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Abstract— The memory subsystem is a major contributor to
the performance, power, and area of complex SoCs used in fea-
ture rich multimedia products. Hence, memory architecture of
the embedded DSP is complex and usually custom designed with
multiple banks of single-ported or dual ported on-chip scratch
pad memory and multiple banks of off-chip memory. Building
software for such large complex memories with many of the soft-
ware components as individually optimized software IPs is a big
challenge. In order to obtain good performance and a reduction
in memory stalls, the data buffers of the application need to be
placed carefully in different types of memory . In this paper we
present a unified framework (MODLEX) that combines different
data layout optimizations to address the complex DSP memory
architectures. Our method models the data layout problem as
multi-objective Genetic Algorithm (GA) with performance and
power being the objectives and presents a set of solution points
which is attractive from a platform design viewpoint. While most
of the work in the literature assumes that performance and power
are non-conflicting objectives, our work demonstrates that there
is significant trade-off (up to 70 %) that is possible between power
and performance.

1. INTRODUCTION

Today’s VLSI technology allows to integrate tens of pro-
cessor cores on the same chip along with embedded memo-
ries, application specific circuits, and interconnect switches.
Such devices are being used in feature-rich multimedia appli-
cations such as mobile cameras. The key to the success of
such systems-on-chip (SoC) which are targeted for commod-
ity market will be to achieve low cost, high performance, and
low power dissipation.

One of the key factors that drives the cost and power dissipa-
tion of an embedded system-on-chip is the memory architec-
ture. Studies have shown that in many DSP based embedded
systems, the area and power consumed by the memory subsys-
tem is up to 10 times that of the data path, making memory a
critical component of the design. Further, the memory subsys-
tem constitutes a large part (typically up to 70%) of the silicon
area for the current day SoC and it is expected to go up to 94%
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in 2014 [11]. The main reason for this is that embedded mem-
ory has a relatively small per area design cost in terms of both
man power and time to market. Another reason is related to
power consumption: the heat dissipated per area is lower for
memories than that of logic. Hence memory can be used to add
functionality with a smaller impact on system heat [12]. As the
number of transistors/package keeps increasing along with the
increasing share of memory, the future system’s performance
will depend even more on memory.
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Fig. 1. Embedded Application Development Flow

The memory architecture of embedded DSPs are complex
and custom designed to improve the run-time performance and
power consumption. The on-chip memory can be SRAM,
and/or ROM and/or embedded DRAM and similarly the off-
chip memory can be DRAM and/or SRAM. The on-chip mem-
ory referred as Scratch Pad memory is organized into multi-
ple memory banks to facilitate multiple simultaneous data ac-
cesses. Further on-chip memory bank can be a single-access
RAM (SARAM) or a dual-access RAM (DARAM), to pro-
vide single or dual access to the same memory bank in a sin-
gle cycle. This memory architecture is applicable mainly for
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DSPs rather than for microcontrollers as DSPs have multiple
on-chip busses and multiple address generation units to ser-
vice the higher bandwidth needs of DSP applications. Also
the on-chip memory banks can be of different sizes. Smaller
memory banks consume lesser power per access than the larger
memories. This architecture presents opportunities to optimize
power consumption by placing the most frequently accessed
data variables in the smallest bank size.

The application program in a modern embedded system
is complex and has many multimedia components like MP3,
AAC and MIDI. This necessitates an IP reuse methodology,
where software modules developed and optimized indepen-
dently by different vendors are integrated. Figure 1 explains
the typical flow in embedded application development. This
integration is a very challenging job and must be accomplished
with short design time, achieving high performance and low
cost and power. In order to obtain good performance and a
reduction in memory stalls, the data buffers of the application
need to be placed carefully in different types of memory; this is
known as the data layout problem. Typically the data layout
is performed manually and hence takes a significant amount of
time (approximately 1-2 man months).

The data layout optimization methods varies significantly
for applications built for microcontrollers (MCU) and Digi-
tal Signal Processors (DSPs) due to the following reasons: (a)
DSP applications are more data dominated than the control
software executed in MCU. Memory bandwidth requirements
for DSP applications range from 2 to 3 memory accesses per
processor clock cycle. While that for MCU is at best 1. at best
provide only one memory access per cycle. (b) The DSP soft-
ware for critical kernels is developed mostly as hand optimized
assembly code. Whereas the MCU SW is developed in high
level languages. Hence compiler based optimizations may not
be directly applicable for the DSP kernels. In this paper we
consider data layout optimizations for DSP applications and
do not consider optimizations that require code modifications.

