPV})] is as
less as possible. Under the normal mode, Dy and D, are
functionally equivalent.

CPV; is given by circuit designers. If the designers know
that some primary input signal is always ZERO (always ONE)
then its corresponding element in CPV; is assigned 0 (1) by
them. For a primary input that is neither always ZERO nor
always ONE, the designers should assign X to its
corresponding element of CPV/.

In ALGORITHM 1, the initial value of CPV), is set to be (X,
X,..., X) (line 1) and the initial value of the probability
change rate, Rt, is set as 10% (line 2). For each X in CPV,,,
its initial probabilities of being ZERO and being ONE are
both 50% (i.e. 0.5). In the For Loop block, ALGORITHM 1
sequentially scans and processes each element e, of CPV),.
During each processing procedure, the algorithm employs a
leakage  cost  function (i.e.  E'[Lkg_of dsgn(Do,
CPVy)] +Lkg(CPV,, CPV)y)* shown in lines 8 and 11) as the
criterion to decide whether to decrease (line 6) or increase

Design D, CPV=(0.X.X) " giikg of dsgn(D, CPV)] =
TEST 0:75%, ElLkg_of gate(gate s, D, CPV)] +
E[
E

0:100%, 1:0% Lkg_of gate(gate t, D, CPV)] +
0:50%, 1:50% [Lkg_of_gate(gate u, D, CPV)] =
A > [(0.79+5.38+3.03+7.23)*(50%*50%)] +
[(7.71%100%%*25%)+(2.38*100%*75%)] +
[(7.71%100%*25%)+(2.38*100%*75%)] = 11.53

Fig. 2: An illustration of how to calculate E[Lkg_of dsgn(D, CPV)].

! The function Lkg(CPV,, CPV)) returns the leakage current consumed by the
vector translation circuit (i.e. CPV controller) that is used to translate CPV;
into CPVy.

(line 10) the e;’s probability of being ONE by Rz. After many
times of the While Loop iterations, a deterministic CPV), is
obtained because there is no X in CPV)},, and then ALGORITHM
1 uses CPV;, CPVy and Do to construct Dy (line 17). Dy
consists of Dy and a CPV controller. Finally, our algorithm
applies pin-reordering technique to Dy for realizing the
further optimization.

There is a function, INC_PROB, used in the algorithm. The
INC_PROB function-call for the element ¢, of CPV,, (i.e.
INC_PROB(CPV,;, e, ZERO, Rt)) that appears in line 6 of
ALGORITHM 1 increases e; s probability of being ZERO by Rt.
After calling the INC_PROB function, an updated CPV;, will
be returned. Note that the updated probability cannot be
greater than 100%. The value of e, is changed from X to
ZERO (ONE) if the probability of e, being ZERO (ONE)
arrives at 100%. Similarly, the value of e; is changed from
ZERO (ONFE) to X if the probability of e¢; being ZERO (ONE)
isn’t 100% anymore.

ALGORITHM 1

Input:  CPV, = (ijy, iia,. .., 1ip, f0i1, fOpp,..., f0;4): inherent CPV;

Do : the original design;

Output: CPVy = (imi, im2s- - - Imps fOm1, fOma,..., fOnq): min. leakage CPV;
Dy : the new design;

