
Approximation Algorithm for Process Mapping

on Network Processor Architectures1

Chris Ostler, Karam S. Chatha, and Goran Konjevod

Department of Computer Science and Engineering, Arizona State University

Abstract— The high performance requirements of networking
applications has led to the advent of programmable network
processor (NP) architectures that incorporate symmetric multi-
processing, and block multi-threading. The paper presents an
automated system-level design technique for process mapping on
such architectures with an objective of maximizing the worst case
throughput of the application. As this mapping must be done in
the presence of resource (processors and code size) constraints,
this is an NP-complete problem [1]. We present a polynomial time
approximation algorithm guaranteed to generate solutions with
throughput at least 1

2
that of optimal solutions. The proposed

algorithm was utilized to map realistic applications on the Intel
IXP2400 (NP) architecture, and produced solutions within 78%
of optimal.

I. INTRODUCTION

Over the past decade communication technologies, espe-

cially the Internet, have experienced phenomenal growth.

This development has been accompanied by an exponential

increase in the bandwidth of traffic flowing through the various

networks. Internet traffic has grown by a factor of four every

year since 1997 (doubling every 6 months) [2]. This growth in

traffic greatly outpaces the doubling of processor performance

every 18 months as observed in Moores Law. The need for

increased performance in traffic processing has led to the

advent of programmable network processors that employ a

variety of architectural techniques to accelerate packet pro-

cessing including symmetric multi-processing (SMP), block

multi-threading, and fast context switching.

Despite the architectural innovations that have been incor-

porated in current day NP, very little effort has been devoted

towards making the processors easily programmable. Appli-

cation development on NP requires the designer to manually

divide the functionality among threads and processors, and

determine the application mapping. This low-level approach to

programming places a large burden on the developer, requiring

a detailed understanding of the architecture. Consequently, the

current situation leads to increased design time in the best case,

and poor quality solutions in the worst case.

The paper addresses application development challenges on

programmable multi-core NP architectures. In particular, we

focus on SMP architectures that support block multi-threading.

The Intel IXP series processors and AppliedMicro Circuits

Corporation (AMCC) nP series processors are commercially

available examples of such architectures that together domi-

nate the market place with over 50% market share [3].

The paper presents an automated system-level design tech-

nique to overcome the application development challenges of

SMP and block multi-threading based NP architectures. The

1 The research presented in this paper was supported by grants from the
National Science Foundation (Career CCF-0546462 and CNS-0509540), and
the Consortium for Embedded Systems.

Strip/Byte Align 

DDRAM

PCI
64b

ME1 ME2

ME3 ME4

ME1 ME2

ME3 ME4

Intel
Xscale 
Core 

Int
erf
ac
e

Qdr 
Sram

Qdr 
Sram

E/D Q

I
n
t
e
r
f
a
c
e

Rbuf

Tbuf

Hash

Scratch 

CSR’s

E/D Q

Fig. 1. IXP2400 Processor Architecture

technique takes as input an application and NP architecture

specification, and obtains a mapping of the application on

the target architecture such that the worst case throughput

is maximized. The application is specified as concurrently

executing processes that communicate through bounded first

in, first out (FIFO) queues. The architectural specification

includes the number of cores along with their code size

constraints. We derive properties of optimal solutions, and

present a strategy for generating high quality solutions. We

propose a technique for solving the problem, and prove that

the technique will generate solutions with throughput at least
1
2 that of optimal solutions. The proposed technique is evalu-

ated by experimenting with representative network processing

applications on the Intel IXP 2400 NP architecture.

The remainder of the paper is as follows: in Section II,

we provide background information and a problem definition.

We discuss previous work in Section III. Section IV details

our proposed algorithm, and proves the quality bound on the

solutions. In Section V, we present experimental results, and

conclude in Section VI.

