
Flow-Through-Queue based Power Management for
Gigabit Ethernet Controller1

Hwisung Jung Andy Hwang Massoud Pedram

Dept. of Electrical Engineering Enterprise Networking Group Dept. of Electrical Engineering
 University of Southern California Broadcom Corporation University of Southern California
 Los Angeles, CA 90089 Irvine, CA 92618 Los Angeles, CA 90089
 e-mail: hwijung@usc.edu e-mail: ahwang@broadcom.com e-mail: pedram@usc.edu

Abstract - This paper presents a novel architectural
mechanism and a power management structure for the design of
an energy-efficient Gigabit Ethernet controller. Key
characteristics of such a controller are low-latency and high-
bandwidth required to meet the pressing demands of extremely
high frame and control data, which in turn cause difficulties in
managing power dissipation. We propose a flow-through-queue
(FTQ) based power management method, which allows some of
the tasks involved in processing the frame data to be offloaded.
This in turn enables utilization of multiple clock rates and
multiple voltages for different cores inside the Ethernet
controller. A modeling approach based on semi-Markov decision
process (SMDP) and queuing models is employed, which allow
one to apply mathematical programming formulations for
energy optimization under performance constraints. The
proposed Gigabit Ethernet controller is designed with a 130nm
CMOS technology that includes both high and low threshold
voltages. Experimental results show that the proposed power
optimization method can achieve system-wide energy savings
under tighter performance constraints.

I. INTRODUCTION
A look at today1’s high-speed networking system trends reveals
that as Internet link speeds continue to grow exponentially, a
Gigabit Ethernet controller is becoming more complex to satisfy
the high-functionality, high-performance demands of today’s
applications. For example, the Gigabit Ethernet controller must
be able to support high frame-rate data processing and low-
latency access to achieve full-duplex line rates for maximum-
sized, e.g., 1518-byte, frame [1]. However, this trend also
translates into high power densities, higher operating
temperatures, and lower circuit reliability. Power consumption
increases rapidly with increase in link speed [2]. Thus, designers
of the Gigabit Ethernet controller must consider power
dissipation as one of the primary issues.

Although power savings are commonly achieved through
circuit-level optimization techniques, many opportunities exist at
the system and architecture levels to reduce energy consumption.
Furthermore, current CMOS technologies allow an increasing
number of clock and voltage domains to be specified on the same
chip, which allows dynamic voltage and frequency scaling
(DVFS) and multiple supply and threshold voltage (Vdd and Vth)
assignments to be utilized [7]. System designs utilizing multiple
clocks and multiple voltage cores, where globally asynchronous
and locally synchronous (GALS) communication architecture is

1This work was supported in part by a grant (# 0541469) from the CCF

division of the NSF.

deployed, face increasing difficulty in managing power
consumption under tighter performance constraints [4][8].

As reported in [3]-[6], the problem of power modeling and
optimization at high-levels of abstraction in GALS has received a
lot of attention especially with respect to multiple voltage
domains. In [3], the authors show that GALS processors with
multiple clocks and a single voltage are not necessarily better in
terms of power consumption compared to fully synchronous
design due to the asynchronous communication overhead. It is
also reported that the use of dynamic voltage scaling in multiple
voltage cores improves power savings up to 20%. The work
presented in [4] studies online DVFS scheme in the context of a
multiple clock domain architecture by utilizing interface queues
to guide the DVFS control. Voltage island-based power
management is proposed in [5] to satisfy the required
performance in multi-threshold CMOS technologies. In [6], the
authors present an architecture for GALS systems, which allows
dynamic load-balancing and adaptive inter-task voltage scaling
based on the load in each of the processing units.

Although these techniques perform DVFS, little attention has
been given to modeling a power-managed system with multiple
Vdd/Vth choices. Indeed, a centralized DVFS architecture [3] that
utilizes interface queues to transfer high-bandwidth data between
multiple voltage domains tends to perform rather poorly under
tight performance constraints. Finally, GALS [6] often results in
overhead penalty in terms of timing due to the complexity of
configurations.

