
A Retargetable Software Timing Analyzer Using
Architecture Description Language

Xianfeng Li† Abhik Roychoudhury‡ Tulika Mitra‡ Prabhat Mishra∗ Xu Cheng†

†Dept. of Computer Sc. & Tech. ‡School of Computing ∗Computer and Information Sc. & Eng.
Peking University National University of Singapore University of Florida

Beijing, P.R. China, 100871 Republic of Singapore, 117543 Gainesville, FL 32611 USA
lixianfeng@mprc.pku.edu.cn abhik@comp.nus.edu.sg prabhat@cise.ufl.edu
chengxu@mprc.pku.edu.cn tulika@comp.nus.edu.sg

Worst Case Execution Time (WCET) is an essential input for
performance and schedulability analysis of real-time systems. Sta-
tic WCET analysis requires program path analysis and microar-
chitecture modeling. Despite almost two decades of research,
WCET analysis has not enjoyed wide acceptance in industry. This
is in part due to the difficulty in microarchitecture modeling of
modern processors. Given the large number of embedded proces-
sors available in the market, retargetability of the WCET analy-
sis framework is a serious issue. In this paper, we address it us-
ing Architecture Description Language (ADL). Starting with the
ADL of a target processor, the proposed framework automatically
generates graph-based execution models to capture timing effects
of instructions in the pipeline. This pipeline model coupled with
parameterized models of cache and branch prediction lead to a
WCET framework that is safe, accurate and retargetable.

I. INTRODUCTION

Schedulability analysis of real-time embedded systems re-
quires the worst-case execution time (WCET) of each task.
WCET of a task is the maximum possible execution time of
a task for all possible inputs on a particular processor platform.
Significant research effort has been invested to develop static
timing analysis techniques for estimating tight upper bounds
on the WCET. Clearly, such techniques must take into account
program path information and the timing effects of the un-
derlying architecture (e.g., pipeline, cache, branch prediction).
Modeling modern architectural features for WCET analysis is
not an easy task. A decade of research has resulted in WCET
modeling techniques for various complex architectures. Still,
developing a timing analyzer for a new platform is an extremely
time-consuming effort. Unlike the desktop domain, which is
dominated by the x86 architecture, the embedded domain has
a large number of possible architectural platforms to choose.
This, coupled with the strict time-to-market pressure for em-
bedded systems, has prevented wide acceptability of software
timing analyzers in the industry. The current practice is to
use simulation-based techniques, which cannot guarantee the
safety of WCET estimates. This is not an acceptable solu-
tion for safety-critical embedded systems such as automotive,
avionics, and medical applications.

Clearly, retargetability is one of the most important issues

for increasing the acceptability of software timing analyzers in
industry. To achieve this, we need a formal description of the
target processor architecture. Recently, various Architecture
Description Languages (ADLs) have emerged. ADLs describe
the instruction-set architecture (ISA) as well as the microarchi-
tecture of a given platform [18, 4]. Researchers have studied
the retargetability issues in the context of ADL-driven com-
pilation [15, 18], simulation [14], hardware synthesis [16] as
well as functional validation [12]. In this paper, we explore
the possibility of ADL-driven retargetable timing analysis for
embedded real-time software. To our knowledge, there are
no published results on retargetable static WCET analysis of
processor pipeline using ADLs.

Certain architectural features are easy to retarget as they are
highly parameterizable. Examples include instruction cache
size, line size, associativity, etc. Most WCET tools can handle
such parameters. We are interested in exploring the possibility
of retargeting features that are not easily parameterizable, in
particular pipeline, by exploiting ADL.

