
Recognition of Fanout-free Functions∗

Tsung-Lin Lee Chun-Yao Wang

Department of Computer Science,
National Tsing Hua University,
HsinChu, Taiwan 300 R.O.C.

johnny@nthucad.cs.nthu.edu.tw; wcyao@cs.nthu.edu.tw

Abstract

Factoring is a logic minimization technique to repre-
sent a Boolean function in an equivalent function with
minimum literals. When realizing the circuit, a function
represented in a more compact form has smaller area.
Some Boolean functions even have equivalent forms where
each variable appears exactly once, which are known as
fanout-free functions. John P. Hayes [4] had devised an
algorithm to determine if a function can be fanout-free
and construct the circuit if fanout-free realization exists.
In this paper, we propose a property and an efficient tech-
nique to accelerate this algorithm. With our improve-
ments, execution time of this algorithm is more competi-
tive with the state-of-the-art method [3].

1 Introduction

There are many techniques of logic minimization, such
as decomposition, substitution, factoring, and etc. By ap-
plying factoring to a Boolean function, a logically equiv-
alent function with the minimum number of literals can
be derived. Some Boolean functions even have factored
forms with each variable appears exactly once, which are
called fanout-free functions.

The corresponding circuit of a fanout-free function is
a tree-like structure, which is favored in the application
of automatic test-pattern generation (ATPG) due to its
simplicity [5]. Tree-like circuits are also preferred in tech-
nology mapping algorithms, such as DAGON [6]. It also
benefits the evaluation of the testability of a design under
test (DUT).

Many methods of recognizing fanout-free functions are
proposed in recent works [8][2][3]. John P. Hayes first
introduced an algorithm to recognize fanout-free func-
tions [4]. However, this algorithm is based on examina-
tion of the adjacency relation of input variables, which are
originally achieved by performing equivalence checking of

∗This work was supported in part by the National Science Coun-

cil of R.O.C. under Grant NSC94-2220-E-007-012.

cofactors of each variable. As a result, it is a computa-
tion intensive procedure as described in more detail in
Section III.

We propose a property disappearance on adjacency re-
lation checking and find it can be applied to significantly
accelerate Hayes’ algorithm. With this property, we can
examine the adjacency relation without performing equiv-
alence checking. These will be described in Section IV.

With our improvements on Hayes’ algorithm, we make
it more competitive with the state-of-the-art method pro-
posed in [3]. Experimental results will be shown in Sec-
tion V, and Section VI concludes this work.

2 Preliminaries

In this section, we will describe notations and funda-
mental concepts used in this paper.

Cofactor
Given an n-input Boolean function f(X), where

X = {x1, x2, · · · , xn}. Cofactor of f with respect to
xi = c is denoted as f(xi = c) and represents the function
that variable xi was assigned to a constant c, c=0 or 1.
For example, if f(X) = x1 + x2, then f(x1 = 0) = x2

and f(x1 = 1) = 1.

Unate Functions
Given an n-input Boolean function f(X), where X =

{x1, x2, · · · , xn}. f is positive unate in variable xi if
f(xi = 1) = 1 whenever f(xi = 0) = 1. In other words, xi

appears in positive phase. Similarly, f is negative unate
in variable xi if f(xi = 0) = 1 whenever f(xi = 1) = 1.
A function is unate if all its variables are unate [1]. For
example, the function f = x1x2+x1x3 is a unate function
since it is positive unate in x2 and x3, and negative unate
in x1, i.e., all three variables are unate.

Without loss of generality, we only discuss positive
Boolean functions in this paper. A positive Boolean
function is a Boolean function in which all its variables
are positive unate. If a function has a negative unate
variable, we can substitute a positive unate variable for

1-4244-0630-7/07/$20.00 ©2007 IEEE.

4C-5

426

this negative unate variable. For example, the function
g(x1, x2) = x1 + x2 can be viewed as f(x1, x2) = x1 + x2.

Fanout-free Functions
A fanout-free function is also known as a read-once

function which has a factored form that each variable
appears exactly once [3]. For example, the function
f = x1x2 + x1x3 is a fanout-free function since it has
a factored form f = x1(x2 + x3) in which each variable
appears exactly once.

It is obviously that fanout-free functions must be
unate functions. If a function has some non-unate
variable, this variable will appear in two phases. Thus,
this variable has to be fanouted to realize the function.
For example, variable x1 has to be fanouted in function
f = x1x2 + x1x3.