In this paper, we propose a flow-through-queue (FTQ) based
power management method by offloading some of the tasks
involved in processing the frame data, which enables multiple
clock rates and multiple voltage cores inside the Ethernet
controller chip. Note that in the Gigabit Ethernet controller, the
control data must be accessed with low-latency, while the frame
data must be accessed with high bandwidth so as to maximize the
transfer speed. These two competing requirements create a very
challenging power minimization problem. FTQ, which directs
the frame data processing between functional modules, improves
hardware support for higher performance with respect to
handling the incoming packets. We also present a systematic
approach for constructing a stochastic power management model.
The numerical optimization solution of this stochastic model is
based on a semi-Markov decision process (SMDP). Note that
SMDP model, which offers a robust theoretical framework,
enables one to apply strong mathematical optimization
techniques to derive optimal power management policies. To
achieve further energy savings in multi-threshold CMOS
technologies, mathematical programming problems are

1-4244-0630-7/07/$20.00 ©2007 IEEE.

6B-1

571

formulated with multiple Vdd/Vth assignments under tight
performance constraints.

The remainder of this paper is organized as follows: Section 2
provides a brief background of the Gigabit Ethernet controller
while section 3 describes the details of proposed FTQ-based
architecture. In section 4, we construct the FTQ-based system
with SMDP and queuing models. Section 5 provides
performance optimization methods. Experimental results and
conclusion are given in section 6 and section 7.

II. BACKGROUND: ETHERNET CONTROLLER
The host system of a networking server uses the Ethernet
controller to send and receive packets. Sending and receiving
packets over the local interconnect, e.g., PCI-E bus [9], is
handled by the Ethernet controller and the device driver in the
host operating system. In general, the Ethernet controller
typically has a direct memory access (DMA) engine to transfer
data between the host system memory and the network interface
memory. In addition, Ethernet controller includes a medium
access control (MAC) unit to implement the link level protocol
for the underlying network, and use a signal processing hardware
to implement the physical (PHY) layer defined in the network.
Figure 1 shows a simplified block diagram of the Gigabit
Ethernet controller.

PHY
Core

h

Et
he

rn
et Ethernet

MAC

RISC
Core

DMA PCI-E
I/F

Control

Memory
Arbiter

RXMBUF

TXMBUF

SERDES

PC
I E

xp
re

ss
 B

us

a b

System
management

Security

c d e

f

g

Load-
balancing

PHY
Core

h

Et
he

rn
et Ethernet

MAC

RISC
Core

DMA PCI-E
I/F

Control

Memory
Arbiter

RXMBUF

TXMBUF

SERDES

PC
I E

xp
re

ss
 B

us

a b

System
management

Security

c d e

f

g

Load-
balancing

Figure 1. Block diagram of Gigabit Ethernet controller.
To understand the functionality of the Ethernet controller

inside, the process of receiving a packet over the network is
explained next (various steps are shown in Figure 1 in
alphabetical orders). In step (a), the Ethernet controller receives a
data stream from the selected physical layer interface. It
performs address checking, CRC calculation, and CSMA/CD
functions [2] in step (b). In step (c), the Ethernet controller
calculates checksum and parses TCP/IP headers, while
classifying frame based on a set of matching rules in step (d). In
step (e), the Ethernet controller strips the VLAN (Virtual Local
Area Network) tag, and then temporarily places packet data and
header into the pre-allocated receive buffer (i.e., RXMBUF) in
step (f). After that, the Ethernet controller completes buffer
descriptors for the packet in step (g). Finally in step (h), the
DMA transfer for packet data and descriptors to the host memory
is accomplished via the PCI-E interface by notifying the device
driver by means of an interrupt. Further details of the Gigabit
Ethernet architecture and functionality are omitted to save space.
Interested readers may refer to [10][11].

III. FTQ-BASED ARCHITECTURE
As described before, defragmenting the packets of various
communication protocols in hardware remains an extremely
complex task. Thus, the Ethernet controller needs more
functional modules and specialized hardware units that
efficiently transfer between the local interconnect and the

network. Therefore, for a power-constrained system, it is
necessary to capture parallelism and asynchrony among multiple
functional modules operating at multiple clocks and voltages.

functional module

FTQ

DVFS3

sleep idle

active

DVFS2DVFS1

FTQ

FTQ

job descriptors (not frame data)

DVFS3

sleep idle

active

DVFS2DVFS1

DVFS3

sleep idle

active

DVFS2DVFS1

DVFS controller

functional module

FTQ

DVFS3

sleep idle

active

DVFS2DVFS1 DVFS3

sleep idle

active

DVFS2DVFS1

FTQ

FTQ

job descriptors (not frame data)