Our timing analyzer is based on a graph-based model, called
the execution graph [10], to capture the pipeline behaviors. The
nodes of the graph denote the pipeline stages of the instruction
in a code fragment. The edges denote execution dependences
between instructions. Resource contentions and other relations
among instructions that affect their execution are also modeled.
The execution graph forms a powerful intermediate represen-
tation that the WCET analyzers can work with, and it is also
an excellent representation for easy retargetability. Since the
timing analysis algorithm works on the execution graph, archi-
tectural changes are transparent to it. Thus the challenge in
developing a retargetable timing analysis framework is to au-
tomatically produce such execution graphs from the ADL spec-
ification of a processor. In this work, we present an approach
to fulfill this task. As a concrete demonstration, we develop a
retargetable WCET analyzer based on the EXPRESSION ADL
[4] that captures the instruction set architecture (ISA) and the
microarchitecture of a processor.

II. RELATED WORK

Research on WCET analysis was initiated more than a
decade ago. Early activities can be traced back to [13, 17].

1-4244-0630-7/07/$20.00 ©2007 IEEE.

4B-3

396

These works analyzed the program source code but did not
consider hardware features such as cache or pipeline. Subse-
quently, many researchers have investigated the issue of mod-
eling timing effects of micro-architectural features such as in-
struction/data cache [11, 19], in-order/out-of-order pipelines
[3, 9, 10] and branch prediction [2, 8]. Recently WCET analy-
sis has been employed on real-life modern processors [7, 6].

Retargetable WCET analysis tools have been studied in
[1, 5, 20]. The work of [1] is closer to ours. To avoid
handcrafted code for microarchitecture modeling, the authors
use MESCAL and its architecture description language called
MADL. MADL contains both ISA information and microar-
chitecture description, and MESCAL can construct compilers
and simulators automatically from an architecture described in
MADL. They obtain the WCET for a code fragment by simu-
lation. As mentioned earlier, simulation does not guarantee a
safe bound. Indeed, MESCAL is primarily targeted to VLIW
processors, and with certain restrictions on pipeline complexi-
ties, it is possible to obtain the WCET by simulation. In con-
trast, our microarchitecture modeling is based on static analysis
that suffers no such restrictions.

The work of [5] uses a technique called micro-analysis. It
transforms machine instructions into a sequence of primitive
operations, on which timing analysis is conducted. The timing
analysis is guided by a set of pattern-driven rules. Although the
primitive operation language is architecture-independent, tar-
geting the analysis to an architecture needs a set of timing rules
for that architecture to be constructed, and this has to be done
manually. Therefore, it requires a deep understanding of the
timing model of the processor, and the retargeting effort is non-
trivial. Furthermore, timing rules are not powerful enough to
capture complicated instruction interactions in modern proces-
sor pipelines.

The work of [20] takes in low-level Hardware Descrip-
tion Language (HDL) specifications of pipelines and defines
pipeline analysis as computations on FSMs. Even with the help
of binary decision diagram (BDD), it still suffers from the prob-
lem of state space explosion. For example, the author admitted
that MPC755, an embedded processor with some features of
modern superscalar procesors, poses a challenge because of the
huge state space of the pipeline model. Our pipeline model is
based on an execution graph representation which captures po-
tential dependences and resource contentions among interact-
ing instructions in the pipeline. This is a much more compact
pipeline model. In addition, this representation closely resem-
bles datapaths described in ADLs. Thus constructing execution
graphs automatically from ADLs is feasible.

III. OVERVIEW

In this section, we present an overview of the retargetable an-
alyzer. Conceptually, WCET analysis performs two tasks: pro-
gram path analysis and microarchitecture modeling. Program
path analysis is responsible for finding the worst case execu-
tion path, and microarchitecture modeling determines instruc-
tion timing. Once the two sets of information are available, the
WCET can be calculated. In this work, we adopt an Integer
Linear Programming (ILP) based WCET framework [8, 11],
which formulates WCET calculation as an ILP problem as fol-

< I1, IF> < I1, ID> < I1, EX> < I1, WB> < I1, CM>

< I2, IF> < I2, ID> < I2, EX> < I2, WB> < I2, CM>

< I3, IF> < I3, ID> < I3, EX> < I3, WB> < I3, CM>

I1: mult r3, r2, 4

I2: mult r7, r6, r5

I3: add r10, r7, r8

Fig. 1. Example execution graph

lows.
maximize

∑

B∈B
NB ∗ cB

where NB is a variable denoting the execution count of basic
block B and cB is a constant denoting the WCET estimate of
B. Linear constraints on NB are developed from the control
flow graph,

∑

B′→B

EB′→B = NB =
∑

B→B′′
EB→B′′

where EB′→B denotes the number of times control flows
through the edge B′ → B.