Simple Disjunctive Decomposition
Simple disjunctive decomposition extracts a single-

output sub-function whose input variable set is disjunc-
tive from the other input variables [7]. Thus, a func-
tion f(X) has a simple disjunctive decomposition form
g(h(Y), Z) where X = Y

⋃
Z and Y

⋂
Z = φ. Figure 1

illustrates f(X)=g(h(Y), Z).

Figure 1: Simple Disjunctive Decomposition

Adjacency Relation
This relation is proposed by John P. Hayes [4]. Its def-

inition is different from that used in graph theory. Given
a function f(X), where X = {x1, x2, · · · , xn}. xi and
xj are adjacent if f(xi = a) = f(xj = a) for some a,
a=0 or 1. It will be denoted by =a, e.g., xi =a xj . Ad-
jacency relation obviously is a reflexive and symmetric
relation. It also has been proven that it is a transitive
relation [4]. Thus, adjacency relation is an equivalence
relation. Take f=x1x2x3x4+x1x2x3x5+x4x6+x5x6 for
example, by definition, we compare cofactors of f w.r.t.
each variable to see if any f(xi = a) = f(xj = a) exists.
Since f(x1 = 0) = f(x2 = 0) = f(x3 = 0) = x4x6 + x5x6,
x1 =0 x2 =0 x3. Also, since f(x4 = 1) = f(x5 = 1) =
x1x2x3 + x6, x4 =1 x5. Thus, we obtain three adjacent
classes {x1, x2, x3}, {x4, x5}, and {x6}.

3 Previous Works

Several approaches have been proposed to recognizing
fanout-free functions [4][8][2][3]. Our approach is an im-
provement on John P. Hayes’ fanout-free realization algo-
rithm [4]. Here we only review Hayes’ algorithm. In the
following sections, we will call it JPH’s procedure.

Hayes proposed a theorem that “Let the variables
of f(X) be partitioned into blocks X1, X2, · · · , Xm

by the adjacency relation. There exists a set of
m elementary functions1 ϕ1(X1),ϕ2(X2),· · · ,ϕm(Xm),
and an m-variable function F such that f(X) =
F (ϕ1(X1), ϕ2(X2), · · · , ϕm(Xm))”. We explain its con-
cepts here.

Since adjacency relation is an equivalence relation, it
can partition a set into disjoint subsets. By examining
the adjacency relation among variables of a function, we
can get disjoint subsets of variables. Each subset forms
a simple disjunctive decomposition. A corresponding el-
ementary function is composed of a subset of variables.
If a subset is obtained by assigning 0 to its variables,
then its corresponding elementary function is AND func-
tion. Similarly, the elementary function is OR function
if variables are adjacent by assigning 1 to themselves.2

As shown in Figure 2, the functions ϕ1(X1), ϕ2(X2), · · · ,
and ϕm(Xm) become fanout-free.

Figure 2: Disjunctive Decomp. with Adjacency Relation

By viewing the output of the elementary function as
an input variable to the remaining circuit as shown in
Figure 2, the remaining circuit forms a new function,
Nnew. This new function (corresponding decomposition
function) can be derived from the original function via
truth table construction.

This theorem forms the underpinning of JPH’s proce-
dure. It will realize the fanout-free function level by level.
If none of variables are adjacent, then this function does
not have any simple disjunctive decomposition. In other
words, we cannot extract any elementary function from
this function. The following are the steps of the JPH’s
procedure.

JPH’s procedure: To find a fanout-free realization of
f(X) if it exists.

1An elementary function is either a sum (OR) function or a
product (AND) function.

2This conclusion is based on the assumption that we discuss
positive Boolean functions.

4C-5

427

Step 1 Let fi(Xi) = f(X).

Step 2 Examine the adjacency relation of Xi. If Xi are
mutually adjacent, go to Step 4. If none of Xi are
adjacent, go to Step 5. Otherwise go to Step 3.

Step 3 We have adjacent classes {Xij
} and asso-

ciated elementary functions {ϕij
(Xij

)}. Con-
struct the corresponding decomposition function
fi+1(ϕi1(Xi1), ϕi2(Xi2), · · · , ϕir

(Xir
)) = fi(Xi). Re-

place fi by fi+1. Go to Step 2.

Step 4 fi(Xi) is the fanout-free realization of f(X).

Step 5 f(X) does not have a fanout-free realization.

