
Retiming for Synchronous Data Flow Graphs

N. Liveris† C. Lin† J. Wang† H. Zhou† P. Banerjee‡
†Northwestern University, Evanston IL, USA
‡University of Illinois, Chicago IL, USA

In this paper we present a new algorithm for retiming Synchronous
Dataflow (SDF) graphs. The retiming aims at minimizing the cycle
length of an SDF. The algorithm is provably optimal and its execution
time is improved compared to previous approaches.

Synchronous Dataflow Graphs are considered a useful way to model
DSP applications [1]. This is because in most cases the portions of
DSP applications, where most of the execution-time is spent, can be
described by processes or actors with constant rates of data consump-
tion and production. Moreover, efficient memory and execution-time
minimization algorithms have been developed for SDF graphs [8, 5].
Retiming has been used widely in the past to optimize the cy-

cle time or resources of gate-level graph representations [4, 2, 3].
A lot of work has also been done on extending retiming on SDF
graphs [6, 7]. More specifically, retiming has been proposed to fa-
cilitate vectorization [9] and to minimize the cycle length of these
graphs [6].
Govindarajan et. al. have proposed an algorithm to determine

a non-blocking schedule for an SDF graph for maximum through-
put [5]. However, there are design cases in which a non-blocking
schedule is not feasible. This happens when a part of the applica-
tion’s behavior is determined dynamically at run-time, or when some
of the application’s tasks are sharing resources with higher-priority
tasks. These tasks are normally executed on a programmable pro-
cessor, while the computationally expensive part of the application
is run on dedicated resources, has predictable execution time, and is
conveniently modeled as an SDF. In case there are data dependencies
between the SDF actors and the tasks executed on the programmable
processors, a non-blocking schedule may not be feasible. Then a
blocking schedule for the SDF is necessary and the blocking sched-
ule with the minimum cycle length will be equivalent to minimum
latency of the static part of the application (Figures 1,2).
O’Neil et. al. proposed an algorithm to reduce the clock cycle

of a graph below a threshold using retiming [6]. In this paper we
propose an optimal algorithm for retiming SDF graphs. The purpose
is to minimize the length of the complete cycle of a SDF graph. Two
versions of the algorithm will be shown. Both produce better results
than any existing algorithm. Moreover, the second one is orders of
magnitude faster than O’Neil’s algorithm.
In Sections 2 and 3we present the basic properties of SDF graphs.

An optimal algorithm for minimizing the period of a blocking sched-
ule for an SDF will be described in Section 3. Then in Section 4
the first version of the retiming algorithm will be presented and in
Section 5 its correctness will be proven. An improved version of this
algorithm will be developed in Section 6. Finally in Sections 8 and 9
the experimental results and conclusions are presented.
All proofs have been omitted due to space limitations. However,

they are published in a report, which is available in our website [10].

In this section the basic properties of the Synchronous Data Flow
graphs will be summarized. For a more detailed description of the
SDF properties the user should refer to the literature [1].
An SDF graph is a directed graph G V E d p c w , in which

d : V R is a function giving the execution delay of a node, and
p c w : E N are functions which give the production rate, con-
sumption rate, and initial number of tokens of each edge. Table 1
lists all these symbols with their definitions.
In this work only live and consistent SDFs will be considered,

which can execute without deadlock and with finite memory for an
infinite number of times. A necessary condition for a graph to be

p(e) c(e)w(e)

 d q
A 2 2
B 3 3
C 5 2

CPU

A

CPU

B C3 2

1 1

4

4
2 3

1 1 1

2

2
3

1 1

2

2

2

CPU

T=8

CPU

A1

A2

B1

B2

B3

C1

C2

A1

A2

B1

B2

B3

C1

C2

Figure 1: Initial SDF schedule

CPU

A

CPU

B C3 2

1 1

4

6
2 3

1 1 1

2

2
3

1 1

2

2

CPU

T=5

CPU

1

A1

A2

B1

B2

B3

C1

C2

A1

A2

B1

B2

B3

C1

C2

Figure 2: Improved SDF sched-
ule

consistent is

P0 u v E : qu p u v qv c u v (1)