It can be seen that only cB is affected by the underlying hard-
ware. The following section describes how cB is estimated au-
tomatically from the pipeline model described by an ADL.

A. Basic Block Timing Analysis

In [10], the execution of a basic block B on a pipeline is
modeled with an execution graph. The nodes in the execution
graph correspond to pipeline stages of the instructions in B.
For example, 〈I1, IF 〉 is I1 (the first instruction of B) in its
instruction fetch (IF) stage. There are three types of relations
among the graph nodes that affect their execution: dependence
relation, contention relation, and parallel relation.

Dependence relation Given two nodes u and v, if v can start
execution only after the completion of u, then a dependence
relation exists between them. This dependence is indicated by
a solid directed edge from u to v in the execution graph. A
dependence can be one of the four cases.

• Dependence among stages of the same instruction. For
example, 〈I, IF 〉 → 〈I, ID〉 means instruction decode
must follow instruction fetch.

• Dependence due to in-order execution in some stages. For
example, 〈Ii, IF 〉 → 〈Ii+2, IF 〉 is drawn for a processor
with 2-wide fetch.

• Dependence due to limited buffer capacity. For example,
〈Ii, ID〉 → 〈Ii+4, IF 〉 is drawn for a processor with 4-
entry fetch buffer because the fetch buffer has no entry to
accommodate Ii+4 before the decode of Ii.

• Data dependence among instructions. For example, if
the result of Ii is used by Ij , then a dependence edge
〈Ii, WB〉 → 〈Ij , EX〉 is drawn, assuming the result
is produced in the write-back stage of Ii, and it is needed
in the execution stage of Ij .

4B-3

397

assembly
language

code

ADL
architecture

spec.

component
mapping

datapath
mapping

ADL
component

library

WCET
component

library

control flow
graph

cache
branch pred.

modeling

execution
graph

Architecture
specification

Retargeting

WCET analysis

WCET

Fig. 2. Retargetable WCET analysis framework

Contention relation In out-of-order processors, instructions
may delay each other because of resource contention. For ex-
ample, for two independent instructions Ii and Ij that both
need the ALU in the execution stage, if they can coexist in
the pipeline, then a contention relation between 〈Ii, EX〉 and
〈Ij , EX〉 is recorded.

Parallelism relation In superscalar processors, an instruc-
tion’s execution in a pipeline stage may be delayed due to
limited superscalarity, e,g., even if the dependences and con-
tentions of 〈I, EX〉 are cleared, it may still need to wait be-
cause of limited issue width. Parallelism relation is defined
to consider this problem. If two independent instructions can
execute in parallel in a stage, then a parallelism relation is
recorded.

With the constructed execution graph, the worst case exe-
cution time of B can be estimated by considering the afore-
mentioned relations. The details of the algorithm is presented
in [10]. Since the estimation algorithm works on the execu-
tion graph, it is architecture-independent and can be targeted
to different processor models without changes. However, the
construction of the execution graph is based on an in-depth un-
derstanding of the pipeline model, which is manual and error-
prone. In this paper, we develop a framework to automate this
process.

B. Retargetable Framework

The retargetable WCET analysis framework is presented in
Fig.2. It takes as input the architecture specification described
in an ADL and the assembly code of the program, and auto-
matically generates WCET estimate of the program by consid-
ering the timing effects of the processor architecture expressed
in ADL.