The corresponding flow chart of JPH’s procedure is
shown in Figure 3. In Step 2 of the procedure, adjacent
classes Xij

are determined, where {Xij
} = Xi. Each

adjacent class will be associated with a corresponding el-
ementary function ϕij

(Xij
) in Step 3.

Figure 3: Flow Chart of JPH’s Procedure

Here we demonstrate the first iteration of JPH’s pro-
cedure with f=x1x2x3x4+x1x2x3x5+x4x6+x5x6. At the
beginning, let f1=f . It was examined x1 =0 x2 =0 x3

and x4 =1 x5 as mentioned in Section II. The associated
elementary functions are ϕ11 = x1x2x3, ϕ12 = x4 + x5,
and ϕ13 = x6. A truth table for f2, as shown in Table 1,
can be determined from {ϕ1j

} and f1. Thus, we obtain
the corresponding decomposition function

f2 = ϕ11
ϕ12ϕ13 + ϕ11ϕ12ϕ11

+ ϕ11ϕ12ϕ13

= ϕ11ϕ12 + ϕ12ϕ13

from Table 1. After replacing f1 by f2, we continue deal-
ing with f2. The circuit after the first iteration is shown
in Figure 4.

4 Our Approach

We propose a disappearance property which could be
used to accelerate the examination of adjacency relation.
We also find an efficient way to constructing the corre-
sponding decomposition function, Nnew, without using
truth table.

Table 1: Determination of f2

ϕ11 ϕ12 ϕ13 f2 = f1

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Figure 4: The 1st iteration of JPH’s Procedure on f =
x1x2x3x4 + x1x2x3x5 + x4x6 + x5x6

4.1 Disappearance Property

Given a function f(X), where X = {x1, x2, · · · , xn}.
xi =a xj implies the cofactor f(xi = a) is independent
of xj and the cofactor f(xj = a) is independent of
xi. Intuitively speaking, xj disappears in the cofactor
f(xi = a), and vice versa. Thus we conclude that
“adjacency → disappearance”.

Lemma 1. Let xi and xj be two distinct vari-
ables of f(X). If xi=axj , then xj disappears in the
function f(xi = a) and xi disappears in the function
f(xj = a).
Proof. xi=axj implies f(xi = a)=f(xj = a). If xj

appears in f(xi = a), without loss of generality, we
can assume f(xi = a) = xjA + Z, where A and Z are
independent of xj . f(xi = a) = xjA + Z �= f(xj = a).
It leads to a conflict. Thus, there should be no terms
containing xj since xj is assigned to a constant a.
Therefore xj disappears in the function f(xi = a). The
same rule applies to “xi disappears in the function
f(xj = a)”. Q.E.D.

We can use the contrapositive of “adjacency →
disappearance”, which is “appearance → non −
adjacency”, to accelerate JPH’s procedure. If xj appears
in function f(xi = a), then xi �=a xj . This property can
be used as a filter when we are examining the adjacency
relation. We drop the variables which cannot be adjacent,
and only check variables which are possibly adjacent.

However, it is still time-consuming to examine whether

4C-5

428

two variables are adjacent. This is because checking
whether f(xi = a) is equal to f(xj = a) involves equiva-
lence checking of two cofactors. Thus, we would like to
know if “disappearance → adjacency” holds? Formally
speaking, we want to prove that “if xj disappears in the
function f(xi = a) and xi disappears in the function
f(xj = a), then xi =a xj”. This is stated in Lemma 2.

Lemma 2. Let xi and xj be two distinct vari-
ables of f(X). If xj disappears in the function f(xi = a)
and xi disappears in the function f(xj = a), then
xi =a xj .

Proof. Without loss of generality, we assume f =
xixjA + xiB + xjC + (xi + xj)D + E, where A, B, C, D,

and E are independent of xi and xj .

Case 1: (for xi =0 xj)

f(xi = 0) = xjC + xjD + E. Since xj disappears
in f(xi = 0) by the given condition, C and D must be
0. f(xj = 0) = xiB + xiD + E. Since xi disappears
in f(xj = 0) by the given condition, B and D must be
0. Combining these two implications, B = C = D = 0.
Thus, f = xixjA + E. f(xi = 0) = E = f(xj = 0), and
xi =0 xj .