Throughout this paper we will assume that computing resource con-
straints for a specific actor are captured by loops, i.e. edges with
the same node as head and tail. The number of delays of each loop
will determine the number of actor executions that can occur concur-
rently. The production and consumption rate of the loop will be set
to 1.
Moreover, if an actor carries state there is a loop on the node

representing the actor with p c 1. The number of delays on the
node denote the distance of the dependency in terms of number of
executions. As an example for an FIR filter the number of delays will
be 1, since each execution of an instance depends on the previous
one. Instances of the same SDF node can execute concurrently as
long as they do not violate self-dependencies and other constraints
imposed by the structure of the graph. The ordering of the produced
output tokens and consumed input tokens is taken care by the control
mechanism of the edge.
The period for a gate-level graph [4] is defined by the longest

path in the graph. In that time all nodes must be executed exactly
once. In a consistent SDF graph different nodes can have different
average invocation rates. The solution with the minimum positive
integers to the state equations gives the number of times each node
needs to be executed in a system period or complete cycle of the
graph. In a blocking schedule complete cycles of the graph cannot
be overlapped. Therefore, the length of the complete cycle can be
considered the period of the graph. In this paper we will assume
only blocking schedules for SDF graphs.

r
In gate-level retiming [4] the r v value of a node v denoted the num-
ber of registers moved from each output edge to the input edges of
v.
Retiming in SDF is applied on instance executions of a node v.

Each instance execution consumes c u v tokens from each incoming
edge u v and produces p v z tokens to each outgoing edge v z .
Increasing r v by one is equivalent to “canceling” one execution
of one instance of v. Therefore, the outgoing edges will have their
weights decreased by p v z and the incoming edges will have their
weights increased by c u v . For u v E the number of delays
wr u v after each retiming step will be given by

wr u v w u v r v c u v r u p u v (2)

1-4244-0630-7/07/$20.00 ©2007 IEEE. 480

5B-1

Since for any valid retiming the final number of delays on each
edge must be non-negative

P1 u v E : wr u v 0

must hold for any valid retiming.
It can be easily proven that any retiming solution with integer

values satisfying the above properties defines a new graph which be-
longs to the reachable space of the initial graph [7].

The longest path computation in previous works was done either
on the EHG (Equivalent Homogeneous Data-Flow Graph) [6] or the
precedence graph [5]. In this paper we will show a way to compute
the longest path by using the original SDF graph.
If the repetitions vector of a graph is q q1 q2 q V , then

each system iteration (or complete cycle of the graph) will include qv
executions of SDF node v. We will call these qv instance executions
of v.
We know that since the edges implement FIFO channels, there

exists an implicit partial order for the executions of the instances of
v. For each node v with k N and 1 k qv:

t v k 1 t v k (3)

where t v k is the arrival time at the inputs of the instance k of node
v. In order to find the maximum longest path of one complete cycle
of the graph it is enough to find the max v V t v qv d v .
A recursion equation we can use for this purpose is

t v k max
u v E

t u l d u (4)

where the l instance of node u is given by

l
k c u v wr u v

p u v
(5)

The above equations define an ASAP scheduling. Instance k of node
v executed immediately after all the necessary tokens are present in
the input FIFO channels. The instances, on which k depends on, are
found for each edge incoming to v by Equation 5. For the kth instance
to be executed k c u v tokens must have been available on each
channel u v E. The lth instance of u node is the first instance that
guarantees that the wr u v already present tokens together with the
l p u v produced in the current complete cycle reach this number.
In Equation 5, l can be less than or equal to zero. This means that

the kth instance of v node depends on the qu l instance of the previ-
ous complete cycle. We will define u V l 0 t u l d u 0.
This property makes the scheduling blocking. As instance k cannot
start execution before time 0, when the current complete cycle be-
gins, this property prevents complete cycles from overlapping.
Equation 4 can be made weaker by replacing equality. Then the

following property needs to hold

P2 v V u v E k N :

1 k qv l k c u v wr u v
p u v t v k t u l d u

The blocking schedule property is equivalent to

P3 v V k N : k 1 t v k d v

P2 and P3 are more general and hold for any valid blocking
scheduling instead of an ASAP blocking scheduling of the instance
nodes.