A. Related Work

The data layout problem [8, 5, 4, 7, 1, 9, 2] has been widely
researched in the literature both from a performance and power
perspective individually. Further most of the work has ad-
dressed the data layout problem for specific memory architec-
tures. Following works addresses the data layout problem with
an objective to improve performance. The authors of [5, 4]
have formulated data layout problem as Integer Linear Pro-
gramming (ILP), where they allocate data variables to mem-
ory banks based on the access frequency of data variables; the
memory architecture they consider is on-chip memory and off-
chip memory with different latencies. In [8] the data layout
problem is solved for an on-chip memory architecture that has
both cache and scratch pad RAM. [7, 1] have addressed the
partitioning of simultaneously accessed data variables in mul-
tiple single-port memory banks to avoid memory bank con-
flicts. [10] handles the data partitioning problem for self-
conflicting data variables (variable that are accessed multiple
times in the same cycle and will result in memory conflict if
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placed in single-port memory). It proposes partial duplication
of data variables to avoid using expensive dual-port memories.
[3] proposes a low-energy memory design method, referred as
VADbM, that optimizes the memory area by allocating multi-
ple memory banks with variable bit-width to optimally fit the
application data. In [2], Benini et al., present a data layout
method that aims at energy reduction. The main idea of this
paper is to use the access frequency of memory address space
as starting point and design smaller (larger) bank size for the
most (least) frequently accessed memory addresses.

All these optimizations are very effective individually for
the class of memory architecture they target. However for a
complete data layout approach one has to combine many/all
of these approaches to be able to comprehensively address the
problem. Also it may not be optimal to just combine different
optimizations and an integrated approach will yield a better
result. All the data layout work in the literature to the best
of our knowledge either optimizes run-time performance or
minimizes power and assumes that power and run-time per-
formance are non-conflicting objectives. But this assumption
is not valid for DSPs, where data layout optimization will re-
sult in a trade-off between power and performance. In this
paper we show that there is a trade-off between performance
and power for a given application and a given memory archi-
tecture. We propose MODLEX, a Multi Objective Data Layout
EXploration framework based on Genetic Algorithm.

The main contributions of this paper are (a) combining dif-
ferent data layout optimizations into an unified framework that
can be used for the complex embedded DSP memory architec-
tures. Even though we target the DSP memory architectures,
our method also works for microcontrollers as well. (b) Model
the data layout problem as multi-objective Genetic Algorithm
(GA) with performance and power being the objectives. Our
method optimizes the data layout for power and run-time and
presents a set of solution points that are optimal with respect to
power and performance. (c) Most of the work in the literature
assumes that performance and power are non-conflicting ob-
jectives with respect to data allocation. But we show that there
is significant trade-off (up to 70%) that is possible between
power and performance.

The remainder of this paper is organized as follows. In Sec-
tion 2, the problem definition. In Section 3, we present our
MODLEX framework. In Section 4, we present the experi-
mental methodology and results. Finally in Section 5, we con-
clude and outline some of the future work.

II. PROBLEM STATEMENT

Given a memory architecture with m on-chip SARAM
memory banks, n on-chip DARAM memory banks, and an
off-chip memory. The size of each of the on-chip memory
bank and the off-chip memory is fixed. The access time for
the on-chip memory banks is one cycle, while that for the off-
chip memory is [ cycles. Given an application with d data sec-
tions. The simultaneous access requirement of multiple arrays
is captured by means of a two-dimensional matrix C' where
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C;; represents the number of times data sections ¢ and j are
accessed together in the same cycle in the execution of the en-
tire program. We do not consider more than two simultaneous
accesses, as the embedded DSP core typically supports only
up to two accesses in a single cycle. If data sections ¢ and j are
placed in two different memory modules, then these conflict-
ing accesses can be satisfied simultaneously without incurring
stall cycles. C;; represents the number of times two accesses to
data section ¢ is made in the same cycle. Self-conflicting data
sections need to be placed in DARAM memory banks, if avail-
able, to avoid stalls. The objective of the data layout problem
is to place the data sections in memory modules such that the
following are minimized:

e Number of memory stalls incurred due to conflicting ac-
cesses (parallel and self conflicts) and the additional cy-
cles incurred in accessing off-chip memory

e The total memory power calculated as the sum of the
memory power of all memory banks. Memory power of
each of the banks is computed by multiplying the number
of read/write accesses and the power per read/write access