In this work, we use EXPRESSION [4]. The ADL speci-
fication consists of two parts: instruction set architecture and
microarchitecture. The microarchitecture description again has
two parts: structural and behavioral descriptions. The struc-
tural part is in the main ADL description, while the behavioral

description appears in the so-called ADL component library
(see Fig.2). The component library is written in a traditional
language like C++. For example, in an example provided by the
EXPRESSION group, the component library contains FetchU-
nit, ExecuteUnit, LoadStoreUnit, etc.

Execution graph construction is performed in two steps. The
first step is to construct the graph nodes for each instruction.
This corresponds to datapath mapping and component map-
ping in Fig.2. Datapath mapping converts processing elements
on pipeline paths to execution graph nodes; component map-
ping annotates each graph node with properties needed in the
next step. Given the execution graphs nodes, the second step
is to construct their relations, including dependences, con-
tentions, and parallelism relations. This is achieved by examin-
ing the properties (input/output storage elements) of the graph
nodes. For example, if node v’s output storage is node u’s input
storage, and no other node between them accesses this storage,
then a dependence edge representing the producer-consumer
relation is constructed.

IV. FROM ADL TO EXECUTION GRAPH

In this section, we elaborate on the process of constructing
the execution graph of a basic block from an ADL specifica-
tion automatically. We begin with a description of the abstract
WCET component library.

A. WCET Component Library

To facilitate a generalization of the execution graph and its
automatic construction, the first thing is to design a set of ab-
stract component models which are independent of a specific
pipeline and are suitable for WCET analysis.

According to our observation, the ADL specification, al-
though at a much higher level of abstraction, is similar to an
RTL description in that a pipeline path consists of a series of
processing elements interfaced by storage elements. Moreover,
the behaviors of the processing elements are often dictated by
their input/output storage elements. Therefore, instead of ab-
stracting on the processing elements, we focus on the storage
elements.

Array model An array model implies indexed accesses. Typ-
ical examples are register files and caches. The primary timing
property for the array model is its access latency. As an ex-
ample, the impact of an instruction cache with a latency of T
cycles on the execution graph is just a delay of T associated
with the dependence edge

〈I, IF 〉 → 〈I, stage〉

where I is the instruction identifier and stage is the stage fol-
lowing the fetch stage in the pipeline (typically decode).

FIFO model FIFO model refers to storage elements with
first-in first-out policy. FIFO models are typically associated
with in-order pipeline stages. A latch can be viewed as a spe-
cial FIFO buffer with a single entry. An example FIFO model
is the instruction fetch buffer. A storage element with FIFO

4B-3

398

model has very different timing effects compared to the array
model. It can be characterized by three parameters: size, par-
allelism (number of instructions that can enter/leave the FIFO
in parallel), and latency. There are three possible dependences
between FIFO producers/consumers, which we illustrate with
the help of instruction fetch buffer.

• Producer-consumer: 〈I, IF 〉 → 〈I, ID〉
• Parallelism limit: 〈Ii, IF 〉 → 〈Ii+p, IF 〉, and

〈I, ID〉 → 〈Ii+p, ID〉 where the instruction buffer’s par-
allelism is p. It means Ii+p cannot be fetched or decoded
together with Ii.

• Size limit: 〈Ii−size, ID〉 → 〈Ii, IF 〉. This captures the
fact that the fetch will stall if the buffer is full.

Pool model A pool model refers to a buffer with out-of-order
(i.e, non-FIFO) dequeue process. A typical example is the is-
sue queue in an out-of-order processor, where instructions are
placed in-order by the decode unit, but may be issued from it
out-of-order. Capturing the timing effects of pool model for
WCET analysis is in general difficult due to its highly unpre-
dictable behavior. Nevertheless, a subset of pool models can
be modeled with limited retargetability. In [10], a buffer which
serves as both an issue queue and a reorder buffer is modeled.
This kind of pool model is included in the WCET component
library. For a pool model that cannot be mapped to the WCET
component library, we resort to handcrafted WCET analysis
code.