For the period T of a blocking schedule of an SDF graph, it must
hold

v k : v V 1 k qv : t v k d v T

Because of Relation 3 the following property is necessary and suffi-
cient

P4 v : t v qv d v T

Symbol Definition

qv number of executions (instances) of node v in one complete cycle
d v execution time for each instance of node v
p u v number of tokens produced on edge u v as a result of an execu-

tion of node u
c u v number of tokens of edge u v consumed as a result of an execu-

tion of node v
w u v number of initial tokens (delays) on edge (u,v) in the input graph

r v retiming value for node v
r vector 1 V containing the retiming values for all nodes of the

graph

wr u v number of delays on edge u v after r has been applied to the
graph

t v k arrival time for the instance k of node v, the time when the tokens
for the kth instance are available u v E

T latency of a complete cycle of the SDF graph, equals the period of
a blocking schedule

Table 1: Definition of Commonly Used Parameters

for T to be the period of the schedule. The period can be considered
as a function of the retiming vector r r1 r2 r V T r . For the
optimal period T r of a blocking schedule the following property
holds

P5 r : T r T r

Given a consistent SDF graph G V E d p c w find a retiming
r and minimum complete cycle length T r that satisfy properties
P1-P5.

In this section the retiming algorithm will be described. The algo-
rithm can be seen in Figures 3,4, and 5.
The algorithm uses procedures get t and init t to find the arrival

times. From P4 we note that only the last (qth) instance of each node
is important to find the period of the complete cycle. Therefore, it
is sufficient to compute v V t v qv and the arrival times of their
dependencies. Procedure get t achieves that by recursively calling
itself on the dependencies of an instance node. Therefore, the pro-
cedure will avoid computing the arrival nodes of instance nodes that
cannot change the arrival time of v qv for any v V .
Moreover, the procedure avoids recomputation of the arrival times

of the same instance nodes by maintaining an array t V qv . This
array holds the arrival times of the nodes already computed. Initially,
the entries of this array are set to 1 (could be any illegal number)
by procedure init t. Any computed arrival time is stored in the array.
Arrival times are only computed if the value in the array is 1, or
else the already computed value is returned.
Property P3 is preserved by the first two lines of procedure get t.
By implementing get t as a memory function working directly

on the SDF, the expensive construction of an EHG or a precedence
graph is avoided.
Furthermore, restricting the computation of the arrival times to

only those instances that can affect the period has an effect on the
properties discussed above. More specifically it is equivalent to re-
laxing P2 to be valid only for the the qth instance of each nodes
and its dependencies. It is easy to show though that for any result
using these arrival times we can obtain arrival times for all node in-
stances that validate P2 using an ASAP algorithm. For efficiency
reasons, however, the algorithm will not compute the arrival times
for all nodes in each iteration. Predicate P2 can be replaced by a
weaker predicate P2 . P2 will be true, whenever for the arrival times
obtained there exists an algorithm S to compute the rest of the node
instance arrival times, such that P2 can be validated

P2 S : P2

With the arrival times obtained by get t, predicate P2 is true.
The algorithm in Figure 5 starts by initializing the memory func-

tion elements for all arrival times to 1. Then it sets v r v 0 and
computes the arrival times for all v qv . After finding the maxt
max t v qv d v , it sets Tstep maxt and enters the while loop. In
each iteration of the while loop, r vn is increased by 1, where vn is

481

5B-1

the node for which maxt t vn qvn d vn in the previous iteration.
If maxt Tstep, then Tstep becomes equal to maxt and the algorithm
tries to find another r with T r Tstep.
Each time an r-value changes the algorithm recomputes the ar-

rival times using the memory function. This way after each r change
the algorithm keeps predicates P2 and P3 invariant. P4 is always
satisfied by maxt and the current iteration’s r. Therefore, it is satis-
fied by ro Tstep when the algorithm exits.
In order, to understand the reason P1 is kept invariant as well, we

have to refer to Equation 5. An edge vn z can have wr vn z 0
if before the change of r vn to r vn 1, there were wr vn z
p vn z tokens. But in that case

lvn
qz c vn z wr vn z

p vn z
P0 qvn p vn z wr vn z

p vn z

qvn 1 p vn z
p vn z

qvn 1
lvn qvn

lvn qvn (6)

But that means that z qz instance can only start after vn qvn has
completed execution and, therefore,

t z qz d z t z qz t v qvn d vn maxt (7)

which is a contradiction. P1 is also an invariant of the algorithm.
Only property P5 may not be true after initialization and will become
true upon termination of the while loop algorithm, as proven in the
next section.

proc init t(v,k)
for each v V

for k 1 to qv
t v k 1;

endfor;
endfor;

Figure 3: Procedure for initializing
the arrival times.

proc get t(v,k)
if (k 1) then

return d v ;
fi;
if (t v k 1) then

return t v k ;
fi;
maxt 1;
for each u v E
l k c u v wr u v

p u v ;

t1 get t(u,l) d u ;
if (maxt t1) then
maxt t1;

fi;
endfor;
t v k maxt;
return t v k ;

Figure 4: Pseudocode of getting the
arrival time.

