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Abstract - In this paper we present a novel methodology to help
debug memory corruption errors during application debug. In
this methodology an optimal balance between hardware and
software instrumentation is chosen to check at run-time all
memory accesses made by an application. To achieve this balance
a set of benchmark applications is first analyzed to determine
their memory access patterns. The analysis results are used to
make our approach low-cost both from a software performance
penalty and a hardware area point-of-view. Experimental results
show that our innovative approach typically requires less than
2% of a CPU in silicon area for a less than 1% run-time
performance overhead. Our method is both low-cost and
applicable to high performance microprocessors as well as
time-constrained embedded systems.

I. INTRODUCTION

To meet the demanding performance requirements for audio
and video applications, the industry is integrating a complete
system on a single chip, the so-called system-on-chip (SoC). A
typical SoC comprises of multiple processor cores and
dedicated hardware peripherals. On top of this hardware,
several layers of software (drivers, operating system,
streaming and control layers) are stacked to provide complete
audio and video applications for use in domestic and mobile
appliances. With the development of these applications comes
the need to verify their correctness. Even though verification is
successful in screening out the majority of errors in software
using the simulation models of the SoC, it cannot guarantee
that all software errors are removed before the real silicon
becomes available.

In-situ debug of SoC applications is complicated because of
the very limited observability into the various layers making
up the complete system. Consequently a growing
industry-average of 50% of the overall project duration is
spent on debug after first silicon becomes available [1]. This
can lead to higher development cost, slipping deadlines and
the loss of (potential) customers. The US-based National
Institute of Standards and Technology has reported that the
cost of software defects in the United States alone was approx.
$59.5 billion in 2002[2].

Memory-related bugs are among the most prevalent and
difficult to catch of all software bugs, particularly in
applications written in an unsafe language such as C/C++.
Therefore, a good debug infrastructure that is capable of
locating memory-related software bugs quickly is key to
reducing the effort and resources spent on software debug.

In this paper we present a new methodology and the
supporting infrastructure to help debug memory corruption
errors during application development.
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The paper is organized as follows. Section II gives an
introduction to the run-time memory corruption problem. In
section III we provide an overview of existing solutions for
this problem. Section IV describes our new approach and in
subsequent subsections the implementation details of the
supporting infrastructure are provided. Section V describes the
available options to make an optimal trade-off between the
required silicon area and performance cost. Section VI
summarizes our experimental results and Section VII
concludes this paper.

II. PROBLEM DESCRIPTION

In an embedded system, a single memory access error can
cause an application to behave unpredictably or even crash [3].
The application’s code or data gets corrupted, causing wrong
data to be used or incorrect instructions to be executed. These
memory corruptions often do not directly cause the system to
crash, but instead cause so-called delayed crashes. Because the
distance in time between the actual root-cause and when the
incorrect behavior is visible on the outputs of the system is
very large in a delayed crash, it is very difficult for engineers
to debug this type of error and find the root-cause.

The ability to detect memory corruption the instance it
occurs would allow direct and appropriate action to be taken.
During the application development process, a debugger tool
can then guide the software engineer more accurately to the
software bug and fix it. As a result a substantial amount of
debug time and resources is saved.

II1. PRIOR WORK

To address memory corruption problems, existing memory
protection schemes define each memory region allocated by
the application as valid and accessible memory. For each
subsequent memory access, the address used is compared
against the list of known valid regions. To implement this
check, two separate approaches are commonly used: (1) a
software-based approach, or (2) a hardware-based approach.

A. SOFTWARE-BASED PROTECTION METHODS

The software-based approaches either (a) instrument the
application at compile and/or link time, or (b) execute the
unmodified application code on an extended, virtual machine.
a) During application instrumentation, additional instructions

are added to the application code to check every memory
access, and generate an error when an invalid access is
detected. Modifying the application often requires access
to the source code of the application and/or its libraries,



unless the instrumentation can be done at the object level.

Source-to-source translators, such as Ccured [4], can
analyze and translate the application’s code to insert
run-time checks to validate all memory accesses. The
resulting application will stop on an illegal access, rather
than write into invalid memory space.