1. CPVy=(X,X,..., X);

2. Rt=10%;

3. While (CPVy has any element that value is X)

4. For each element e, of CPVy

5 Org CPVy = CPVy; /* Keep the original CPV)y for restoration. */

6. CPVy = INC_PROB(CPVy, &, ZERO, Rt);

7. Next CPVy=CPVy;

8 Lkgmin= E[Lkg_of dsgn(Do, CPVy)] + Lkg(CPV,, CPVy);

9. CPVy = Org_CPVy; /* Restore the original CPVy, for next test. */

10. CPVy = INC_PROB(CPVy, e, ONE, Rt);

11. If (Lkgmin> E'[Lkg_of dsgn(Do, CPVy)] + Lkg(CPV,, CPVy))

12. Then Next CPVy=CPVy;

13. CPVu=Next CPVy; /* Update CPVy. */

14. End For Loop

15. Rt=Rt+ 10%;

16. End While Loop

17. Use CPV,, CPV), and Do to construct Dy; /* Controller synthesis */

18. Reconstruct Dy by using pin-reordering technique;

The e,’s probability of being ZERO or ONE may be 0%,
10%, 20%,..., 90%, or 100%. Line 15 of ALGORITHM I
controls the convergence rate of this algorithm. Under the
worst case, ALGORITHM 1 executes 10 times (= O(1)) of
While Loop iterations. By the discussion of the previous sub-
section, we know that judging a CPV}, (lines 8 and 11) has
O(m) time complexity. The worst-case time complexity of
ALGORITHM 1 is Om*m) (= O(n)*O(m)*O(1)) because For
Loop iterates n times during each While Loop iteration, and
each iteration of For Loop takes O(m). In fact, an iteration of
For Loop takes much less than O(m) for a general design D,
because only a small part of the gates in Dy needs to update
the expected values of their leakage currents.

S In our algorithm, CPV), is not a traditional mathematical vector. It has
special data structure. If the value of e, of CPV) is X, then e, has an
additional record that describes its probabilities of being 0 and being 1.
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Fig. 3 illustrates the solution exploration of ALGORITHM 1.
In this illustration, we assume that Dy is the design shown in
Fig. 2. At the first branch of the search tree, ALGORITHM 1
decides to increase P(B=0) to be 60% (from 50%) because
this decision has less value of E'[Lkg of dsgn(Do,
CPVy)]+Lkg(CPV;, CPVy) than the decision of increasing
PB=1) to be 60%. Similarly, ALGORITHM 1 decides to
increase P(A=0) to be 60% in the next branch node. After
many times of explorations, a deterministic CPV), will be
constructed.

D. Controller for Control-Point Vector

In this subsection, we will introduce how to use sleep-
gating technique to implement CPV controllers.

If we feed ALGORITHM 1 with CPV; and Dy, then CPV),
will be constructed by the algorithm. It is necessary to convert
CPV; into CPV),, by an extra circuit (i.e. CPV controller) if
CPV; # CPVy. Fig. 4 presents an illustration of how to
construct a CPV controller. Fig. 4(a) and Fig. 4(b) show the
original design (Dy) and the new one (Dy), respectively.
Because the value (i.e. X) of input 4 in CPV7 is different from
the value (i.e. 0) of input 4 in CPV,, the AND gate g is
inserted into D for constructing Dy.

By observing Fig. 4, it is clear that Dy and Dy have the
same functionality in the normal mode because signal Sleep is
in logic ZERO. In the sleep mode, due to signal Sleep being
logic ONE, the functions of Dy and Dy are the same if input 4
is logic ZERO. So the circuit shown in Fig. 4(b) achieves
ZERO state assignment on the primary input 4.

E. Our Technique vs. Traditional Techniques

Unlike many other papers that ignore the overhead of the
leakage current of a CPV controller, ALGORITHM 1 can count
the overhead of the controller during solution space
exploration. Ignoring the overhead may bring a side effect
that is misrecognizing a non-optimum solution as an optimum
one. We will give an example in the next paragraph.

Because ALGORITHM 1 can allow circuit designers to input
a CPV; but traditional techniques cannot, our technique
usually can find a better solution than the traditional ones. We
use a very simple design (i.e. a NAND gate) shown in Fig. 5
to explain this fact. The traditional techniques will find a
CPVy = (0, 0) for this design because NAND gate has the
minimum leakage current when 4=0 and B=0. However, the
CPV), found by our algorithm is (1, 0) (i.e. CPVy, = (1, 0))
rather than (0, 0) because our algorithm has the information
that CPV;is (1, 0). If designers want to implement the simple
design with CPV,, = (0, 0), they must insert an AND gate

Start .( P(B=0)=50%, P(A=0)=50%, etc.)
Set P(B=0) to 60%; F Set P(B=1) to 60%
8.65 nA 10.46 nA
Set P(A=0) to 60% Set P(A=1) to 60%

eee

Legend [ J:E'[Lkg_of dsgn(Do, CPVy)[+Lkg(CPV;, CPVy,)
: Search Path

Fig. 3: Solution exploration for the design shown in Fig. 2.
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CPV, = (value of A, value of B) = (X, 1); CPVy = (0, 1);

Fig. 4: (a) Design Dy. (b) Design Dy.