DVFS3

sleep idle

active

DVFS2DVFS1 DVFS3

sleep idle

active

DVFS2DVFS1

DVFS3

sleep idle

active

DVFS2DVFS1 DVFS3

sleep idle

active

DVFS2DVFS1

DVFS controller

Figure 2. Concept of Flow-Through-Queue.
The FTQs provide a FIFO mechanism between the state

machines describing various functional modules. Each state
machine essentially reacts to the content of its corresponding
FTQ to initiate and direct the processing activities of the state
machine as shown in Figure 2. The content of FTQ includes
pointers that are used to indicate where the frame data is located
in the buffers. When the FTQ is empty, the state machine has no
work to perform and is in the idle mode. A functional module
can switch between different power-speed levels. Switching
between the power-saving modes in the active state is managed
by a power management policy. The DVFS controller for each
functional module utilizes information about the FTQ of the
module, i.e., how full the queue is and how quickly the number
of entries in queue changes, to dynamically vary the supply
voltage and frequency setting.

The FTQ abstraction enables high-levels of parallelism by
permitting different frames in the same stage of processing to
proceed concurrently. In general, the frame data is provisionally
stored in memory buffers before being sent to local interconnect
or network, while the control data is processed by a string of
functional modules, each requiring low-latency as shown in
Figure 1 (see steps (c), (d), (e), and (g)). Thus, this architecture
targets the control dominated tasks rather than the storage and
forwarding of the frame data. The event-queue mechanism of the
FTQ enables multiple clocks and multiple voltages for the
functional modules, satisfying the low-latency control data
access and the high-bandwidth frame data access. The FTQ
configuration for the packet receive path is illustrated in Figure 3.
Functional modules i.e., QP (Queue Placement), DI (Data
Initiator), and DC (Data Completion) interact with the RISC core
or the memory arbiter, while transferring memory buffer pointers
to the ensuing FTQ so as to advance the sequence of tasks.

Ethernet
MAC

RISC
Core

Memory
Arbiter

QP FTQ DI
DMA

DC

FTQ

RX
M

BU
F

frame data

FTQ

pointers

Load-
balancing

Ethernet
MAC

RISC
Core

Memory
Arbiter

QP FTQ DI
DMA

DC

FTQ

RX
M

BU
F

frame data

FTQ

pointers

Load-
balancing

Figure 3. The configuration with FTQ for packet receive path.

6B-1

572

The timing diagram of FTQ-based processing for the packet
receive path is depicted in Figure 4 with some of FTQ-related
signals. The timing diagram shows that the pointer values (e.g.,
C0002, C0604, C0A05, and C0C06) are transferred to the
following functional modules via FTQs while performing packet
header processing at each step, whereas the frame data is directly
transferred to PCI-E bus from memory buffer through the DMA.

IV. MODELING A FTQ-BASED SYSTEM
In this section, we present a systematic approach for modeling a
FTQ-based system with stochastic processes, i.e., semi-Markov
decision processes (SMDP) [12]. Note that a SMDP is a tuple <S,
E, Y, Z, R>, where S is a set of states, E is a set of actions, Y is
the transition probability function, Z specifies the probability
distribution of transition times for each state-action pairs, and R
is the expected reward function [12]. Figure 5 shows the SMDP
model of the Gigabit Ethernet controller for the packet receive
path with a state set S = {S1, S2, …, Sm}, where m is the number
of processing modes available to the system. This figure shows
that each state in the SMDP model interacts with relevant
functional modules, implying dependency between these
modules. For example, the S5 state involves RISC, QP, MA
(Memory Arbiter), and RXMBUF modules. Definitions of the
states for this SMDP model are provided in Table 1. The idle and
sleep modes shown in Figure 5 are for the whole system, i.e., all
functional modules go to sleep in S11. Note also that each
functional module has its own idle and sleep modes as shown in
Figure 2.

The FTQ may be represented by the G/M/1 queuing model,
where inter-arrival times are arbitrarily distributed and service
times are exponentially distributed [13]. A general distribution is
assumed for the inter-arrival times because an exponential
distribution would underestimate the occurrence probability for
long request inter-arrival times and so it does not adequately
model the request arrival time in the idle periods [14]. The
service time behavior is captured by a given service time
distribution for the functional module when it is in the active
mode. Similarly, the input request behavior is modeled by a
given inter-arrival time distribution. Let Si represent the ith state
in a SMDP, and Ii denote the task (i.e., the job descriptor) inter-
arrival time whose distribution depends only on the present state
Si. Assuming that inter-arrival times are mutually independent,
we may define the arrival process of tasks at time t from state i to
state j of the SMDP as follows:

() { , | }ij i+1 i 1 iProb S I Sa t j t i+= = ≤ = (1)

S1 S8

S2

PHY

S3

S9

S5 S6 S7

S4

S10 S11

MAC

RISC QP DI DC

MA, RXMBUF

WOL
S1 S8

S2

PHY

S3

S9

S5 S6 S7

S4

S10 S11

MAC

RISC QP DI DC

MA, RXMBUF

WOL

Figure 5. SMDP model of the system.