Case 2: (for xi =1 xj)

f(xi = 1) = xjA+B+xjC+D+E. Since xj disappears
in f(xi = 1) by the given condition, A and C must be 0.
f(xj = 1) = xiA+xiB +C +D +E. Since xi disappears
in f(xj = 1) by the given condition, A and B must be
0. Combining these two implications, A = B = C = 0.
Thus, f = (xi + xj)D + E. f(xi = 1) = D + E = f(xj =
1), and xi =1 xj .

By Case 1 and 2, we can conclude that
“disappearance → adjacency”. Q.E.D.

Theorem 3. Let xi and xj be two distinct vari-
ables of f(X). xi =a xj if and only if xj disappears in
the function f(xi = a) and xi disappears in the function
f(xj = a).

Proof. This theorem can be restated as
“adjacency ⇔ disappearance”. The sufficient con-
dition has been proved in Lemma 2, and the necessary
condition has been proved in Lemma 1. Q.E.D.

By Theorem 3, we have the disappearance property,
which is “adjacency⇔disappearance”. Since adjacency
relation is an equivalence relation, it has a property of
transitivity. Thus, xi =a xj and xj =a xk implies xi =a

xk. Although we simply prove the disappearance property
with two variables, it can be easily extended to multiple
variables.

f(x1 = 0) = x4x6 + x5x6

f(x2 = 0) = x4x6 + x5x6

f(x3 = 0) = x4x6 + x5x6

f(x4 = 0) = x1x2x3x5 + x5x6

f(x5 = 0) = x1x2x3x4 + x4x6

f(x6 = 0) = x1x2x3x4 + x1x2x3x5

(a)

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6

f(x1 = 0) 0 0 0 1 1 1
f(x2 = 0) 0 0 0 1 1 1
f(x3 = 0) 0 0 0 1 1 1
f(x4 = 0) 1 1 1 0 1 1
f(x5 = 0) 1 1 1 1 0 1
f(x6 = 0) 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(b)

Figure 5: (a) Equations of Neg. Cofactors; (b) Matrix; of
f = x1x2x3x4 + x1x2x3x5 + x4x6 + x5x6

4.2 Improvement on Examining the Ad-
jacency Relation

With the disappearance property, we can examine the
adjacency relation without conducting equivalence check-
ing. If xi disappears in f(xj = a), then we check whether
xj disappears in f(xi = a). If it does, we can infer
xi =a xj .

We demonstrate how to use disappearance property to
accelerate JPH’s procedure with the same 6-variable func-
tion f = x1x2x3x4 + x1x2x3x5 + x4x6 + x5x6. First, we
list negative cofactors of f with respect to each variable
as shown in Figure 5(a).

Second, as shown in Figure 5(b), we build a 6 × 6 ma-
trix with rows and columns labeled by f(xi = 0) and xj

respectively. The matrix is filled with element 1 or 0 in
position (f(xi = 0), xj) according to whether xj appears
in f(xi = 0). If xj appears in f(xi = 0), 1 is filled into
(f(xi = 0), xj); otherwise, 0 is filled into (f(xi = 0), xj).
This matrix has 0s on the diagonal because xi always
disappears in f(xi = 0).

Then we check this matrix row by row. Take the first
row for example, x2 and x3 are suspected to be adja-
cent to x1 because (f(x1 = 0), x2) and (f(x1 = 0), x3)
are 0s, i.e., they disappear in f(x1 = 0). So we check
whether these corresponding positions (f(x2 = 0), x1)
and (f(x3 = 0), x1) are 0s or not.

If both of them are 0, we can infer that x1 =0 x2 =0 x3.
Checking (f(x2 = 0), x3) and (f(x3 = 0), x2) is redun-
dant since x1 =0 x2 and x1 =0 x3 implies x2 =0 x3.
They definitely will be 0s. Furthermore, checking the
other elements of row f(x2 = 0) is unnecessary, so is row
f(x3 = 0). The reason is if xi �=a x1 and x1 =a x2 =a x3,

4C-5

429

then xi �=a x2 and xi �=a x3.
Next, we list positive cofactors of f with respect to

each variable first and build its corresponding matrix.
Following the same process, we find that x4 =1 x5.
Now we have three adjacent classes {x1, x2, x3}, {x4, x5},
and {x6} with their elementary functions ϕ1 = x1x2x3,
ϕ2 = (x4 + x5), and ϕ3 = x6, respectively. Figure 6 illus-
trates the circuit after the 1st iteration of the algorithm.