II. BACKGROUND

A. SMP and Block Multi-threaded NPs
Let us consider the Intel IXP series of network processors.

Fig. 1 shows the architecture of the IXP2400, which processes

network traffic using eight micro-engines. Each micro-engine

is a 32-bit RISC processor, which executes instructions from

a local program memory of limited capacity. Further perfor-

mance advantages (and design challenges) are presented by

hardware supported block multi-threading (only one thread

can execute on a micro-engine at a given time), and a diverse,

heterogeneous memory architecture. Each micro-engine in the

IXP2400 processor has hardware to maintain the context for

up to eight threads, and allows for low cycle count context

switching.

In data-driven applications such as network processing,

where the same operations are performed on different packets,

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6B-2

577



Fig. 2. Block multi-threading

block multi-threading allows data memory access times and

related communication costs to be hidden. The left side of

Fig. 2 denotes a single thread with an execution time of 600

clock cycles (cc), and data memory access costs of 4200 cc.

The throughput in such a case is (1/4800) packets/cc. The

right hand side depicts the scenario with 8 concurrent threads

that perform the same operations on different packets. As the

communication overhead of a single thread is hidden by the

execution of 7 other threads, the overall throughput is (8/4800)

= (1/600) packets/cc. Consequently, in block multi-threaded

architectures the application mapping can be performed as-

suming that the communication costs will be amortized.

B. Application Description
We consider applications specified by a process network

model. The processes are connected by FIFO queues, and

communicate only using these queues. The contents of the

FIFO queues may be actual data in the case of small data items

(such as scalars), or pointers to memory in the case of large

items (such as packets). We add an additional requirement that

the process network be acyclic. We require that the processes

are stateless; two executions of the same process can run

concurrently and each produce the correct output without

adverse effects.

We assume that a single execution of each process consumes

a single data item from FIFOs leading in to the process, and

produces a single data item on FIFOs leaving the process. In

order to simplify the discussion, a set of data items consumed

or produced by a single execution of a process will be

considered a single item. Thus, the throughput of the system

is determined by the number of data outputs produced per unit

of time. As the processes are connected through finite FIFOs,

the worst case throughput will be exactly that of the slowest

throughput process in the network.

This application specification format is easily supported by

SystemC and other system-level specification languages.

C. Design Flow
The design flow that we propose for mapping an application

to a network processor architecture is shown in Fig. 3. Each

process in the application is profiled against test streams

to extract performance details which are used in mapping

the processes to the available cores. These results represent

the worst case scenario for the expected usage. Finally, the

process mapping is used to generate the code that will be the

implemented design.

As shown in the figure, we require a data mapping to be

supplied in addition to specifying the functionality of the

application. This remains a manual process to be completed

by the designer. We do not address this portion of mapping

the application; however, there have been techniques proposed

for doing so [4]. Additionally, we will not examine the steps

Fig. 3. Design Flow

of code generation. Thus, our focus in this paper will be

on assigning the processes in the application to the available

processors.
D. Problem Description

For the sake of clarity, we will refer to a process in a process

network as a job, and a processor as a machine. In these terms,

the problem can be more formally defined as: given a set of

jobs J , and a number of symmetric machines M .

• Each job j ∈ J is characterized by the size of the code

associated with the job (sj) and execution time (tj) on a

machine.

• Each machine m ∈ [1,M ] has a limited amount of

memory MEM AV AIL in which to store programs;

all jobs assigned to a machine must fit in the available

memory

Our task is to generate a static assignment of jobs to machines

so that the worst case throughput of the application is maxi-

mized.
III. PREVIOUS WORK

In the past, researchers have explored the general problems

of task allocation [5] and system-level design [6]. However,

existing techniques do not address the issue of throughput

maximization when mapping jobs to machines with limited

program memory. NP-Click [7] is a programming model tar-

geting network processors containing multiple processors, but

it does not consider automated application mapping. Shah et

al. [8] present a technique for task allocation, also for network

processors. Further work was presented by Ramaswami, et al.

[9], who used a randomized algorithm to assign task graphs

to processing elements. However, none of the techniques

presented in these works consider process transformation such

as replication or merging which are essential (as we show

later) for exploiting the full performance potential of SMP

architectures.