Since the optimization problem involves multiple objectives
the output will be a set of Pareto optimal points. The pareto
optimal condition can be formally stated as follows. Let z and
1y be two n-tuples representing the values of the objective crite-
ria such as execution time, energy consumed and area. Assume
that all objectives are minimizing functions. We say x <, y if

(x <py) = Vi)(z; <= i) AN (Fi)(z; <)

Using the partial relation <,, we can say if x <, y then x dom-
inates y or y is a dominated point. If the set of all dominated
points are removed from the set of all points in the design, we
get the non-dominated set or the Pareto-optimal design points.

III. MODLEX: MULTI OBJECTIVE DATA LAYOUT
EXPLORATION

A. Method Overview

We formulate the data layout problem as a multi-objective
GA [6] to obtain the set of Pareto optimal design points. The
multiple objectives are minimizing memory stall cycles and
memory power. Figure 2 explains our MODLEX framework.
Application profile information and a logical memory archi-
tecture are taken as inputs. The logical memory architecture
contains the number of memory banks, memory bank sizes,
memory bank types (single-port, dual-port), and memory bank
latencies. The logical memory to physical memory map is ex-
plained in the following section. The core engine of the frame-
work is the multi-objective data layout, which is implemented
as a Genetic Algorithm (GA). The data layout block takes the
application data and the logical memory architecture as input
and outputs a data placement. The cost of data placement in
terms of memory stalls and memory power are computed for a
given data placement. The overall fitness function used by the
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Fig. 2. Embedded Application Development Flow

GA is a combination of memory stall cost and memory power
cost. Based on the fitness function the GA evolves by select-
ing the fittest individuals (the data placements with the lowest
cost) to the next generation. Since the fitness function con-
tains multiple objectives, the fitness function is computed by
ranking the chromosomes based on the non-dominated criteria
(detailed explanation provided in Section C). This process is
repeated for a maximum number of generations specified as a
input parameter.

B. Mappping Logical Memory to Physical Memory

To get the memory power and area numbers, the logi-
cal memories have to be mapped to physical memory mod-
ules available in a ASIC memory library for a specific tech-
nology/process node. A number of approaches have been
proposed for mapping logical memory to physical memories
[14, 13]. Each of the logical memory bank can be imple-
mented physically in many ways. For example, for a logical
memory bank of 4K*16 bits can be formed with two physi-
cal memories of size 2K*16 bits or four physical memories of
size 2K*8 bits. The memory allocation problem in general is
NP-Complete [14]. However since the logical memory archi-
tecture is already organized as multiple memory banks, most of
the mapping turns out to be a direct one to one mapping. In this
paper a simple greedy technique is used to perform the map-
ping of logical to physical memory with the objective of re-
ducing silicon area. The memory modules are sorted based on
area/byte and the smallest area/byte physical memory is taken
to form the required logical memory bank size.

C. Genetic Algorithm Formulation

To map an optimization problem to the GA framework, we
need the following: chromosomal representation, fitness com-
putation, selection function, genetic operators, the creation of
the initial population and the termination criteria.
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C.1 Chromosome Representation

For the data memory layout problem, each individual chro-
mosome represents a memory placement. A chromosome is
a vector of d elements, where d is the number of data sec-
tions. Each element of a chromosome can take a value in (0
.. m), where 1..m represent on-chip memory banks (including
both SARAM and DARAM memory banks) and O represents
off-chip memory. Thus if the element ¢ of a chromosome has
a value k, then the data section is placed in memory bank k.
Thus a chromosome represents a memory placement for all
data sections. Note that a chromosome may not always rep-
resent a valid memory placement, as the size of data sections
placed in a memory bank k£ may exceed the size of k. Such
a chromosome is marked as invalid and assigned a low fitness
value.

C.2 Chromosome Selection and Generation

The strongest individuals in a population are used to produce
new off-springs. The selection of an individual depends on its
fitness, an individual with a higher fitness has a higher proba-
bility of contributing one or more offspring to the next genera-
tion. In every generation, from the P individuals of the current
generation, M more offspring are generated, resulting in a total
population of (P + M). From this P fittest individuals survive
to the next generation. The remaining M individuals are anni-
hilated. Crossover and mutation operators are implemented in
standard way.