Figure 6: The Circuit after the 1st Iteration of the Algo-
rithm on f = x1x2x3x4 + x1x2x3x5 + x4x6 + x5x6

4.3 Improvement on Constructing the
New Function

Instead of using truth table to construct the new func-
tion, we propose a more efficient way. The definition of
factoring is to express a term as the product of two terms
such as g=ϕA+Z. If x1=0x2=0· · ·=0xr, the associated
elementary function is ϕ=x1x2· · ·xr. The decomposed
function would be f=x1x2· · ·xrA+Z=ϕA+Z=g. Thus g

can be derived by substituting ϕ for xi, ∀ i ∈ {1, 2, · · · , r}.
g(ϕ, A, Z) = f(xi = ϕ,A,Z) ∀ i ∈ {1, 2, · · · , r}

= ϕϕ · · ·ϕA + Z (absorption law)
= ϕA + Z.

The same rule applies to x1=1x2=1· · ·=1xr.

g(ϕ, A, Z) = f(xi = ϕ,A,Z)
= (ϕ + ϕ + · · · + ϕ)A + Z

= ϕA + Z.

Here we continue using f = x1x2x3x4 + x1x2x3x5 +
x4x6 + x5x6 as an example. It has been examined that
x1 =0 x2 =0 x3 and x4 =1 x5. Thus ϕ1 = x1x2x3, ϕ2 =
(x4 +x5), and ϕ3 = x6. The new function g(ϕ1, ϕ2, ϕ3) =
f(x1 = ϕ1, x2 = ϕ1, x3 = ϕ1, x4 = ϕ2, x5 = ϕ2, x6 =
ϕ3) = ϕ1ϕ1ϕ1ϕ2 + ϕ1ϕ1ϕ1ϕ2 + ϕ2ϕ3 + ϕ2ϕ3 = ϕ1ϕ2 +
ϕ2ϕ3 can be constructed straightforward.

4.4 Time Complexity Analysis

Here we define some notations for analyzing time com-
plexity of JPH’s procedure and our improved one. As-
sume a function F is represented in SOP form. It is con-
sisted of N variables and K products. Thus literals of F

is about N × K.

Examining the Adjacency Relation
Obviously, N2 times of equivalence checking should be

done to examine the adjacency relation of variables in
JPH’s procedure. A traditional technique of equivalence
checking takes about O(2N). Hence this stage in JPH’s
procedure is bounded by O(N22N).3

Constructing and checking matrix are main operations
in this stage of our improved procedure. Constructing
matrix needs to scan N equations, where each equation
is about N × K literals. Checking matrix has to scan
N2 position of a matrix in worst case. Thus the time
complexity is O(N2K + N2) ≈ O(N2K).
Constructing the New Function

Instead of enumerating a truth table, which is about
O(2N), we use substitutions in this stage. Hence the time
complexity is O(1).
Overall Analysis

From the analysis above, we find that examining the
adjacency relation is the most critical part. Thus the
time complexity of our improved procedure is bounded
by O(N2K). As a result, our improved procedure is a
more efficient approach.

4.5 A Go-through Example

To realize the function f to be fanout-free, we examine
adjacent classes of g(ϕ1, ϕ2, ϕ3) again. We get ϕ1 =1 ϕ3,
so we have θ1 = ϕ1 + ϕ3 and θ2 = ϕ2. We construct
the new function h(θ1, θ2)=g(ϕ1 = θ1, ϕ2 = θ1, ϕ3 =
θ2)=θ1θ2.

Now we examine the adjacency relation among vari-
ables of h(θ1, θ2). We find there is only one adjacent
class in h, i.e., variables of h are mutually adjacent. So we
recognize the function f = x1x2x3x4 +x1x2x3x5 +x4x6 +
x5x6 as a fanout-free function which is h=θ1θ2=(ϕ1 +
ϕ3)ϕ2=(x1x2x3 + x6)(x4 + x5)=f . Figure 7 shows each
iteration of recognizing f = (x1x2x3 + x6)(x4 + x5).

Figure 7: Each Iteration of Recognizing f = (x1x2x3 +
x6)(x4 + x5)

3We omit the time to evaluate positive and negative cofactors.