In this section the correctness of the algorithm will be proven. Our
analysis will be restricted to strongly connected graphs. In Section
7 it will be shown how to extend the approach to graphs with in-
put/output channels, sources and sinks.

In this section we will analyze the properties of strongly connected
SDF graphs. By using the ordered pair v l we will denote a node v
labeled with the instance number l, for which 1 l qv.

A dependence walk

W v0 l0 v1 l1 vn ln

is a walk in the SDF graph G in which the execution of vi li can
only start after the execution of vi 1 li 1 has been completed for
all i 0 i n.

Algorithm SDF Retiming
Input: An SDF graph G V E d p c w .
Output: A pair r Tmin which represents an optimal

retiming r satisfying minimum complete
cycle execution time Tmin.

maxt 0;
init t();
for each v in V do
r v 0;t v qv get t(v,qv);
if t v qv d v maxt then
maxt t v qv d v ;vn v;

fi;
endfor;
Tstep maxt;
while(v : r v qv & v : r v 2 qv V) do
r vn r vn 1;
init t();
for each v in V do
t v qv get t(v,qv);
if t v qv d v maxt then
maxt t v qv d v ;vn v;

fi;
endfor;
if maxt Tstep then
ro r;
Tstep maxt;

fi;
endwhile;
Return ro Tstep ;

Figure 5: Pseudocode of retiming algorithm.

qB= 2

A CB
4 6

1 1

3 2

1

4

qA= 3 qC= 3

W = (A,1) (B,1) (C,1)
(A,2) (B,2) (C,3)

p(e) c(e)w(e)

Figure 6: An example of a de-
pendency walk

A B C3 2

1 1

4

4
2 3

1 1 1

2

2
3

1 1

2

2

2

I O
1

1 1 d q
A 2 2
B 3 3
C 5 2
 I 0 1
O 0 1

Figure 7: The equivalent strongly con-
nected graph obtained by transforming the
graph of Figure 1

From Equation 5, if li 1
li c vi 1 vi wr vi 1 vi

p vi 1 vi
with 1 li 1

qvi 1 and vi 1 vi E, then there is a dependency relation between
node instances vi 1 li 1 and vi li .
For each vi li it holds that t vi li t vi 1 li 1 d vi 1 .

Also note that inW there can be multiple appearances of the same
SDF node with a different label each time (Figure 6). That means
that there could be vi v j with i j and vi v j. Moreover, inW an
SDF edge may be used multiple times to define a dependency. From
now the term walk will denote a dependence walk in the SDF graph.

A critical walk is a walk for which

i : 1 i n t vi li t vi 1 li 1 d vi 1

and t v0 l0 0.
For a critical walk the first node starts exactly at time 0, which is

the beginning of the complete cycle. All other nodes start exactly at
the time their predecessor in the walk has completed execution.

SupposeW v0 l0 vn ln is a critical walk
and t vn qn d vn T r for a retiming vector r, then for any
retiming vector r for which a dependence walk W v0 l0

vn ln exists, it will hold T r T r .

482

5B-1

Algorithm SDF Retiming Improved
Input: An SDF graph G V E d p c w .
Output: A pair r Tmin which represents an optimal

retiming r satisfying minimum complete
cycle execution time Tmin.

1. maxt 0;Q1 /0;Q2 /0;
2. init t();
3. for each v in V do
4. r v 0;t v qv get t(v,qv);
5. if t v qv d v maxt then
6. maxt t v qv d v ;vn v;
7. fi;
8. endfor;
9. Tstep maxt;
10.Q1 enqueue vn ;
11.while(v : r v qv & v : r v 2 qv V) do
12. while(Q1 /0)
13. vn Q1 dequeue ;
14. r vn r vn 1;
15. foreach vn u E do
16. if (wr vn u 0)
17. Q2 vn u ;
18. fi;
19. endfor;
20. endwhile;
21. while(Q2 /0)
22. x u Q2 dequeue ;

23. ∆r u r x p x u w x u
c x u r u ;

24. if (∆r u 0)
25. r u ∆r u r u ;
26. foreach u z E do
27. if (wr u z 0)
28. Q2 u z ;
29. fi;
30. endfor;
31. fi;
32. endwhile;
33. init t();
34. for each v in V do
35. t v qv get t(v,qv);
36. if t v qv d v maxt then
37. maxt t v qv d v ;vn v;
38. fi;
39. if t v qv d v Tstep then
40. Q1 enqueue v ;
41. fi;
42. endfor;
43. if maxt Tstep then
44. ro r;
45. Tstep maxt;
46. Q1 enqueue vn ;
47. fi;
48.endwhile;
49.Return ro Tstep ;

Figure 8: Pseudocode of the improved retiming algorithm.