GCC’s Bounds Checking [S] and Mudflap [6] extensions
add instrumentation during the compilation step of the
application code. They intercept all calls to the standard
memory-allocation functions, such as malloc, free, new,
and delete. In addition, they check whether allocated
memory blocks are still valid and whether out-of-range
read or write operations occur. In Section VI we compare
the run-time performance of our method with the GCC
Mudflap approach.

Purify [3] is an example of a memory usage debugging
tool for C applications that inserts protection code at the
assembly level instead.

A virtual machine that emulates the target processor can
be extended to offer memory corruption detection during
the execution of the unmodified application code. The
advantage of this method is that no access to the source
code of the original application is required. A drawback is
that a sufficiently accurate and modifiable virtual machine
implementation of the target processor has to be available.

b)

The software-based methods described above all introduce a
performance penalty during the execution of the application.
This penalty is the direct result of performing all memory
access checks completely in software. Typical numbers quoted
in literature and measured in practice range from a 2x to 10x
performance cost [8]. Most consumer applications however
have to meet strict, real-time constraints. The severe
performance cost introduced by the methods described above
restricts, if not excludes, the use of these methods for
consumer applications and are therefore not good enough for
use in consumer devices.

B. HARDWARE-BASED PROTECTION METHODS

Hardware-based approaches shift the burden of checking
the memory accesses from software to hardware, thereby
reducing the performance penalty but incurring a new
hardware cost. Common components that are (re)used for this
purpose include (a2) a Memory Management Unit (MMU), (b)
a dedicated Memory Protection Unit (MPU) or (c) a
processor’s breakpoint module.

a) Each allocated memory buffer is placed in a separate page
in the MMU. MMU page flags are used to prevent an
application from accessing pages, which it is not allowed
to read from or write to. The MMU page granularity still
imposes restrictions on the use of this type of protection.
For example a single memory buffer requires an entire
page in the MMU. Given typical page sizes of 4K or 64K,
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allocating many smaller memory buffers can quickly
become very wasteful on MMU resources and memory.
Using a dedicated memory protection module, such as
ARM’s MPU [9], the memory address space can also be
divided into a fixed number of regions, each with a size
selectable from a pre-defined, but fixed set. The base
address is programmable and defines the start of the
memory region. In the ARM implementation, it must be
aligned to the selected region size. The usage of these
support modules is limited by the typically small number
of regions, the restrictions on the region alignment and
their size.

Processor address breakpoints can also signal an illegal
access to a memory region. The address range is then
specified in two control registers for start and end address.
An additional register is wused to control the
enabling/disabling of the breakpoint, choosing the virtual
or physical address, and generating a breakpoint event for
either in-bound or out-of-bound addresses. The advantage
of this approach is that the granularity of the memory
bounds can be a word or even a single byte. A memory
buffer is therefore protected with very tight bounds,
causing no wastage of memory. The disadvantage is that a
processor only offers a very limited number of these
breakpoints in hardware.

b)

<)

These hardware-based methods significantly improve the
performance over the software-based methods, but as a draw
back require both an increased amount of silicon area and a
skilled programmer to utilize them for memory access
checking. As a result these solutions all tend to be used on an
ad-hoc basis.

One general drawback, shared by all methods described
above is that they assume that either the software or the
hardware as a fixed component that cannot be modified. In
other words, either for a given hardware chip, the software
code is instrumented, or for a given software application the
available hardware functionality is reused to detect memory
corruption at run-time. Both lead to sub-optimal
implementations.

IV. INTEGRATED HW/SW APPROACH

Our approach combines the benefits of both existing
hardware-based and software-based methods, while taking
special care to make it more cost-efficient than both. In our
approach, any memory access made by an application is
checked at run-time against all allocated memory regions
using a hybrid solution of hardware and software, allowing for
a better trade-off to be made between the resulting application
performance penalty and required silicon area.

We provide an on-chip Region Protection Module (RPM),
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to check all memory accesses in hardware at run-time, and an
application programmer’s interface (API), to efficiently
control the RPM from application software.

The open-source GCC compiler has been extended to
automatically instrument any given application’s source code
with the appropriate API calls to effectively monitor for any
region violations at run-time. In the following subsections, we
discuss in detail the on-chip region protection module, the API
for the application software, and the flow for making the
optimal trade-off between hardware and software
instrumentation.