Scheduling synchronous dataflow networks (and other ap-

plication specification formats) is examined in many works,

including [10] and [11], which build on the original work

presented in [12]. The techniques primarily schedule task

graph based application specification formats by utilizing

heuristic techniques, such as list-based scheduling algorithms.

However, they do not consider program memory limitations,

and attempt to minimize application latency, rather than maxi-

mizing throughput. There have been approximation algorithms

proposed for mapping applications to general multi-processor

architectures [13], [14]. The algorithms presented, however,

are not suitable for optimizing throughput.

6B-2

578



Fig. 4. Graph Transformations

This work overcomes the shortcomings of previous efforts

by considering the limited program memory, and incorporates

process transformations to better exploit SMP architectures.

IV. JOB ASSIGNMENT

There are two main factors that contribute to the complexity

of assigning jobs to machines. The first is that of program

memory limitations. Due to this constraint, not all combina-

tions of job assignments are feasible; some combinations may

require more program memory than is available. The second

factor is that of parallelism. Running different jobs (or even

multiple copies of the same job) concurrently on different

machines can improve performance. However, it is difficult to

determine how many instances of each job should be executed.

Running too few instances may result in degraded performance

due to unexploited parallelism; running too many may degrade

performance by using processor cycles for computation that

will not improve performance.

We outline a strategy for solving this problem. We first

consider two transformations, merge and replicate, applicable

to process networks. We then examine properties of optimal

solutions, and establish theorems which are useful both for

understanding optimal solutions to the problem, and also to

direct and justify our solution strategy. We utilize the trans-

formations through ‘batching’ jobs, and present an algorithm

for solving the problem. Finally, we prove solutions will have

throughput at least 1
2 that of optimal.

A. Merge and Replicate Transformations
When applying the merge transformation, two jobs are

combined into a new job, which will simply perform the

computation of each contributing job. The contributing jobs

are then replaced by the new job. Consider a process network

with three jobs: A, B, and C. The left side of Fig. 4 shows

the result of merging jobs A and B. Let us assume that we

have three available machines, and an initial solution is that

of assigning one job to each machine. The throughput of this

solution is limited by the throughput of the slowest job - in

this case, 1
3000 for job C. Thus, merging jobs A and B does not

change the throughput of the application, but frees a machine

in the system.

To apply the replicate transformation, an additional instance

of a job is created, and the throughput of that job is improved,

as an additional iteration of the job can be completed in the

same time period. Fig. 4(b) shows the result of replicating

job C from the previous example. After completing this

transformation, there are two iterations of job C which execute

simultaneously. Therefore, the throughput of job C, and thus

the application, is increased to 2
3000 = 1

1500 .

B. Optimal Solutions
Let us examine properties of optimal solutions to the prob-

lem. We will do so through the proof of two theorems. The first

provides a definite upper bound on the throughput achievable

for any application. The second describes one method in which

a solution may be generated that will meet this theoretical

upper bound. These two theorems will provide the basis for

our solution strategy, as well as the means by which we will

determine the approximation bound of our algorithm.

Theorem 1: An optimal solution will have a throughput no

greater than M∑
j∈J tj

Proof: The throughput of the application is determined

by the number of times each job can be completed in a time

unit. As every job must be completed once, there is a total of
∑

j∈J
tj

time units of execution required per completion of the ap-

plication. Suppose that we are able to assign some fractional

number of machines xj to each job, such that

xj = M · tj∑
j∈J tj

Assume there exists a solution S where this execution can be

divided exactly evenly between each machine. Every machine

will then run for
∑

j∈J tj

M

time units, at which point all machines will simultaneously
complete their assigned execution. During this time span, each

machine has a utilization of exactly 100%. Thus, no solution

can have greater throughput, and this provides an upper bound

on the optimal throughput.

Theorem 2: When all jobs can be assigned to all machines

without violating the code size constraints, such a solution is

optimal.