B. Execution Graph Construction

We discuss the execution graph construction in three steps:
preparation, graph node construction, and graph relation con-
struction.

Preparation Before constructing any execution graph, a set
of data structures are built.

The first data structure is a table that maps ADL component
classes to WCET component models. Typically, an ADL de-
scription contains only a small number of component classes,
such as FetchUnit, DecodeUnit, ExecuteUnit, BranchUnit, etc.
A component class may have multiple instances, called com-
ponents. For example, a processor may have multiple ALUs,
which are instances of ExecuteUnit. The functions and behav-
iors of component classes are not described in ADL; instead,
they are described in a library written in traditional languages
like C++. Because of this, we need to understand these com-
ponent classes by reading C++ code, then decide their corre-
sponding WCET component classes. This is the only manual
work.

The second data structure is the set of pipeline datapaths.
It is generated by parsing the PIPELINE section of the ADL
description, which specifies the pipeline datapaths in a hierar-
chical form. The case study in Section V will give such an
example.

The third data structure is a datapath map table. For each
opcode in the ISA, the analyzer generates an entry in the table
that maps the opcode to a set of datapaths. To generate this

Fig. 3. Example execution graph nodes

table, the analyzer reads the OPCODES field of each datapath
component in the ARCHITECTURE section of the ADL de-
scription. The OPCODES field contains the groups of opcodes
that may use this component. A datapath is mapped to an op-
code if all components on the datapath allow this opcode to
proceed through.

Graph node construction Given a sequence of instructions,
the analyzer generates the corresponding graph nodes with the
help of aforementioned tables.

When processing an instruction, its opcode is used to look up
the datapath map table to get the mapped datapaths. Then, cor-
responding paths consisting of execution graph nodes (without
edges connecting them) are generated. During this process, one
important work is component mapping that decides the WCET
component model for each graph node on a path. This is done
by looking up the component map table using the correspond-
ing ADL component class as index. After component mapping,
the graph nodes are annotated with properties that are needed
for constructing node relations.

Fig.3 shows three example graph nodes, which correspond
to the FetchUnit, DecodeUnit, and OpReadUnit respectively.
The circle in a graph node represents the processing element;
the left/right rectangles with directly edges to/from a circle
are input/output storage elements. In the analyzer, two fields
are maintained for each storage element: a WCET component
model (array, FIFO, etc), and a pointer to the storage (I-Cache,
I-Buffer, etc). The storages are maintained by the analyzer as
another set of data structures in addition the graph nodes. They
will be needed in graph relation construction.

Graph relation construction To construct graph relations,
the graph nodes are processed in program order, i.e., from the
nodes of the first instruction to those of the last instruction
in the sequence. And the nodes of the same instruction are
processed in the order of pipeline stages. This processing order
is to ensure correct producer-consumer relation as well as other
relations.

To find out a graph node’s relations with others, the analyzer
needs to know (1) the WCET component models (array, FIFO,
etc) of the input/output storage elements, and (2) the nodes that
read or write its storage elements. The first set of informa-
tion has been obtained during graph node construction. The
second set of information can be collected by the in-order tra-
versing of graph nodes without any human intervention. Take
the graph nodes in Fig.3 for example. When processing the
FETCH node, the analyzer updates I-Buffer by recording the
FETCH node as its latest producer. Next, when processing the
DECODE node of the same instruction, the analyzer finds out
that its input storage is a FIFO model, and according to the rule

4B-3

399

FETCH

DECODE

ALU1_READ ALU2_READ FALU_READ BR_READ LDST_READ

ALU1_EX ALU2_EX FALU_EX BR_EX LDST_EX

WB

Register
files

ICache

DCache

IF

ID

RF

EX

WB

Fig. 4. Architecture block diagram of acesMIPS

of a FIFO model, a producer-consumer relation should be built
between the producer of the first available data in the FIFO
and the DECODE node. Since the FIFO points to I-Buffer,
whose latest producer is the FETCH node of the same instruc-
tion; on the other hand, since the data of the earlier FETCH
nodes have been consumed by preceding DECODE nodes, the
latest FETCH node is also the producer of the first available
data at the time when DECODE is being processed. As a result,
a producer-consumer relation between the the latest FETCH
node and the DECODE node is constructed automatically. In
contrast, this relation in [10] is constructed based on human
understanding of the pipeline model.