C.3 Fitness Function and Ranking

For each of the individuals, the fitness function computes
Mpow and My.. The value of M., is computed as follows.
Each of the chromosomes represents a data placement. The
number of memory stalls incurred in a memory bank j can be
computed by looking at the number of conflicting data sections
that are kept in j. For each pair of the conflicting data sec-
tions, the number of conflicts is given by the conflict matrix.
The total memory stalls incurred in bank j can be computed
by multiplying the number of conflicts and the bank latency.
The total memory stalls for the complete memory architecture
is computed by summing all the memory stalls incurred by all
the individual memory banks.

Memory Power corresponding to a chromosome is com-
puted as follows. If p; is the power per access of memory bank
j, and AF; is the number of times data variable ¢ is accessed
then the total power P; for memory bank j is

d
Pj = ij >!<14}7Z *Ii_j
i=1
where I;; = 1, if data variable 7 is placed in memory bank j

else I;; = 0. Thus the total power F; for all the memory banks
is the sum of all the individual memory bank’s power.

Ny
P=)_P
j=1

5B-3

where N, is the total number of banks including off-chip mem-
ory.

Once the memory cost and memory cycles are computed for
all the individuals in the population, individuals are ranked ac-
cording to the Pareto optimality conditions given in the fol-
lowing Equation. Let (Mg, M¢,) and (Mp,,, M}, ) be
the memory power and memory cycles of chromosome A and
chromosome B, A dominates B if the following expression is
true.

(M8, < MPb

pow pow

V((ME,. < Mb ) A (M

cyc cyc pow

) A (Mg, < M)

cyc — cyc
< Mpow))

The ranking process in multi-objectctive GA proceeds as
follows. All non-dominated individuals in the current popu-
lation are identified and flagged. These are the best individuals
and assigned a rank of 1. These points are then removed from
the population and the next set of non-dominated individuals
are identified and ranked 2. This process continues until the
entire population is ranked. Fitness values are assigned based
on the ranks. Higher fitness values are assigned for rank-1 in-
dividuals as compared to rank-2 and so on. This fitness is used
for the selection probability. The individuals with higher fit-
ness gets a better chance of getting selected for reproduction.

One of the common problems in multi-objective optimiza-
tion is solution diversity. Basically the search path may
progress towards only certain objectives resulting in design
points favoring those objectives. Solution diversity is very
critical in order to get a good distribution of solutions in the
Pareto-optimal front. To maintain solution diversity, the fit-
ness value is reduced for solution that has many neighboring
solutions. To maintain solution diversity we use the sharing
function method explained in [15]. The GA must be provided
with an initial population that is created randomly. In our im-
plementation we have used a fixed number of generations as
the termination criterion.

IV. EXPERIMENTAL RESULTS

A. Experimental Methodology

We have used Texas Instrument’s TMS320C55X and Texas
Instrument’s Code Composer Studio (CCS) environment for
obtaining the profile data and also for validating the data-
layout placements. We have used 3 different applications
from the multimedia and communications domain as bench-
marks The kernels of the applications are developed in hand-
optimized assembly code. The applications are compiled with
the C55X processor compiler and assembler. The profile data
is obtained by running the compiled executable in a cycle ac-
curate software simulator. For obtaining conflict data we used
one large bank of single-access RAM that fits the application
data size. This configuration is selected because this does not
resolve any of the parallel or self conflicts. The output profile
data contain (a) frequency of access for all data sections (b)
the conflict matrix. The other inputs required for our method
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is the application data section sizes, which are obtained from
the C55X linker. We have used TT’s ASIC memory library for
the memory allocation step. The area and power numbers are
obtained from the ASIC memory library.

B. Experimental Results

This section presents the experimental results on the multi-
objective data layout. We consider a set of 6 different logi-
cal memory architecture listed in Table I. In Table I the cor-
responding physical memory architecture and the normalized
area ! required by the physical memory for the different archi-
tectures are given. The output is a set of Pareto optimal points
that presents trade-off between power and memory cycles for a
given memory area. From the table it can be observed that the
memory area increases with the DARAM size and the number
of banks. Note that the architecture A4 has more memory area
than A5 even though it has only half of the AS’s DARAM. This
is due to the higher number of banks in AS.