A. ON-CHIP REGION PROTECTION MODULE

An example, system-level usage of our on-chip Region
Protection Module (RPM) is shown in Figure 1.

Peripheral 1 (R Peripheral IV
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3 system bus

Memory
Interface
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Fig. 1. Hardware Architecture Overview.
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The processor executes the application software and is
attached to a system bus. Also a set of dedicated peripherals
and a memory interface to external memory attach to this same
system bus. To this generic computer architecture we have
added a RPM, which takes care of validating all memory
accesses made by the processor via the system bus. The RPM
control registers are memory mapped and accessible from the
processor. The RPM can also be controlled and observed by

external debugger software through a dedicated debug port, e.g.

an [EEE 1149.1 Test Access Port. A block diagram of the RPM
is shown in Figure 2.

A bus adapter translates the bus-specific protocol to basic
read and write operations for the RPM core. The RPM
controller is connected between this bus adapter and to a group
of so-called Region Protection Units (RPUs). Each RPU is
responsible for validating the address of a memory access on
the system bus against a single, and programmable memory
region. Note that we make a distinction between heap-based
and stack-based memory regions. Details on the reasons for
this difference are given in Subsection IV.B. Each bus
operation is translated to RPU instructions by the controller.
Valid memory regions are programmed using MMIO write
operations from the processor to the RPM.
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Fig. 2. Block diagram of the Region Protection Module.

We will focus first on the block diagram of a heap RPU, as
given in Figure 3.
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Fig. 3. Block Diagram of a heap RPU.

The heap RPU has two registers coupled to a data
communication bus. The first register stores the base address
value of the memory region, and the second register stores the
size of the memory region. The heap RPU also contains a
subtraction unit, which takes in an address value from the data
communication bus and subtracts the value of the base register.
The output of the arithmetic functional unit is compared to the
value of the size register. The comparator output is routed to
the output of the RPU via an OR-gate. This OR-gate enables
the cascading of multiple RPUs inside a RPM. When one of
the RPUs validates the memory operation, the RPM will
indicate this.

The heap RPU controller allows programming of the base
and size registers, validation of a given memory address, and
clearance of the base and size registers when the associated
buffer is released by the software application. The width of the
size register and associated arithmetic logic is determined at
design time, as discussed in Section V.

The stack RPU contains an additional register to store a
function scope identifier with the base address and size of the
memory buffer. A separate MMIO address is reserved for
communicating this identifier to the RPM.



B. SOFTWARE API

We use a lightweight software API to allow easy and
efficient use of the RPM hardware from the processor. This
API consists of six functions:

e void rpus initialize()
This functions clears all settings from the RPM.

e bool rpus heap enable (base,size)
This function is called when the application software
allocates buffers on the heap by functions such as malloc
and new. This function passes the base address and size of
the buffer to the RPM. The size of the buffer is broadcast
to all RPUs first to find and program the smallest,
available RPU with this size value. Subsequently the base
address is sent from the application code to this same RPU.
When an RPU is programmed to protect this buffer, this
function returns a true value. It returns a false value when
no suitable RPU is available. The false return value is used
to activate a fallback mechanism in software instead when
all hardware resource are already in use.

e bool rpus stack enable(base,size, id)
This function is called when buffers are allocated on the
stack. The allocation of an available RPU and the return
value are similar to those of the rpus_heap_enable function.
However, in addition to the base address and size, also a
function scope identifier is passed to the RPM and stored
with the other buffer data. This allows all RPUs that were
assigned to stacked-based memory buffers, to be released
when the program leaves the corresponding function
scope.

e bool rpus check access(address)
Whenever there is a memory access, this function is
called and communicates the address of the memory
access to the RPM. It returns either a true value if a RPU
validates the memory address, or a false value, if no RPU
could. The latter value can optionally be used to
subsequently validate the memory address against valid
memory regions protected by software.

e Dbool rpus_heap disable (base)
When the program de-allocates heap-based memory buffer,
this call frees up the RPU assigned to this buffer. The
return value is true if an RPU existed in hardware that was
protecting this buffer, or false if there was no such RPU.
The latter value is used to determine whether the list of
buffers protected in software also needs to be searched for
the assigned RPU.

e void rpus_ stack disable (id)
When the program leaves the scope of a particular function,
its identification code is communicated to all RPUs. Any
RPU that was assigned inside this function scope is freed
up as a result.
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V. HW/SW COST TRADE-OFF

The trade-off between how much hardware protection to
include in a system chip design can be made based on an
analysis of a set of benchmark applications that are to be

executed on the target processor (see Figure 4).
E>.