Proof: Let us consider the throughput when all jobs are

assigned to all machines. Each machine will complete a single

instance of each job every
∑

j∈J tj time units. As this will

occur on every machine, then in this time span M instances

of every job will be completed, yielding a throughput of

M∑
j∈J tj

As this is equal to upper bound on throughput shown in
Theorem 1, this solution must be optimal.

From this we see that if the code size constraints are not

limiting, it is trivial to find an optimal solution. However, if

the code size can be exceeded, the problem of finding an

optimal solution is NP-hard [1]. Thus, we will present an

approximation algorithm for generating solutions.

C. Batching
Let us now consider a special case of the problem by

introducing the concept of batching. Instead of assigning jobs

to machines, let us instead assign jobs to some number of

batches. Each job will be assigned to a single batch, and each

6B-2

579



Fig. 5. A Batched Solution

machine will execute a single batch. Thus, the number of

batches can never exceed the number of jobs, or the number of

machines. If the former were to occur, there would be batches

that do not contain jobs; if the latter occurred, there would be

batches that are not assigned a machine. Thus for any set of

batches B, |B| ≤ min(|J |,M).
We can see that given a set of batches B, we can determine

the execution time tb of each batch b ∈ B by summing

the execution times of jobs assigned to the batch. The same

can be done to determine the size sb of the batch. Because

machines will be assigned to execute an entire batch, all jobs

in a batch must fit in the available program memory. Under

these constraints, batching is equivalent to merging jobs until

|J | = |B|, then replicating until |J | = M . An example

batched solution for the example process network from earlier

is shown in Fig. 5.

We will now examine some properties of batched solutions.

Again, we do so through the proofs of two theorems. The

first concerns the execution of the jobs assigned to a batch,

while the second shows that batching jobs does not inherently

degrade the solution quality.

Theorem 3: In an optimal batched solution, each job in

every batch will only be executed once.

Proof: Using the values of tb and sb described earlier,

we will consider the batches to be jobs with the respective

times and sizes. Let us assume we have an optimal solution

S where every job in each batch is run once. From Theorem

1, the throughput of this solution is upper bounded by

M∑
j∈J tj

Now, suppose that there is a solution S∗ where some job k
is run an additional time. Since running a single job once

more will not in itself allow for an additional completion of

the application, the throughput of this solution has an upper

bound of
M

tk +
∑

j∈J tj

Obviously, this throughput is less than that of the first solution.

Thus, in an optimal batched solution, each job in every batch

will only be executed once.

This property is illustrated in Fig. 6. When a single job

in the batch is executed more than once, the throughput is

lowered. This continues until all jobs in the batch are executed

an additional time, at which point the throughput returns to the

Fig. 6. Execution of Jobs Within a Batch

original level, as it is equivalent to executing the original batch

twice.

Theorem 4: The upper bound on throughput of a batched

solution is the same as the upper bound on throughput for a

non-batched solution.

Proof: If we again consider these batches as jobs as

described earlier, using Theorem 1 we see that the throughput

of the batched solution has an upper bound of

M∑
b∈B tb

Because of how the batches are defined, each job is assigned
to a single batch. Thus,∑

b∈B
tb =

∑

j∈J
tj

so the upper bound on the throughput of the batched solution
is equal to the upper bound on the throughput of any solution.

D. Mapping Algorithm
We now propose an algorithm for solving the problem as

described, using a batching strategy. The ASSIGN JOBS algo-

rithm is shown in Fig. 7. The algorithm is based on the premise

that given a batching of the jobs, it is possible to determine

the optimal (possibly fractional) number of machines to be

assigned to each batch. However, since it is not possible to

assign machines fractionally, the values must be rounded to

integer values. A simple scheme of rounding each value down

to the nearest integer value would suffice, except for the case

when the fractional number of machines to assign to a batch

is less than 1. Since each batch must be assigned at least one

machine, this value must be rounded up. This may not be

possible in all situations (i.e. rounding all other values down

may not free sufficient resources to round a value up), so the

algorithm is called recursively to solve the problem for the

remaining jobs and machines.