MPEG Encoder

b
w

memory power
o
@

o
>

0.2

0 100000 200000 300000

memory stall cycles

400000 500000 600000

Fig. 3. MPEG Enoder: Performance-Power trade-off

Figures (3, 4 and 5) shows the set of non-dominated points
each corresponds to a Pareto Optimal data layout for the 3 ap-
plications for architectures A1-AS. It should be noted that the
non-dominated points seen by the multi-objective GA are only
near optimal, as the evolutionary method may result in another
design point in future generations that could dominate. It can
be observed from Figures (3, 4 and 5) that the architecture Al
gives the best performance for all the three applications as it
offers higher bandwidth due to the larger DARAM size. 2. It
resolves almost all the memory conflicts and latencies. But
this solution point is also the worst in power. Also observe that
the architecture A2 performs as well as Al for MpegEnc even
though A2 has only 33% DARAM. Also observe that A2 is
not performing as well for voice encoder application as it did
for Mpeg. This is because the Mpeg encoder has more par-
allel conflicts and lesser self-conflicts than voice encoder and

! As the ASIC library is proprietary to Texas Instruments, we present only
the normalized power and area numbers

2We recommend this page be viewed in color for better readability of the
graphs
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Arch no Architecture memory
Logical physical area
memory memory

Al 2x8K(SARAM) | 2x8192(1P) 1
20x4K(DARAM) | 20x4096(2P)

A2 18x4K(SARAM) | 18x4096(1P) 0.91
8x4K(DARAM) | 8x4096(2P)

A3 8x4K(SARAM) 8x4096(1P) 0.82
1x32K(SARAM) | 1x32K(1P)
8x4K(DARAM) | 8x4096(2P)

A4 8x2K(SARAM) 8x2048(1P) 0.77
4x4K(SARAM) | 4x4096(1P)
3x16K(SARAM) | 3x16K(1P)
4x4K(DARAM) | 4x4096(2P)

A5 2x32K(SARAM) | 2x32K(1P) 0.72
8x4K(DARAM) | 8x4096(2P)

A6 8x2K(SARAM) 8x2048(1P) 0.57
4x4K(SARAM) | 4x4096(1P)
1x16K(SARAM) | 1x16K(1P)
4x4K(DARAM) | 4x4096(2P)
1x32K(Off-Chip) | 1x32K(1P)

TABLE I

MEMORY ARCHITECTURES USED FOR DATA LAYOUT

also A3 has large number of banks that resolves higher number
of parallel conflicts. With only a small increase in area com-
pared to A5, A3 can achieve much better performance than
AS. This is due to the higher number of banks in A3 that re-
solves more parallel conflicts. Also observe the wide range of
trade-off available between power and performance for all the
applications. This is very useful for application engineers and
system designers from a platform design viewpoint. It takes 18
minutes to obtain one Pareto Optimal plot for an application.
This run-time is approximately same for all the application.
Figure 6 presents the results for mpeg for the memory archi-
tecture A6 explained in Table I. There are six different plots
and each plot represents a specific data layout optimization.
Plot O1 corresponds to performing just on-chip/off-chip data
partition similar to the approach in [5, 4]. Plot O2 represents
performing O1 and resolving parallel memory conflicts by uti-
lizing only multiple memory banks as in [7, 1]. Plot O3 cor-
responds to the integrated approach that includes OI, O2 and
other optimizations like resolving self conflicts and exploiting
multiple memory banks for power optimization. Observe that
for the same memory architecture the integrated approach re-
solves almost all the memory stalls. Also both from power and
performance perspective the integrated approach completely
dominates the other two plots. The methods like [5, 4] will
give power/performance close to point P/ and the point P2
corresponds to the works [7, 1, 10] and the data layout that op-
timizes power [2] is represented by point P3. From the results
we can conclude that the integrated approach gives better solu-
tion points both with respect to power and performance. Also
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from the experimental results it can be concluded that there is
a wide range of design points with respect to power and per-
formance can be obtained from multi-objective data layout op-
timizations.

V. CONCLUSION AND FUTURE WORK

We presented our framework MODLEX: a Multi Objective
Data Layout EXploration Framework. Our approach results
in many (Pareto) optimal design points with respect to power
and performance which are important from a platform design
view point. We demonstrated that there is significant trade-off
(up to 70%) that is possible between power and performance.
As a future work we plan to extend our framework to explore
memory architectures design space along with the data layout.
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