B[ P& HBr
Fig. 4. Design Flow for Optimized RPU Hardware.

3enchmark

Benchmark applications are analyzed to extract their
run-time memory allocation and access behaviors and obtain
statistics on the maximum number of memory buffers that
need to be simultaneously protected along with their sizes.
Based on this analysis, an RPM is generated automatically
with this number of RPUs to cover the hardware resource
requirements of these benchmark applications. An extended
GCC compiler is used for this analysis. Algorithm
SINGLE APP_RPM DESIGN is used to design the RPM for
a single benchmark application.

Algorithm 1: SINGLE_APP_RPM_DESIGN

As long as a benchmark application still performs a memory

allocation or de-allocation, do

a) Upon a memory allocation, check if there are free RPUs
large enough to protect the new buffer.

i. If such RPUs exist, assign the buffer to the
smallest RPU in this set.

ii. If they do not exist, find the largest, free RPU that
can handle only buffers smaller than the new
buffer. Resize that RPU to the buffer size and
assign the buffer to this RPU.

ii. If there are no free RPUs, instantiate a new RPU
with the size corresponding to the new buffer size,
and assign the buffer to that RPU.

b) Upon a memory de-allocation, mark the corresponding
RPU as free.

To design the RPM for multiple benchmark application, we
use the iterative algorithm MULTI APP RPM_DESIGN.

Algorithm 2: MULTI_APP_RPM_DESIGN

a) The set of required RPUs is initially empty.

b) Run the SINGLE APP_RPM DESIGN algorithm using
the memory statistics from the first benchmark application
to yield an initial set of RPUs.

¢) Successive runs use the memory statistics of the other
benchmark applications and modify this set of RPUs. The
resulting set of RPUs covers the memory protection
requirements of all benchmark applications.

Afterwards, the RPM is included in the chip design process
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using the standard design flow. During application
development and debug, we can now utilize the on-chip RPM
to shift the burden of memory address checking from software
to hardware. What remains is the run-time (re)configuration of
the RPM at each memory allocation and de-allocation. This
task is automatically performed for any source code provided
by an extended GCC compiler.

()

New SoC Application

4

main ()
{
funel() ;
func2() ;
}

static int rpu_id=1;

main()
{

rpus_initialize();

funcl();
func2() ;
}

funcl()

{
p = malloc(127) ;
int a[10];
int b[10];
free(p);
a[10]=0;

}

funel ()

id = rpu_id++;
P = malloc(127);
rpus_heap_enable (p,127) ;
int a[10];
rpus_stack_enable(a,40,id) ;
int b[10];
rpus_stack_enable (b, 40,id) ;

fune2 ()
{
int a[10];
int b[10];
}

¢

able(p) ;
cess (a+10) ;

=

s_stack_disable (id) ;
}

func2 ()

{
id = rpu_idt+;
int a[10];
rpus_stack_enable(a,40,id) ;
int b[10];
rpus_stack_enable (b, 40,id) ;
rpus_stack_disable (id

}

Fig. 5. Application Instrumentation Flow.

VI. EXPERIMENTAL RESULTS

Figure 6 shows the analysis results of the amount of
memory allocated and de-allocated by a small example
application during its execution. Figure 7 shows the number of
unique memory buffers allocated and de-allocated over time
by the same example application as used in Figure 6. Figure 7
shows for example that a second memory buffer is allocated at
clock cycle 312,928 and de-allocated at clock cycle 359,233.
The darker bars represents allocations on the stack, the lighter
bars allocations on the heap. Figure 8 shows how only five
RPUs (1 stack, and 4 heap RPUs) can be used to protect all 11
allocated buffers by exploiting the fact that not all memory
buffers need to be simultaneously protected.