Table 1. Legend for the SMDP model of Figure 5.

State Description

Receive data stream from physical layer interfaceS1

S2 Perform address checking, CRC calculation, and CSMA/CD function

S3 Calculate checksum and parse TCP/IP header

S4 Place packet data and header into buffer memory

S5 Buffer descriptor processing (Queue replacement)

S6 Buffer descriptor processing (Data Initiator)

S7 Complete buffer descriptor for packet

S8 DMA transfers packet data to host memory

S9 Filter WOL (Wakeup on LAN) packets during power down mode

S10 System idle mode

S11 System sleep mode

State Description

Receive data stream from physical layer interfaceS1

S2 Perform address checking, CRC calculation, and CSMA/CD function

S3 Calculate checksum and parse TCP/IP header

S4 Place packet data and header into buffer memory

S5 Buffer descriptor processing (Queue replacement)

S6 Buffer descriptor processing (Data Initiator)

S7 Complete buffer descriptor for packet

S8 DMA transfers packet data to host memory

S9 Filter WOL (Wakeup on LAN) packets during power down mode

S10 System idle mode

S11 System sleep mode

Let W denote the number of waiting tasks in the FTQ just before
a new task arrives. Assuming an infinite queue size, we have:

{ } (1) , 0,1, ...,n
nq Prob W n nγ γ= − = ∞= (2)

where γ is the unique solution of Laplace-Stieltjes transform of
the inter-arrival time distribution function [16], which is

0
() ()st

ij ijs e a t dtα
∞ −= (3)

Here s is a real-valued variable. We assume that the service times
in the functional modules are exponentially distributed with the
mean value of 1µ− . Let TW.k (TS.k) represent the waiting time
(service time) of the tasks in the kth FTQ and its corresponding
functional module. Since the response time, TR.k, of the
functional module is the expected time that the tasks spend in its
FTQ and in the functional module itself, we have TR.k = ((1-γ)µ)-1.
The waiting time in the FTQ is calculated by subtracting the
service time from the response time, yielding:

EMAC

QP

DI

DMA

DC

pointerframe data

EMAC

QP

DI

DMA

DC

pointerframe data

Figure 4. The simulation of FTQ-based processing for packet receive path.

6B-1

573

, ,
1

(1)W k R kT T
γ

µ µ γ
= − =

−
 (4)

We would like to consider the utilization of a functional
module i.e., how much of the computational resource provided
by the functional module is utilized by the application. More
precisely, the utilization ratio, uk, may be defined as:

 ()ku BP BP IP= + (5)

where BP is the duration of the busy period of the functional
module, and IP is the duration of its idle period. Without
presenting the proof, we simply state (cf. [13]):

() (1)BP IP E T γ+ = − (6)

where E(T) is the expected number of transitions in the SMDP.
Thus, given the number, n, of tasks waiting in the FTQ, we can
calculate BP and IP as follows

0
1

() ()
,

1 1

n

i
i

E T E T
BP q IP q

γ γ=

= ⋅ = ⋅
− −

(7)

V. PERFORMANCE OPTIMIZATION
In this section, we present the energy optimization formulation
problems and methods in multiple Vdd/Vth assignments by
developing mathematical programming models.

A. Energy Optimization based on DVFS and SMDP
Let actpowk.Vdd.Vth (or slpowk.Vdd.Vth) represent the power
consumption of the kth functional module during its active mode
running at Vdd and Vth levels (or its sleep mode). Considering the
active power, we use a joint cost structure such that the expected
cost rate, i.e., active power consumption, is the summation of a
cost term, k(s, a), which is incurred when action a, i.e., the DVFS
setting (f, Vdd, Vth), is taken, and a second term c(s’, a, s), where
s, s’ ∈ Sm. This results in the following total cost equation: 2

(,) (,) (', ,)
1

() (' | ,) (, ')
(,) s S

cost s a k s a c s a s

pow s Prob s s a ene s s
s aτ ∈

= +

= + (8)

where pow(s) = Σk∈K actpowk.Vdd.Vth, ene(s, s’) is the energy
required by the system to transit from state s to s’, and τ(s, a) is
the expected duration of the time that the system spent in the
state s if action a is chosen, which in turn is given by