Design Do, CPV;= (1,0)
Traditional

Bl =Y
Techniques

Design Dy, CPVy = (0,0)

D=

area > 1.5 um?, delay > 0.02 ns
leakage > 3.03 nA

Our Algorithm

Design Dy, CPVy=(1,0)

A
[Py s

area = 1.5 um?, delay = 0.02 ns
leakage = 3.03 nA

Fig. 5: An example to illustrate the difference between our algorithm
and the traditional techniques.

named g to the original design as shown in Fig. 5. Comparing
the Dys constructed by our technique and by the traditional
techniques, we find that our Dy has less area, delay, and
leakage current than their D,.

III. EXPERIMENTS

We have implemented a leakage current reduction system
named Leakage Current Solver on an IBM xSeries 235 server
that has two 3.06GHz Intel Xeon processors. Leakage Current
Solver employs ALGORITHM 1 to construct a new design that
consumes less leakage current than the original one. The new
design nearly does not consume any dynamic power under
sleep mode because the switching signals on the primary
inputs cannot pass through the CPV controller to trigger the
internal gates of the design.

In order to evaluate the quality of our algorithm and
system, some representative MCNC and ISCAS benchmark
circuits are used in the experiments.

A 90nm CMOS standard cell library is used in the
experiments. It is constructed by shrinking TSMC 0.18um
standard cells. BPTM [10] process model is used in the
leakage library characterization program of Leakage Current
Solver. All gate level netlists of the benchmarks used in the
experiments are synthesized by Design Compiler® of
Synopsys, Inc.

In the first experiment, we compare the experimental
results of an Exhaustive Search Program (ESP) with those of
our algorithm. The results are shown in TABLE II. In this
experiment, the functions of pin-reordering (line 18 of
ALGORITHM 1) and controller synthesis (line 17 of
ALGORITHM 1) of ALGORITHM 1 are turned off. In other word,
ALGORITHM 1 is treated as an MLV generator. All benchmark
circuits used in this experiment are small MCNC benchmark
circuits rather than large ones because ESP cannot solve a
large circuit within reasonable CPU time. These benchmark
circuits are also used in the experiment of [14]. Fortunately,
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TABLE 1II
EXPERIMENTAL RESULTS FOR EXHAUSTIVE SEARCH AND ALGORITHM 1
(Jr Functions of pin reordering and controller synthesis are turned off.)

Exhaustive Search [ALGORITHM lJr Comparison
- leakage
FEES Sl e (el [EERY [ESE
min. |max. | o) w) | © red.
@ |2
bl 3 27( 2.6 3.6] 0.00 2.6 0.00 — 0% 28%
cmd2a | 4 62( 4.7 6.1] 0.00 4.7| 0.00 — 0% 23%
C17 5 17 1.5 23| 0.00 1.5 0.00 — 0% 35%
cm82a | 5 55| 5.6 6.8 0.00 5.6] 0.00 - 0% 18%
decod | 5 78( 4.7 7.0] 0.00 4.7| 0.00 - 0% 33%
cml38a | 6 55| 3.4 6.5 0.01 3.4] 0.01 0% 0% 48%
z4ml 7 591 6.0/ 7.1 0.01 6.0] 0.01 0% 0% 15%
f51m 8 | 274 27.3| 31.9] 0.05 28.0] 0.02 60%|  2.6% 12%
9symml [ 9 | 140| 14.7| 16.7| 0.06 14.9] 0.01 83%| 1.4% 11%
alu2 10 | 885[ 89.9( 98.6] 0.72 90.0] 0.11 84%| 0.1% 9%
x2 10 | 113[ 8.7( 13.7] 0.08 8.7( 0.01 88% 0% 36%
cm85a | 11 | 121] 11.1f 16.2[ 0.18 11.1] 0.01 94% 0% 31%
cmlSla | 12 65 6.4 7.7 0.19 6.4] 0.01 95% 0% 17%
alu4 14 [2274(222.1|1246.3( 90.79| 222.1 0.44[ 100% 0% 10%
cml62a | 14 | 111] 9.7 13.7] 1.31 9.7] 0.02 98% 0% 29%
cu 14 | 126 9.5| 15.0[ 1.40 10.2| 0.03 98%|  7.4% 32%
cml63a | 16 98 8.2 12.2] 4.76 8.2 0.01f 100% 0% 33%
cmb 16 80| 4.7| 8.8 3.52 4.7 0.01| 100% 0% 47%
parity | 16 | 159| 16.4 20.1] 9.70 16.4] 0.03| 100% 0% 18%
pml 16 | 100[ 7.0( 12.9] 4.55 7.0] 0.03 99% 0% 46%
t481 16 88| 8.1| 11.9] 4.08 8.1] 0.02[ 100% 0% 32%
tcon 17 65 6.4 7.7 0.12 6.4] 0.01 92% 0% 17%
pcle 19 | 165 14.8| 19.4( 66.46 14.8( 0.03[ 100% 0% 24%
sct 19 | 179 15.4] 22.6[ 69.78 15.4( 0.04[ 100% 0% 32%
cc 21 | 126 10.4( 16.8{192.00 10.4] 0.02[ 100% 0% 38%
cml50a | 21 | 115] 11.6| 13.7|334.60 11.6] 0.03[ 100% 0% 15%
Average | 12 | 216| 20.4| 24.8| 30.17 20.5| 0.04] 85%| 0.4%| 27%