The algorithm first attempts to assign all jobs to all ma-

chines. If this is possible, it is an optimal solution, as shown in

Theorem 2. If this is not possible, an attempt is made to solve

the problem using 2 batches, then 3, until a sufficient number

of batches is found. The reason for this is to ensure that one of

the batches is constrained by the amount of available program

memory. This is examined in more detail when showing the

approximation bound.

1) Maximize Minimum Batch: The algorithm presented

relies on the function MAX MIN TIME, which given a set of

jobs and a number of batches will generate an assignment of

jobs to batches such that the minimum execution time among

the batches is maximized. We propose the following integer

linear program that will solve this problem.

6B-2

580



ASSIGN JOBS(J , M )
1 if

P
j∈J sj ≤ MEM AVAIL

2 assign all jobs to all machines
3 else
4 for b := 2 to min(|J |, M )
5 B := MAX MIN TIME(b, J )
6 if no batching possible
7 continue

8 ∀b ∈ B: xb =
M·tbP
l∈B tl

9 s := b ∈ B|xb is minimum
10 if xs < 1
11 assign 1 machine to s
12 ASSIGN JOBS(J /s, M − 1)
13 else
14 ∀b ∈ B: assign �xb� machines to b
15 if

P
b∈B�xb� < M

16 assign machines to minimal b|xb > 1
17 return

Fig. 7. Job assignment algorithm

Problem Constants: We define the following constants:

• Job Size: Let sj be the amount of program memory

required by job j.

• Job Time: Let tj be the time required to complete job j.

Variables: We use the following variables:

• Job Assignment: Let xjb be 1 if job j is assigned to batch

b, and 0 otherwise.

Constraints: We apply the following constraints to the

problem:

• Job Inclusion: Every job must be assigned to a batch:

∀j ∈ J :
∑

b∈B
xjb = 1

• Program Memory: All jobs assigned to a batch must fit

in the available program memory:

∀b ∈ B :
∑

j∈J
xjb · sj ≤ MEM AV AIL

• Execution Time: Determine the minimum execution time

among all batches:

∀b ∈ B : t ≤
∑

j∈J
xjb · tj

Objective: As stated earlier, the objective is to maximize the

minimum execution time among all batches; this is achieved

by maximizing the value of t as the objective function.

E. Approximation Bound
We will now show that the ASSIGN JOBS algorithm gen-

erates solutions with throughput at least 1
2 that of the optimal

solution. This is done through the proof of the following

Lemmas. The first establishes a property of the batches gen-

erated by the MAX MIN TIME function. The others examine

the assignment of machines to batches, and show that these

assignments lead to solutions of guaranteed quality.

Lemma 1: In Step 11 of the ASSIGN JOBS algorithm,

the execution time of the minimum batch is limited by the

available amount of program memory.

Proof: We first note that to reach this point in the

algorithm, it is not possible to fit all the jobs on a single

processor. Further, because of the structure of the algorithm,

we know that |B| ≤ M , and xs < 1. Due to how the values

xb are calculated, ∑

b∈B
xb = M

Because |B| ≤ M , then since xs < 1, there must exist some

batch t ∈ B where xt > 1. Since ts (and therefore xs) is

maximized within the available program memory, than it is

not possible to generate a larger minimum batch.

Lemma 2: The assignment of a machine to s in Step 11 of

the ASSIGN JOBS algorithm is optimal.

Proof: Our proof will be by contradiction. Let us suppose

we are given an optimal solution in Step 12, but that there is

a solution to the original problem with better throughput. The

only way to improve on the throughput of the optimally solved

sub-problem is to move some of the computation from the

sub-problem to the processor assigned to batch s. However,

because batch s is limited by the size of the jobs assigned

it, as shown in Lemma 1, this is impossible and therefore a

contradiction. Thus, there cannot exist a solution with better

throughput, so the assignment of a single machine to s is

optimal.