0
(,) (, ',)

a
s S

t
s a t p s s t dtτ γ

∞

∈

= (9)

where γ is a discount factor, 0 ≤ γ < 1, and pa (s, s’, t) is the
probability that as a consequence of choosing action a when the
system state is s’, the state equals s after time t. Let a sequence of
active states s0, s1, …, sk denote a processing path δ from s0 to sk

of length k with the property that p(s0, s1), …, p(sk-1, sk) > 0,
where p(x, y) is the probability that the system moves to state y
from state x (see Figure 4). For a policy π, we define the
discounted cost C of a processing path δ of length k as follows.

0
() (,)

k

i

it i iC cost s aπ δ γ
=

 (10)

2 In this paper, subscripts denote state information whereas superscripts
denote time stamp.

where ti is the time that the system spent in state si before action
ai causes a transition to state si+1. Considering the expectation
with respect to the policy π over the set of processing paths
starting in state s, we may define the expected cost of the system,
given that the system starts in state s, by actpowπ

avg(s) =
EXP[Cπ(δ)].

Ignoring the energy overhead of the transition between the
active and sleep states of the system, the average energy
dissipation of the functional modules can be obtained by:

. . .

.

()

()

avg
l L k K

d
k K l L

l k Vdd Vth

k Vdd Vth l k Vdd Vth

avgene actpow s exe

slpow T exe

π

∈ ∈

∈ ∈

+

= ⋅

⋅ −
 (11)

where L and K denote the set of tasks and functional modules, Td

is the given time period, and exel.k.Vdd.Vth is the execution time of
task l on functional unit k running at Vdd and Vth. Changing the
voltage level (and correspondingly the operating frequency) of
the functional modules affects the execution time of the tasks.
Clearly, exel.k.Vdd.Vth = TW.k.Vdd.Vth + TS.k.Vdd.Vth . When there is a
positive slack for the task to run on a functional module, DVFS
can result in significant energy saving. Thus, our goal is to
minimize energy consumption of a target system by choosing the
optimum setting (Vdd and Vth) as a solution, subject to
performance constraints:

n

. . .i=1

1 0

0
1

0 1 0, ...,

/

,

min

s.t. ()
i

avg

S k Vdd Vth d

k

n n

i ii i

n

ii

i

i q T T

q q u

q

q i n

ene

δ

= =

=

⋅ + ≤

=

≥

=

≤ ≤

 (12)

Note that i)
1 . . .

n

ii W k Vdd Vthi q T
=

⋅ = , ii) TS.k.Vdd.Vth is affected by the

DVFS setting, iii)
1 0

/() /n n

i ii i
BP BP IP q q

= =
+ = , and iv) uk is a

lower bound on the utilization of functional module, which is
provided by the user or application.

B. Workload-Aware Multiple Vdd / Vth Assignment
Nearly all of prior work on Vdd/Vth assignment has concentrated
on gate sizing [15][16] or power optimization at the circuit level
[17][18]. Little attention has been paid to workload
decomposition with Vdd/Vth assignment, which is the core of our
approach. Initially, we perform static timing and power analysis
using the standard cell libraries to determine gate delay and
power values of the functional modules. To achieve accurate
power values, we generate SAIF (Switching Activity Interchange
File) [19] based on RTL simulation of the system. We use TSMC
130nmLP library which has 3 optional operating voltages (e.g.,
1.35V, 1.5V, and 1.65V) and dual (High and Low) Vth for
standard cells.

Our proposed multiple Vdd/Vth assignment method takes as
input a circuit that has been optimized for a maximum speed by
using the available slack, which is obtained by Synopsys Design
Compiler. After determining the timing critical paths of the
circuit, we use high supply voltage, Vdd.h, and low threshold
voltage, Vth.l, for the gates on those paths. We use a low supply
voltage, Vdd.l, for the other gates, especially those that drive large
capacitance since this approach yields the largest dynamic power
savings. Figure 6 shows the power characteristics of

6B-1

574

EthernetMAC module for various Vdd/Vth assignments (i.e.,
before the two assignments are combined). After redistributing
the critical paths by combining high and low Vth cells (e.g., 1.6%
usage of high Vth cells) for EthernetMAC, we achieve a leakage
power consumption of around 7.4uW at 1.35V with 13.65ns
delay. Note that cell-based design with all high-Vth cells
consumes 5.8uW of leakage power, but gives rise to 16.2ns delay.
On the other hand, an all low-Vth cell-based design produces
38uW leakage power with 9.36ns circuit delay. In addition to
reduction in leakage power, this approach also reduces the peak
power dissipation. (The peak power dissipation in a localized
space can cause local heating and peak temperature). Figure 7
shows the power distribution change inside EthernetMAC
module before and after multiple Vdd/Vth assignment.