SupposeW v0 l0 vn ln is a dependence
walk. Then by increasing the r value of any node uwith u W ,W
v0 l0 vn ln remains a dependency walk in the graph.

SupposeW v0 l0 vn ln is a dependency
walk and the r-value of node u, with u W but u vn, is increased
by ∆ru. Then another dependency walk is obtainedW v0 l0

vn ln with

li
li : vi u

li ∆ru : vi u (8)

Suppose for a retiming r that t vn qn d vn T r .
If r such that T r T r and v r v r v , then r vn
r vn .

If r is a retiming solution such that v V t v qv
T r , then r r1 k q1 r2 k q2 r V k q V , k Z, is
also a solution with T r T r .
Therefore, if one retiming solution exists for T then infinite solu-

tions exist. However, from the following equation

r r1 k q1 r2 k q2 r V k q V

it can be shown that k such that v V r v 0 and u r u
qu. The retiming solutions for the minimum Tmin will be called
optimal solutions. The solutions with r v 0 v and at least one u
such that r u qu and T r Tmin will be called the basic optimal
solutions. It can be proven that the algorithm will always produce a
basic optimal solution.

After initialization and at each iteration of the algorithm
of Figure 5, if r : T r Tstep , then the following property holds
u : r u qu .
Lemma 5 also specifies a property on the existence of Tmin. In

each iteration of the algorithm Tstep, which is the minimum period
found so far, is kept constant and T r is the target for reduction until
T r Tstep. Based on Lemma 5, if

u r u qu r : T r Tstep

u r u qu Tmin Tstep
v r v qv Tmin Tstep

The above property makes v r v qv a termination condition
for the algorithm. If it is true Tmin Tstep and the r-vector r :
T r Tstep as found in the previous iterations of the algorithm is
one basic optimal solution.

If v : r v qv the algorithm exits with one basic
optimal condition.
In the section below the second termination condition will be dis-

cussed.

After initialization and at each iteration of the algorithm
of Figure 5, as long as r such that T r Tstep, for each node v there

exists node u v, such that u v E and r v
qv

r u
qu

2.

After initialization and at each iteration of the algorithm
of Figure 5, if r : T r Tstep , then the following property holds
v : r v 2 qv V .

From the second termination condition a bound can be derived for
the number of iterations of the while loop. The sum of the r values
can be

∑
v V
r v ∑

v V u
2 V qv qu 1 1

In the worst case only node u will have r u qu keeping the first
termination condition falsified. The r values of the rest of the nodes
form the first term and 1 more r value increase is needed to terminate
the algorithm.

If as qave 1
V ∑v V qv we represent the average q value over all

nodes then the sum is upper bounded by

∑
v V
r v 2 V 2 qave

483

5B-1

Since in each iteration of the while loop the sum on the left side will

change by 1, the number of iterations is bounded by 2 V 2 qave.
In each iteration the necessary arrival times are computed. In the

worst case the arrival computation will take

∑
u v E

qv E V qave

Therefore, the total worst case complexity will be O V 3 E
q2ave .

The running time of the algorithm can be improved if we relax P1
not to be valid after each step of the algorithm, but be valid upon
termination. That will allow the algorithm to do multiple r value
changes without having to find the arrival times of the node instances.
Moreover, two more conclusions can be drawn from the previous

section. Firstly, from Theorem 1 we observe that the order in which
we change the r values, while approaching a basic optimal solution,
is not important. If there exists a critical walk in the graph and for
the last node vn of the walk Tstep t vn ln d vn , then for any r
for which T r Tstep, the r value of v will be r v r v .
Secondly, from Lemmas 1-3 we see that by increasing the r vn

value of a node for which t vn qn d vn Tstep cannot improve the
arrival time of nodes vm vn. Therefore, if before the r vn change,
t vm qm d vm Tstep was valid, after the change t vm qm
d vm Tstep remains valid.
Using these conclusions, the algorithm can be modified to store