4C-5

430

Table 2: Experimental Results

CPU Time (s)
Name lits(sop) #vars IROF JPH Ours
l2 b10 10240 20 0.30 4 0.11
l4 b3 3072 24 0.10 6 0.08
l4 b6 7290 24 0.21 277 0.18
l6 b4 672 20 0.02 3 0.02
l6 b8a 132 52 0.02 >1hr 0.29
l6 b8b 24192 52 0.74 >1hr 2.08
l8 b5 3380 29 0.09 >1hr 0.11
l10 b3 2160 30 0.07 >1hr 0.16
l14 b3 6720 42 0.20 >1hr 0.72

5 Experimental Results and
Analysis

We have implemented JPH’s procedure [4] with our
improvements within SIS [9] environment. We adopted
Boolean functions proposed in [3] as the benchmarks and
compared the results with that of the state-of-the-art
IROF algorithm [3]. Experimental results are listed in
Table 2. The first column shows the name of the func-
tion. The second column shows the number of literals in
the sum-of-product form. The third column shows the
number of variables of the function. The column labels
“IROF” is empirical results of the IROF algorithm which
were reported in [3]. The last two columns are the re-
implemented JPH and our improved JPH results that
ran by a Sun Blade 2500 machine. The CPU time is
measured in second. These three algorithms all recognize
an identical fanout-free function for each benchmark. So
Table 2 shows the comparison on CPU time. According
to Table 2, our approach improves the efficiency of orig-
inal JPH’s procedure and is more competitive with the
state-of-the-art IROF algorithm [3].

Besides recognizing fanout-free functions, our method
has advantage on recognizing a fanout function, while
IROF gets nothing. Consider the function k=(x1x2x3 +
x6)(x4 + x5)(ab + bc + ac) which is not fanout-free due
to the term (ab + bc + ac). Our method will produce a
partially fanout-free circuit as shown in Figure 8. IROF
will just return k is not a fanout-free function.

6 Conclusions

Functions which have fanout-free forms can be real-
ized with minimum literals. John P. Hayes had proposed
an algorithm to recognize fanout-free functions based on
adjacency of the input variables. We discover the dis-
appearance property on the adjacency relation checking
and apply it to accelerate JPH’s procedure. Experi-
mental results demonstrate that our improvements make

Figure 8: The Circuit of k = (x1x2x3 +x6)(x4 +x5)(ab+
bc + ac) after Our Recognition

JPH’s procedure more competitive with the state-of-the-
art method. Our method also produce a partially fanout-
free function when recognizing a fanout function.

References

[1] Robert K. Brayton, Gary D. Hachtel, Curtis T. Mc-
Mullen, and Alberto L. Sangiovanni-Vincentelli, “Logic
Minimization Algorithms for VLSI Synthesis”, Kluwer
Academic Publishers, 1984.

[2] Martin C. Golumbic and Aviad Mintz, “Factoring
Logic Functions using Graph Partitioning”, Proceed-
ings of the 1999 IEEE/ACM International Conference
on Computer-aided Design (ICCAD’1999), pp. 195-198,
1999.

[3] Martin C. Golumbic, Aviad Mintz, and Udi Rotics, “Fac-
toring and Recognition of Read-Once Functions using
Cographs and Normality”, Proceedings of the 38th De-
sign Automation Conference (DAC’2001), pp. 109-114,
2001.

[4] John P. Hayes, “The Fanout Structure of Switching Func-
tions”, Journal of the ACM, 22:551-571, 1975.

[5] Michael John and Sebastian Smith, “Application-Specific
Integrated Circuits”, Addison-Wesley Publishing Com-
pany, 1997.

[6] Kurt Keutzer, “DAGON: Technology Mapping and Local
Optimization”, Proceedings of the 24th Design Automa-
tion Conference (DAC’1987), pp. 341-347, 1987.

[7] Shin-Ichi Minato and Giovanni De Micheli, “Finding
All Simple Disjunctive Decompositions Using Irredun-
dant Sum-of-Products Forms”, Proceedings of the 1998
IEEE/ACM International Conference on Computer-
aided Design (ICCAD’1998), pp. 111-117, 1998.

[8] Joram Pe’er and Ron Y. Pinter, “Minimal Decomposi-
tion of Boolean Functions Using Non-Repeating Literal
Trees”, Proceedings of the IFIP Workshop on Logic and
Architecture Synthesis, pp. 129-139, 1995.

[9] Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno,
Cho Moon, Rajeev Murgai, Alexander Saldanha,
Hamid Savoj, Paul R. Stephan, Robert K. Brayton,
and Alberto L. Sangiovanni-Vincentelli, “SIS: A System
for Sequential Circuit Synthesis”, Memorandum No.
UCB/ERL M92/41, 1992.

4C-5

431

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