We have also taken a subset of applications from an
independent, embedded application benchmark set called
MiBench [10] to compare the impact of our method with
GCC’s existing software-based memory protection method,
called MudFlap. We have looked at the impact on the speed of
the application and the required amount of silicon areca. We
have normalized the speed of the original application to 1, and
normalized the area required for a CPU to 1. The normalized
speed when each protection method is implemented for the
benchmark applications is shown in Figure 9.

Figure 9 shows that the GCC software-based method slows
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down the speed of the application considerably (first bar),
sometimes by as much as 50x. In contrast our approach yields
application speeds that are for most cases less than 10% from
the original (second Dbar). If furthermore, the
rpus_check access (address) functional is instead
implemented by directly observing bus accesses (i.e. direct bus
‘snooping’), the performance penalty is reduced even more to
often less than 1-2% (third bar). The required normalized
silicon hardware is shown in Figure 10.
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Fig. 6. Memory allocation over time.
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Fig. 7. Buffer allocation over time.
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Fig. 8. RPU allocation over time.



Figure 10 confirms that the GCC software-based approach
does not require any additional hardware area, as all memory
protection is performed in software. As indicated, this also
causes the significant performance drop as shown in Figure 8.
To implement the same memory protection with our approach
requires less than 2% of a RISC CPU in silicon area, as shown
in Figure 9.

[ = Mudhap BRPM (no snooping) WRPM (snooping)]

100%)

Application Speed (Original

2

Y
> Benchmark

Fig. 9. Application speed with each method implemented.

[ @ Mudfap B RPM (no snooping) MRPM (snooping)]

Hardware Area (CPU = 100%)

°
2
®

0.4%

Benchmark

Fig. 10. Required silicon area.
VII. CONCLUSION

We have presented a novel, HW/SW-based memory

protection methodology for embedded systems. Our approach
has three distinct advantages over prior work:
1. Due to its lightweight API design, the resulting software
overhead is significantly reduced compared to
software-only protection methods, as most, if not all, the
valid region management and validation is shifted from
software to hardware.

2. The amount of hardware (e.g. the number of stack and
heap RPUs) can be optimized using design-time
application analysis.

3. This scheme allows for the software to take over in those
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cases where the hardware RPU resources are all in use.
This offers a seamless transition from hardware-based to
software-based  protection without requiring user
intervention. Consequently our approach only comes with
a performance cost for those memory regions that cannot
be protected in hardware, whereas current state-of-the-art
software-based methods impose this overhead for all
memory regions.

By combining an effective memory access monitor module in
hardware with efficient application instrumentation, we have
shown that run-time memory protection is a low-cost option
for both high performance microprocessor design and
real-time, embedded applications. The functionality provided
by this HW/SW architecture can be used both to reduce the
time and effort spent on debugging software code during
application development, and to provide enhanced support
against security threats.

VIII. REFERENCES

[1] B. Roberts, “The verities of verification”, Electronic
Business, January 2003.
[2] National Institute
WWW.Nist.gov.

[3] R. Hastings and B. Joyce, “Purify: Fast detection of
memory leaks and access errors,” in Proceedings of the Winter
USENIX Conference, 1992, pp. 125-136.

[4] G.C. Necula et al.,, “CCured: Type-Safe Retrofitting of
Legacy Code”, University of California, Berkeley.

[5] R'WM. Jones and P.H.J. Kelly, “Backwards-compatible
bounds checking for arrays and pointers in C programs,” in the
third International Workshop on Automated and Algorithmic
Debugging, 1997, pp. 13-26.

[6] F. Eigler, “Mudflap: Pointer Use Checking for C/C++”,
GCC Developers Summit, May 25-27, 2003, Ottawa, Ontario,
Canada.

[7] N. Nethercote and J. Seward, “Valgrind: A Program
Supervision Framework”, in Electronic Notes in Theoretical
Computer Sience 89, No. 2, 2003.

[8] C. Cowan et al., “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks", in
Proceedings of 7th USENIX Security Conference, 1998, pp.
63-78.

[97 ARM Ltd.,
Manual”, 2005.
[10] M.R. Guthaus et al., “MiBench: A free, commercially
representative embedded benchmark suite” in Proceedings of
the 4th Annual IEEE Workshop on Workload Characterization,
Austin, TX, December 2001

of Standards and Technology,

“ARMI1156T2F-S Technical Reference




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