all nodes, which have t vm qm d vm Tstep, each time the arrival
times are computed. Then modify their r values and then compute
the arrival times again. That way though, it is not guaranteed that P1
will remain invariant. Therefore, after each change all edges, which
have their weight reduced, will be checked for P1. If P1 does not
hold the necessary r change will be done to validate P1. The change
is correct, as long as it is minimum, because in the basic optimal
solution P1 must hold for all edges.
The necessary change to make the number of delays of an edge

positive is

w u v r v c u v ∆r v c u v r u p u v 0

∆r v
r u p u v w u v

c u v
r v

Since r u is less than or equal to ro u , ro v must be greater than
or equal to r v ∆r v , otherwise condition P1 will not hold for the
basic optimal solution, which is a contradiction. In the algorithm of
Figure 8 two queues are maintained. The first queue (Q1) holds the
nodes for which it is known that their values must be increased for
Tstep to be reduced. The while loop with condition Q1 /0 increases
the value of each of these nodes. The queue does not contain double
entries, since when filled each node is checked only once (done by
the for-loops of the algorithm).
The second queue (Q2) stores the edges for which P1 has been

invalidated. For those edges, the r value of the head node is increased
to restore the validity of P1, if needed. Note that although Q2 does
not contain double entries, the head node of two or more edges may
be the same in some cases. Therefore, before restoring P1, it is nec-
essary to check how large the increase of ∆r u should be. The check
for ∆r u 0 in the while loop with condition Q2 /0, does exactly
this.
At the end of each iteration the r values of all nodes in Q1 have

been increased, and P1 has been validated for all edges, before the
computation of the arrival times starts again, which generates new
entries in Q1. In the case maxt Tstep, Q1’s unique entry is the node
v for which t vn qn d vn maxt. Otherwise, all nodes for which
t v q d v Tstep enter the queue.
Both theorems for the termination condition are still valid.
The worst-case complexity of the algorithm remains the same.

However, its practical efficiency is improved, as verified by the ex-
perimental results presented in Section 8.

T execution time (sec)Graph
O’Neil’s First Improved O’Neil’s First Improved

s27 104 104 104 0.014 0.006 0.004

s208 1 185 152 152 0.162 0.049 0.010

s298 174 174 174 0.425 0.086 0.015

s344 259 180 180 0.242 0.140 0.012

s349 310 255 255 0.693 0.153 0.024

s382 414 414 414 2.612 0.112 0.015

s386 275 275 275 0.495 0.140 0.014

s444 202 202 202 0.310 0.123 0.011

s526 632 604 604 0.859 0.314 0.061

s641 234 226 226 0.430 1.193 0.039

s820 256 247 247 1.034 0.473 0.031

s953 430 430 430 2.388 1.127 0.057

Table 2: Results for graphs generated with qmax 4.

The analysis presented in this paper is based on strongly connected
graphs.
If a graph has source and sink nodes, then it can be easily trans-

formed to a strongly connected graph by introducing a new node I
with qI 1 and d v 0. Then for each source s of the graph an
edge I s will be included in E with c I s 1, p I s qs, and
w I s 0. Moreover, for each sink t an edge t I will be included
in E with p t I 1 and c t I qt . The number of weights on
these edges can be considered as a very large number W . It is easy
to prove that P0 is still valid after this transformation and the graph
is consistent.
As shown in Figure 1, there are SDF graphs which include input

and output channels. These channels model the system’s commu-
nication with its environment. Input and output channels are repre-
sented by edges, whose tail and head node, respectively, are missing
from the graph. The head and tail of these edges are nodes that do
not belong to the system under consideration, as opposed to sources
and sinks of the graphs. We will assume that if e is an input channel
incident to node v, all qv c e tokens needed by v for the current
complete cycle are available at time 0.
For retiming graphs with input/output channels two nodes will

be added I and O. All output edges will be connected to O and
all input edges will become incident from I. The two nodes I and
O will be connected with an edge O I with p O I c O I
w O I 1. Moreover, qI qO 1 for the new nodes. Each out-
put edge e incident from node v will be replaced by v O with
p v O p e ,c v O c e qv, and w v O w e . In a similar
way, every input edge e incident to node v will be replaced by I v
with c I v c e ,p I v p e qv, and w I v w e . The delays
of the two nodes with be d I d O 0.
These modifications on the graph have two important implica-