our algorithm can find the optimum solutions on all
benchmark circuits except for f5/m, 9symml, alu? and cu
(column 10). If the function of pin-reordering in ALGORITHM
1 is turned on, the total leakage current of all circuits
constructed by our algorithm is less than the total ESP’s
minimum and maximum leakage currents by 7% and 24%,
respectively. This result is shown in TABLE III.

In the second experiment, a Random Search Program
(RSP) [13][14][15][16][18] was implemented as a basis of
comparison to our algorithm for 12 large benchmark circuits.
For each benchmark circuit, RSP randomly generates large
number of control-point vectors and records the leakage
current data associated with these control-point vectors.

TABLE IV summarizes the result of the second
experiment. Column 2 shows the number of primary inputs
and the number of flip-flops in each circuit. Columns 4 and 5
show the critical path (CP) delay and the number of randomly
generated control-point vectors, respectively. The minimum
and maximum leakage currents obtained by RSP are listed in
column 6 and column 7, respectively. Column 8 shows the
CPU time consumed by RSP. Column 9 shows the leakage
current of the original circuit (without CPV controller) that is

TABLE III
COMPARISON BETWEEN EXPERIMENTS OF ESP AND ALGORITHM 1

Exhaustive Search AL(.;ORITHM l_wlth Leakage Reduction
Pin-Reordering
total min. leakage | total max. leakage total leakage TL1-TL4 | TL2-TL4
(nA) (TL1) (nA) (TL2) (nA) (TL4) TL1 TL2
530 645 491 7% 24%

applied by the MLV generated by ALGORITHM 1. Columns
10-13 show the experiments about the whole version of
ALGORITHM 1 that inherent CPV (i.e. CPV) is set to (X, X,...,
X). The last five columns summarize the reduction
percentages. The minimum leakage obtained by our algorithm
is averagely less than RSP’s minimum and maximum
leakages by 8% (third last column) and 20% (last column),
respectively. If we ignore the overhead of a CPV controller,
8% and 20% can increase to 11% and 23%, respectively. The
CPU time of ALGORITHM 1 is averagely less than RSP by
93%.

From the results show in columns 11 and 12 of TABLE IV,
we can draw the conclusion that area and timing overheads of
a CPV controller are small. The reason is that a CPV
controller is simpler compared with the whole design.

From the last two columns of TABLE IV, we can infer that
there is a possibility of additional reduction on the leakage
current if the circuit designers can specify a strict CPV; rather
than vector (X, X,..., X) for ALGORITHM 1.