Lemma 3: The solution generated by the ASSIGN JOBS

algorithm has throughput of at least 1
2 that of optimal.

Proof: There are three points in the ASSIGN JOBS

algorithm where machines are assigned to batches. The first

(in Step 2) is reached only when all jobs can fit on a single

machine. From Theorem 2, this is an optimal assignment. As

shown in Lemma 2, the assignment done in Step 11 is also

optimal. In Step 14, machines are assigned to batches based

on the values of xb. If the exact (fractional) value of xb could

be used, the resulting solution would be optimal. However, as

only �xb� machines are assigned to each batch, the ratio of

the actual to the ideal amount of time needed to complete the

execution of a batch is xb

�xb� . This ratio approaches 2 as xb

approaches 2 from below. Since all batches will be completed

in no more than twice the amount of time required in an ideal

solution, the rounded solution will have a throughput of at

least half that of the upper bound on the batched problem.

Since from Theorem 4 this upper bound is the same as that of

the general problem, ASSIGN JOBS will generate solutions

with throughput of at least 1
2 that of the optimal solution.

V. EXPERIMENTAL RESULTS

To validate the proposed ASSIGN JOBS algorithm, we ran

the algorithm against three sample applications commonly im-

plemented on network processors. We compare the results of

the solutions generated to the theoretical bound from Theorem

1. We also compare the results to those obtained by solving an

ILP formulation for a batched assignment. It was not possible

to compare the results with those obtained by solving an

ILP formulation for a non-batched assignment, because of

prohibitive runtimes required to solve such a formulation.

In mapping these applications, we targeted the IXP2400

architecture presented earlier. Although the IXP2400 has 8

processors, due to architecture constraints in how packets are

received and transmitted, it was necessary to dedicate two

processors, one each to the tasks of receiving and transmitting

packets. Thus, we considered only the remaining six proces-

sors, running at 600 MHz. As discussed earlier, without code

memory constraints, mapping jobs is a trivial problem. Thus,

we artificially restricted the code memory to 400 words.

6B-2

581



Processor Assignment

Process ASSIGN JOBS ILP Form.

Header 1 1

Validate 1 1

Checksum 1 1

AH Authen. 2-6 2-6

IPv4 1 1

Update 1 1

Fig. 8. IPSec, IPv4

Processor Assignment

Process ASSIGN JOBS ILP Form.

Header 1-3 1-2

DSCP 1-3 1-2

Classify 1-3 3-6

Meter 4-6 3-6

Marker 1-3 1-2

IPv4 1-3 1-2

Fig. 9. Diffserv, IPv4

Processor Assignment

Process ASSIGN JOBS ILP Form.

Header 2-6 2-6

Checksum 1 1

DSCP 1 1

AH Authen. 2-6 2-6

Classify 1 1

Meter 1 1

Marker 1 1

IPv4 1 1

Fig. 10. IPSec, Diffserv, IPv4
Application

Upper Batched ILP ASSIGN JOBS

Bound Throughput Runtime Throughput Runtime

IPSec, IPv4 749.1 K/sec. 644.6 K/sec. <1 sec. 644.6 K/sec. <1 sec.

Diffserv, IPv4 6,897 K/sec. 6,857 K/sec. 8 sec. 6,000 K/sec. <1 sec.

IPSec, Diff., IPv4 684.9 K/sec. 642.5 K/sec 4 sec. 642.5 K/sec. <1 sec.

TABLE I: THROUGHPUT COMPARISONS

As the algorithm requires as input the process graph,

annotated with process sizes and runtimes, we first generated

these details. An implementation of the process network was

profiled against a sample stream of packets, using a simulator

supplied with the Intel IXA SDK. From the simulation we

were able to obtain the necessary runtimes and sizes for each

process, and annotated the graphs.

The three applications examined performed various combi-

nations of AH authentication (part of IPSec), Diffserv Quality

of Service (QoS), and IP version 4 lookup. While each

application performed the IP lookup, the first also performed

AH authentication, the second Diffserv QoS, and the third both

AH authentication and Diffserv QoS. The process networks

and the time (in cycles) and size (in words) of each of the

jobs in the applications are shown in Figures 8, 9, and 10,

respectively.