H igh V th
Vdd = 1 .35V

Low Vth High V th
Vdd = 1 .50V

L ow V th Hig h Vth
Vdd = 1 .65 V

L ow V thH igh V th
Vdd = 1 .35V

Low Vth High V th
Vdd = 1 .50V

L ow V th Hig h Vth
Vdd = 1 .65 V

L ow V th

Figure 6. Power characteristics of EthernetMAC.

(d)

(a) (b)

(c)

Power distribution for All Low Vth cellsPower distribution for All High Vth cells

Power distribution for 21% High Vth cells Power distribution for 79% High Vth cells

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

(d)

(a) (b)

(c)

Power distribution for All Low Vth cellsPower distribution for All High Vth cells

Power distribution for 21% High Vth cells Power distribution for 79% High Vth cells

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

Net switching power (mW)
0.023 0.048 0.065

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

N
um

be
r o

f n
et

s

800

700

600

500

400

300

200

100

Figure 7. Power distribution inside EthernetMAC @ 1.35V, 125°C:
(a) All high Vth cells, (b) All low Vth cells, (c) 21% high Vth cells,

and (d) 79% high Vth cells.

Since leakage power is significant in both sleep and idle
modes, we capture the energy consumed due to leakage currents
as a performance metric in terms of the task workload and the
utilization of functional module. Task workload, which can be
represented by a queuing model as explained in section 4, is
decomposed into the waiting time and the service time, where
service rate µ is the function of the clock frequency and the
Vdd/Vth assignment. The FTQ-based system, where queues give
clues about the speed balance between the sender domain and the
receiver domain, is capable of adapting the execution speed to

the changing demand. Note that when combining multiple supply
voltages, level converters are required each time a gate that is
powered by a lower voltage level drives a gate powered by a
higher voltage level. In such cases, the power and delay penalties
need to be considered. Assuming no additional overhead [18],
the impact of workload in terms of the consumed energy and the
utilization can be characterized for applying Vdd/Vth assignment
as will be seen in the next section.

VI. EXPERIMENTAL RESULTS
In the first experiment, we demonstrate the performance of our
designed Gigabit Ethernet controller by obtaining the throughput
for streams of various packet sizes as shown in Figure 8. The
figure shows that the maximum full duplex bandwidth (i.e.,
1000Base–T and 100Base-T) for each packet size is achieved.
The SmartBits 2000 (performance analysis system) from Spirent
[20] is used to generate various packet streams, where we fixed
the IP packet size for each simulation step with the inter-packet
gap = 0.096us.

Figure 8. Throughput vs. Packet size.
The second experiment has been designed to evaluate the

proposed leakage power optimization method. We analyze the
leakage power dissipation after re-distributing the critical paths
by using TSMC 130nmLP technology. Simulation result for
EthernetMAC module in Figure 9 indicates that the performance
metrics (delay and leakage power) are adjusted gradually and
trade-off becomes more dramatic at the corner cases (all high-Vth
and all low-Vth cell assignments).

Figure 9. Trade-off: Delay vs. Leakage power (Vdd = 1.35V).
The third experiment is to demonstrate the effectiveness of

our proposed Vdd/Vth assignment for energy optimization.
Assuming that that there is no waiting time and the mean service
time is µ-1 = 1 to simplify the experimental setup, we calculate
the consumed energy by leakage power and utilization of
functional module (e.g., EMAC) for various Vdd/Vth assignments

6B-1

575

and arrival rates of task as shown in Figure 10. The result
demonstrates that if we assign 1.35Vdd/Vth.l set as an example, the
energy consumed due to leakage currents in a infrequently
utilized state is much greater than that in a highly utilized state,
which means that 1.65Vdd/Vth.h assignment is the optimal solution
in this case. Thus, we can see that our proposed assignment
method can dynamically adjust the Vdd/Vth assignment when the
workload characteristics change, which results in further energy
savings.

Figure 10. Energy due to leakage currents vs. Workload.