Finally, we compare our results with the results reported
by [13] and [18] in the seven common large benchmark
circuits that are C880, C1355, C1908, C6288, C7552, i6 and
i7. Because the standard cells with different leakage currents
are used in [13], [18] and our Leakage Current Solver, we
only compare the average reduction percentage of the leakage
current rather than the average reduced leakage current. Table
V shows the comparison result. In this table, the reduction
percentage of the leakage current is as compared to the
minimum leakage current obtained from a random search
program.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a fast probability-based
algorithm for leakage current reduction of digital circuits that
operate in the sleep mode. Unlike most other papers that do
not count the leakage current overhead of the newborn input
vector controller, our algorithm can take this overhead into
account. Therefore, in theory our algorithm can more easily
find the real optimum solution than the traditional heuristic
algorithms. Experimental results show that our technique can
reduce the leakage current up to 48% and can find the
optimum solutions on 22 out of 26 small MCNC benchmark
circuits. Moreover, the CPU time of our technique is
averagely less than Random Search Program by 93%.

State encoding, technology mapping, MTCMOS, and gate
replacement are feasible techniques for leakage current
reduction. We will integrate these techniques into our system
in the future. Furthermore, we will study how to reduce the
leakage current of a circuit that operates in the normal mode.
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TABLE 1V
EXPERIMENTAL RESULTS FOR RANDOM SEARCH AND ALGORITHM 1
ALGORITHM 1 (CPV,= (X, X,..., X)) Reduction
#p1/ | Arca CP Random Search ch{ r(itg)}l)lgr w/ CPV Controller
Benchmark 4FF | um?) Delay Toak. (nA) CPU verhead CpU | TLT2 | L4-L6 | L4-L7 | L5-L6 | L5-L7
(ns) |#vec- i T e | time leak. (nA) | leak. (nA) — fime T1 L4 L4 L5 L5
o | ag | @s [@ap| O | ED ] area ] timing | ) ()
C499 41/0 | 1160| 29| 10K 11| 129 123 103 107 5.8% 6.0% 07| 94% 7% 4%|  20% 17%
880 60/0 956 2.5[ 50K 91| 109| 655 83 87 9.3% 6.8% 09|  99% 9% 4% 24%|  20%
C1355 41/0 | 1321| 28] 10K 128 143 15.4 115 118 4.6% 6.0% 1.1 93%|  10% 8%|  20%| 17%
C1908 33/0 | 1126] 3.6| 10K 106 127 152 98 99 3.0% 4.8% 0.6]  96% 8% % 23%| 22%
3540 50/0 | 2675 4.0 50K | 269| 295 43.0 244 248 2.4% 4.2% 98] 7% 9% 8%| 17%| 16%
C6288 (R=0.2) | 32/0 | 6282| 11.2| 10K | 578 684| 5359 450 453 0.7% 1.5% 3.0 94%|  22%|  22%|  34%| 34%
C7552 207/0 | 5080| 4.1|100K| 527 567| 2144.0 467 484 6.6% 4.1% 659  97%| 11% 8%|  18%| 15%
i6 138/0 | 1101| 1.5|/100K| 103 127| 176.9 87 94 149%| 11.3% 22| 99%|  16% 9%|  31%| 26%
i7 199/0 | 1444| 1.8/100K| 131 157| 304.3 115 130 21.6% 9.4% 46|  98%| 12% 0%|  27%| 17%
i9 88/0 | 1691 1.6] 50K 156| 197 2166 136 143 7.4%|  10.3% 55 97%|  13% 8%|  31%| 27%
55378 35179 5592| 2.1|100K| 310[ 332| 1817 286 289 0.9% 8.0% 59| 97% 8% 7% 14%|  13%
15850 77/538| 15320| 3.6/ 100K | 806 858 1666.9 727 734 0.9% 47%| 506.8|  70%|  10% 9%|  15%| 14%
Average - 3645 35| - 276| 310 448.1 243 249 6.5%|  6.4% 529  93%| 11% 8% 23%| 20%
TABLE V

COMPARISON WITH PREVIOUS WORKS
(’r Functions of pin reordering and controller synthesis are turned off.)

[18] MLP [13] Avcoritam 17
Leakage CPU Time Leakage CPU Time Leakage CPU Time
Reduction (sec) Reduction (sec) Reduction (sec)
0.36% N/A 2.6% 17.1 3.6% 11.3
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