The mappings resulting from running the ASSIGN JOBS

algorithm and the ILP formulations are shown in the tables in

Figures 8, 9, and 10. For two of the applications (IPSec, IPv4

and IPSec, Diffserv, IPv4), the ASSIGN JOBS algorithm and

the ILP formulation generated identical solutions. In the case

of the Diffserv, IPv4 application, the solutions generated by

the two methods differed.

The throughputs obtained by the ASSIGN JOBS algorithm

are compared to the upper bound and the throughput of the

solutions generated by the ILP in Table I. The solutions were

generated using dual Intel Xeon 2.8 Ghz processors, with 4

GB of memory. In these tables, throughput values are in terms

of application completions per second, and are calculated by

dividing the number of cycles between completion of the

slowest process in the solution by the clock speed of the

processors.

As can be seen from the results, the solutions generated

by the ASSIGN JOBS algorithm had throughput of no less

than 78.4% of the theoretical upper bound, and 86.9% of

the batched ILP. Although for one of the examples the AS-

SIGN JOBS algorithm was unable to match the throughput

of the solution generated by the ILP, it is also evident that

the runtime of the ILP was substantially longer, even for very

small examples. With larger applications, this gap would widen

considerably, such that it would not be feasible to use the ILP

to solve the problem.
VI. CONCLUSION

Tools and methodologies are essential to fully utilize the

computational capacity of current day multi-core network

processors. We have examined the problem of scheduling

an application on network processors in order to maximize

throughput. We proposed an algorithm to generate solutions

to this problem, and showed that the algorithm generates

solutions with throughput of at least 1
2 that of an optimal

solution. We compared solutions generated by the algorithm

with the theoretical bound, as well as solutions generated by

an ILP formulation, showing that the algorithm produced high

quality results in feasible runtimes.

REFERENCES

[1] G. Ausiello et al. Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties. Springer-
Verlag, 1999.

[2] L. G. Roberts. Beyond moore’s law: Internet growth trends. IEEE
Computer, pages 117–119, 2000.

[3] B. Wheeler et al. Npu market sees broad-based expansion.
http://www.linleygroup.com/npu/Newsletter/wire050420.html, Apr 2005.

[4] V. Ramamurthi et al. System level methodology for programming cmp
based multi-threaded network processor architectures. In Int. Symp. on
VLSI, 2005.

[5] B. Shirazi et al, editor. Scheduling and Load Balancing in Parallel and
Distributed Systems. IEEE Computer Society Press, 1995.

[6] G. De Micheli et al, editor. Readings in Hardware/Software Co-Design.
Kluwer Academic Publishers, 2002.

[7] N. Shah et al. Np-click: A programming model for the intel ixp1200. In
Workshop on Network Processors at the Int. Symp. on High Performance
Computer Architecture, 2003.

[8] N. Shah and K. Keutzer. Network processors: Origin of species. In Int.
Symp. on Computer and Information Sciences, 2002.

[9] R. Ramaswamy et al. Application analysis and resource mapping for
heterogeneous network processor architectures. In Network Processor
Design: Issues and Practices. Morgan Kaufmann Publishers, 2005.

[10] A. Jantsch. Models of embedded computation. Morgan Kaufmann
Publishers, 2005.

[11] S. Sriram and S. Bhattacharyya. Embedded Multiprocessors: Scheduling
and Synchronization. Marcel Dekker, Inc., 2000.

[12] E. Lee and D. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Trans. Comput., 36(1),
1987.

[13] C. Chekuri. Approximation algorithms for scheduling problems. Tech-
nical Report CS-TR-98-116, Stanford University, pages 238–249, 2000.

[14] H. Shachnai and T. Tamir. Polynomial time approximation schemes for
class-constrained packing problems. Journal of Scheduling, 4, 2001.

6B-2

582



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