tions. Firstly, since d I d O 0 the assumption that for each
v V d v 0 does not hold anymore. This assumption was used
to prove that P1 is an invariant (Inequality 7). After the addition of
the new nodes the correctness of the first algorithm cannot be proven
anymore. This is not a problem though for the improved version,
since P1 is relaxed and validated again by using the Q2 queue. Sec-
ondly, the newly added edge O I represents the dependence of the
inputs of the next cycle on the outputs of the current cycle (Figure 1).
Initially, w O I 1 and the weight of this edge should not become
0, since that would mean that the inputs for a complete cycle can be
produced instantly during the complete cycle, which is not a correct
model of the environment of the system. In this case, the improved
version of the algorithm can make

P6 w O I 1

hold upon termination, the same way as it ensures P1. Edge O I
is entered in Q2 after an r change if w O I 1 and it is adjusted
accordingly during the execution of the loop that empties Q2. The
way this type of constraints can be handled by O’Neil’s algorithm [6]
is not known.

484

5B-1

T execution time (sec)Graph
O’Neil’s First Improved O’Neil’s First Improved

s27 129 104 104 0.084 0.005 0.006

s208 1 538 538 538 29.014 0.219 0.015

s298 765 704 704 2m:18.526 0.468 0.048

s344 975 905 905 6m:29.149 0.707 0.071

s349 1124 907 907 2m:01.058 1.187 0.108

s382 780 772 772 1m:04.163 1.23 0.083

s386 795 701 701 11.891 0.651 0.059

s444 1140 840 840 36.331 1.504 0.097

s526 1528 1498 1498 15m:05.460 2.998 0.252

s641 897 624 624 19.648 7.414 0.247

s820 895 816 816 30.478 2.548 0.140

s953 819 773 773 26.242 18.522 0.522

Table 3: Results for graphs generated with qmax 16.
T execution time (sec)

Graph
O’Neil’s First Improved O’Neil’s First Improved

s27 459 416 416 1.924 0.012 0.060

s208 1 834 834 834 2m:50.537 1.287 0.049

s298 1083 1027 1027 55m:30.897 2.696 0.095

s344 2534 2468 2468 70m:29.472 3.457 0.415

s349 1503 1415 1415 8m:18.343 4.140 0.257

s382 1312 1273 1273 19m:29.061 5.261 0.344

s386 938 806 806 1m:40.775 2.733 0.129

s444 1185 888 888 48m:18.215 2.825 0.191

s526 2161 2007 2007 120m:00.000 7.796 0.479

s641 690 610 610 54.758 9.837 0.534

s820 1594 1573 1573 46m:26.437 11.805 0.622

s953 1776 1776 1776 5m:26.620 16.650 0.919

Table 4: Results for graphs generated with qmax 32.

In this Section we present the experimental results obtained by ap-
plying the retiming algorithms on a number of graphs. Firstly, the
experimental setup is explained. Then two sets of experiments are
presented. In the first set the graphs do not contain any zero delay
nodes. In this type of graphs all algorithms are applicable. So, the
three algorithms are compared based on the resulting cycle length
and their execution time. In the second set of experiments zero de-
lay nodes are included in the graphs to model communication with
the environment. Moreover, a constraint on the weights is applied on
edge O I . This type of graphs can only be handled by the improved
version of the retiming algorithm. The results show the algorithm can
produce the optimal period even for large graphs in a very small time.

The graphs were obtained from the ISCAS89 benchmarks. For the
delay a random integer was assigned between 1 and 30. The q value
of each node was also selected randomly between 1 and the value
qmax. Three values 4 16 32 have been used for qmax to observe
how the performance of the algorithms scales with this parameter.
After the q value of each node was assigned, the p and c values of ev-
ery edge were chosen in such a way, so that the graph would be con-
sistent. More specifically, p u v qv

gcd qu qv
and c u v qu

gcd qu qv
.