In the fourth experiment, we set the performance constraints
on the Td and uk (e.g., Td = 5 and uk = 0.6) as in equation (12).
The solution of the SMDP-based optimization problem produces
an optimal policy. Different arrival rates () of tasks are used to
generate the multiple rows in Table 2, which represents the
energy consumption for various Vdd/Vth assignments in the active
and idle modes of the functional modules (e.g., QP, DI, and
DMA). We assume that the service time is 1 to simplify the
calculations. Next, we apply different workloads for each module
to simulate the optimal policy as shown in Table 3. Results
demonstrate that SMDP-based optimization produces energy
savings for both active and idle modes up to 20% and 56%,
respectively.

Table 2. Energy dissipation for various workloads (normalized).

Vth.h

QP

1.35

= 0.8

1.50

1.65

Vth.l

1.35

1.50

1.65

Ene.act Ene.idle
Arrival
rate VddVth

DI

Ene.idle

DMA

Ene.idle

Vth.h

= 0.7

1.50

1.65

Vth.l

1.35

1.50

1.65

Vth.h

= 0.6

1.50

1.65

Vth.l

1.35

1.50

1.35

1.35

1.65

Ene.act Ene.act

28.5

35.6

42.5

28.4

35.6

42.6

18.2

22.8

27.1

18.2

22.7

27.0

13.4

16.8

20.1

13.4

16.7

20.1

8.1E-4

2.7E-4

1.8E-4

17E-4

4.5E-4

6.3E-4

9.0E-4

3.2E-4

2.1E-4

19E-4

4.9E-4

7.1E-4

1.1E-4

3.0E-4

2.2E-4

21E-4

6.0E-4

8.3E-4

76.3

94.3

111.4

76.2

94.5

111.2

48.7

60.0

72.1

48.7

60.1

72.3

36.0

44.5

54.1

36.2

44.5

54.1

18E-4

6.3E-4

10E-4

35E-4

10E-4

16E-4

20E-4

7.2E-4

11E-4

39E-4

13E-4

18E-4

22E-4

8.1E-4

13E-4

42E-4

13E-4

18E-4

118.1

145.8

176.2

118.3

144.9

176.1

75.4

93.1

112.4

75.5

93.2

112.4

55.7

68.9

83.1

55.7

68.8

82.9

36E-4

8.1E-4

7.9E-4

13E-3

38E-4

55E-4

41E-4

8.0E-4

9.2E-4

15E-3

43E-4

61E-4

44E-4

9.1E-4

10E-3

15E-3

57E-4

70E-4

Vth.h

QP

1.35

= 0.8

1.50

1.65

Vth.l

1.35

1.50

1.65

Ene.act Ene.idle
Arrival
rate VddVth

DI

Ene.idle

DMA

Ene.idle

Vth.h

= 0.7

1.50

1.65

Vth.l

1.35

1.50

1.65

Vth.h

= 0.6

1.50

1.65

Vth.l

1.35

1.50

1.35

1.35

1.65

Ene.act Ene.act

28.5

35.6

42.5

28.4

35.6

42.6

18.2

22.8

27.1

18.2

22.7

27.0

13.4

16.8

20.1

13.4

16.7

20.1

8.1E-4

2.7E-4

1.8E-4

17E-4

4.5E-4

6.3E-4

9.0E-4

3.2E-4

2.1E-4

19E-4

4.9E-4

7.1E-4

1.1E-4

3.0E-4

2.2E-4

21E-4

6.0E-4

8.3E-4

76.3

94.3

111.4

76.2

94.5

111.2

48.7

60.0

72.1

48.7

60.1

72.3

36.0

44.5

54.1

36.2

44.5

54.1

18E-4

6.3E-4

10E-4

35E-4

10E-4

16E-4

20E-4

7.2E-4

11E-4

39E-4

13E-4

18E-4

22E-4

8.1E-4

13E-4

42E-4

13E-4

18E-4

118.1

145.8

176.2

118.3

144.9

176.1

75.4

93.1

112.4

75.5

93.2

112.4

55.7

68.9

83.1

55.7

68.8

82.9

36E-4

8.1E-4

7.9E-4

13E-3

38E-4

55E-4

41E-4

8.0E-4

9.2E-4

15E-3

43E-4

61E-4

44E-4

9.1E-4

10E-3

15E-3

57E-4

70E-4

Table 3. SMDP-based energy optimization (normalized).