This method creates the minimum consumption and production rates
for each edge for specific q values of the graph.
Two additional nodes I and O were included with qI qO 1. I

was connected to all primary inputs of the graph and O to all primary
outputs. Edge O I was included with w O I 1. For graphs with
no zero delay nodes d O and d I were chosen randomly as integers

T ExecutionGraph
Initial Final Time (sec)

s27 368 351 0.005

s208 1 1035 852 0.020

s298 1052 742 0.045

s344 1062 928 0.164

s349 933 833 0.016

s382 951 908 0.021

s386 745 650 0.051

s444 902 882 0.027

s526 1690 1690 0.009

s641 694 665 0.011

s820 1264 1219 0.032

s953 1558 1558 0.010

Table 5: Results for zero-delay node graphs generated with qmax 32.

from 1 30 . These values were used in the first set of experiments.
In the second set d O d I 0.
Initially, non-zero weights were assigned to 50% of the total

edges in the graph. The value of an edge weight was a random in-
teger in 1 qmax . Then the graph was checked for liveness and if a
deadlock was detected, the weights of each input channel u v of a
node that could not execute were increased by c u v . This process
was repeated until the graph was live.
O’Neil’s algorithm applies retiming to reduce the cycle length be-

low a constraint given as an input. If the algorithm is used to find the
minimum cycle length a linear search must be performed on the pos-
sible cycle length values, which are integers. Binary search cannot
be performed, since it is not guaranteed that if the algorithm returns
a retiming for cycle length T1, is will not return false for cycle length
T2 T1.We implemented O’Neil’s algorithm to compare it with the
two new algorithms.

On strongly connected graphs with no zero delay nodes all three al-
gorithms are applicable. Tables 2, 3, and 4 summarize the results
in terms of running time and period. The first and improved algo-
rithm always produce the same period T , since both of them find
the optimal solution for a specific graph. The period found by these
two algorithms is in all cases at least as good as the period found by
O’Neil’s algorithm. The difference depends on the randomly gener-
ated graph. In some cases it is 0 and in other cases it can be more
then 20%. The execution time of the improved version is much faster
than the other two algorithms, especially for larger graphs. As qave
grows the running time of the three algorithms increases. However,
the impact of that parameter is more significant for the running time
of O’Neil’s algorithm. The reason is that the size of the EHG and the
complexity of the algorithms working on it depend on qave [5].

In this section the performance of the improved retiming algorithm
will be shown for strongly connected graphs with the additional con-
straint that r I r O , which represents the most realistic scenario
for the purpose of minimizing the cycle length of SDF graphs.
Table 5 shows the execution time and resulting cycle length for

the improved algorithm for graphs generated with qmax 32. The
other two algorithms cannot be applied on these graphs. For both
of them it is not known how they can handle constraints like P6.
Moreover, the correctness of the first retiming algorithm does not
hold when zero delay nodes are present.

In this paper two optimal algorithms were presented for minimum
cycle length retiming of SDF graphs. Both work on strongly con-
nected graphs. The improved version can be applied on graphs with
input and output channels, is faster, and can handle additional con-
straints. The experimental results show that the improved version is
orders of magnitude faster than existing approaches [6] and produces
better results.

[1] E. A. Lee, D. G. Messerschmitt; “Static Scheduling of Synchronous Data
Flow Graphs”; IEEE Transactions on Computers, Jan 1987

[2] C. Lin, H. Zhou; “Optimal Wire Retiming without Binary Search”; IC-
CAD 2004

[3] H. Zhou; “A New Efficient Algorithm Derived by Formal Manipulation”;
IWLS 2004

[4] C. Leiserson, J. B. Saxe; “Retiming synchronous circuitry”; Algorith-
mica 1991

[5] R. Govindarajan, G.R. Gao; “Rate-Optimal Schedule for Multi-Rate DSP
Computations”; Journal of VLSI Signal Processing 1995

[6] T. W. O’Neil, et. al.; “Retiming Synchronous Data-Flow Graphs to Re-
duce Execution Time”; IEEE Transaction on Signal Processing, Vol. 49,
No. 10, Oct 2001

[7] V. Zivojnovic, et. al.; “On retiming of multirate DSP algorithms”;
ICASSP 1996

[8] S.S. Bhattacharyya, et. al.; “Synthesis of Embedded Software from Syn-
chronous Dataflow Specifications”; Journal of VLSI Signal Processing
21, 151-166 (1999)

[9] V. Zivojnoivic, et. al.; “Retiming of DSP Programs for Optimum Vector-
ization”; ICASSP 94

[10] N. Liveris, C. Lin, J. Wang, H. Zhou, P. Banerjee; “Retiming
for Synchronous Data Flow Graphs”; TR-NWU-EECS-06-17, 2006
(http://www.eecs.northwestern.edu/research/tech reports/)

485

5B-1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