QP

Workload: arrival rate ()

DI DMA

0.8 0.7 0.6

0.7 0.6 0.5

0.6 0.7 0.8

0.5 0.6 0.7

Total energy
(typical)

164.5

active idle

Optimal policy

active idle active idle

123.9

222.6

151.4

Savings

53E-4

78E-4

77E-4

63E-4

132.4

100.1

180.0

122.4

24E-4

34E-4

36E-4

39E-4

20%

20%

19%

19%

55%

56%

53%

54%

QP

Workload: arrival rate ()

DI DMA

0.8 0.7 0.6

0.7 0.6 0.5

0.6 0.7 0.8

0.5 0.6 0.7

Total energy
(typical)

164.5

active idle

Optimal policy

active idle active idle

123.9

222.6

151.4

Savings

53E-4

78E-4

77E-4

63E-4

132.4

100.1

180.0

122.4

24E-4

34E-4

36E-4

39E-4

20%

20%

19%

19%

55%

56%

53%

54%

VII. CONCLUSION
An FTQ-based power management technique for the Gigabit
Ethernet controller was presented, where we also considered the
multi-Vdd/Vth assignment problem for energy optimization. By
improving the accuracy of decision making in the power
management policy, performance optimizations based on DVFS
and SMDP under various performance constraints were
formulated and solved accordingly. Experimental results show
that the proposed methods result in significant energy savings for
various workloads under tight performance constraints.

REFERENCES
[1] P. Willmann, H. Kim, S. Rixner, and V.S. Pai, “An Efficient

Programmable 10 Gigabit Ethernet Network Interface Card,” Proc. of
11th Symposium on HPCA, Feb. 2005.

[2] http://www.ieee802.org/802_tutorials IEEE 802.3 Tutorial. July 2005.
[3] A. Iyer, and D. Marculescu, “Power Efficiency of Voltage Scaling in

Multiple Clock, Multiple Voltage Cores,” Proc. of ICCAD, Nov. 2002.
[4] Q. Wu, P. Juang, M. Martonosi, and D.W. Clark, “Voltage and

Frequency Control with Adaptive Reaction Time in Multiple-Clock
Domain Processors,” Proc. of 11th Symposium on HPCA, Feb. 2005.

[5] D.E. Lackey, et al., “Managing Power and Performance for System-on-
Chip Designs using Voltage Islands,” Proc. of ICCAD, Nov. 2002.

[6] S. Bhunia, A. Datta, N. Banerjee, and K. Roy, “GAARP: A Power-
Aware GALS Architecture for Real-Time Algorithm-Specific Tasks,”
IEEE Trans. on Computers, Vol. 54, No. 6, June 2005.

[7] I. Hyunsik, T. Inukai, H. Gomyo, T. Hiramoto, and T. Sakurai, “VTC-
MOS characteristics and its optimum conditions predicted by a compact
analytical model,” Proc. of ISLPED, Aug. 2001.

[8] P. Rong and M. Pedram, “Power-aware scheduling and dynamic voltage
setting for tasks running on a hard real-time system,” Proc. of ASP-DAC,
Jan. 2006.

[9] http://www.pcisig.com/specification PCI-Express Spec. document.
[10]http://www.broadcom.com NetXtremeTM Gigabit Ethernet Controller.
[11]Y. Hoskote, et al., “A TCP Offload Accelerator for 10Gb/s Ethernet in

90nm CMOS,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 11,
Nov. 2003.

[12]M.L. Puterman, Markov Decision Process: Discrete Stochastic Dynamic
Programming. Wiley Publisher, New York, 1994.

[13]S.M. Ross, Introduction to Probability Models, Academic Press, 8th

edition, Dec. 2002.
[14]T. Simunic, et al, “Event-driven power management,” IEEE Trans. on

Computer-Aided Design,” Vol.20, No.7, July 2001.
[15]M. Ekpanyapong, etal., “Integrated Retiming and Simultaneous Vdd/Vth

Scaling for Total Power Minimization,” Proc. of ISPD, Apr. 2006.
[16]A. Srivastava, D. Sylvester, and D. Blaauw, “Power Minimization using

Simultaneous Gate Sizing, Dual-Vdd and Dual Vth Assignment,” Proc.
of DAC, June 2004.

[17]J. Wei and C. Rowen, “Implementing Low-Power Configurable
Processors- Practical Options and Tradeoffs,” Proc. of DAC, June 2005.

[18]D.G. Chinnery and K. Keutzer, “Linear Programming for Sizing, Vth and
Vdd Assignment,” Proc. of ISLPED, Aug. 2005.

[19]http://www.synopsys.com Synopsys Power Compiler Documents.
[20]http://www.spirentcom.com SmartBits document. Revision. C.

6B-1

576

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