Once the graph relations have been constructed, the estima-
tion algorithm, an extension from [10], can be applied to the
execution graph to obtain the worst case estimate for the se-
quence of instructions.

V. CASE STUDY

In this section, we present the targeting from an ADL tool-
kit, EXPRESSION [4], to WCET analysis for a realistic
processor (acesMIPS).

A. ADL Specification

The acesMIPS processor, shown in Fig.4, is similar to MIPS
R4000. The ADL specification captures architectural compo-
nents and their connectivity as a netlist. Some snippets of the
description are given in Fig.5. The pipeline section (Fig.5a)
specifies the overall pipeline structure, where FETCH, DE-
CODE and WB are units. A unit is an instance of a unit class,
e.g., DECODE is from DecodeUnit, and ALU1 READ is from
OpReadUnit. The parameters of DECODE and ALU1 READ
are described in the ADL (Fig.5d and Fig.5e). In contrast, the
properties of unit classes are described in C++, e.g., DecodeU-
nit is defined in DerivedUnit.h (Fig.5c). In addition to concrete
units, the top-level pipeline description also contains a sub-
pipeline, READ EXECUTE. The subsequent lines in Fig.5a in-
dicates that this sub-pipeline is a collection of alternative two-

(PIPELINE_SECTION
 (PIPELINE FETCH DECODE READ_EXECUTE WB)
 (READ_EXECUTE (ALTERNATE read_execute0 read_execute1 read_execute2 read_execute3 read_execute4))
 (read_execute0(PIPELINE ALU1_READ ALU1_EX))
 ...
 (read_execute4(PIPELINE LDST_READ LDST_EX))

(a)

(ARCHITECTURE_SECTION
 (SUBTYPE UNIT FetchUnit DecodeUnit OpReadUnit ...)

...
 (SUBTYPE STORAGE Storage InstStrLatch PCLatch ...)

(b)

// DerivedUnit.h
class DecodeUnit : public SimpleUnit
{
 private:
 int InstBufSize;
 ...
}

(c)

(DecodeUnit DECODE
 (CAPACITY 12)
 (INSTR_IN 4)
 (INSTR_OUT 1)
 (TIMING (all 1))
 (OPCODES all)
 (LATCHES (OUT DecAlu1ReadLatch) (...)
 (LATCHES (IN FetDecLatch))
)

 (d)

(OpReadUnit ALU1_READ
 (CAPACITY 1)
 (INSTR_IN 1)
 (INSTR_OUT 1)
 (TIMING (all 1))
 (OPCODES ALU_Unit_ops)
 (LATCHES (OUT Alu1ReadExLatch))
 (LATCHES (IN DecAlu1ReadLatch))
 (PORTS Alu1ReadPort1 Alu1ReadPort2)
)

(e)

Fig. 5. Part of the acesMIPS ADL description

TABLE I
ADL-WCET COMPONENT MAPPING

ADL WCET Components
components Input side Output side
FetchUnit Array FIFO
DecodeUnit FIFO FIFO
OpReadUnit Array/FIFO FIFO
ExecuteUnit FIFO FIFO
LoadStoreUnit Array/FIFO Array/FIFO
WritebackUnit FIFO Array

stage paths. This structure enables the ADL to describe non-
trivial processor models.

B. Targeting acesMIPS for WCET Analysis

Targeting acesMIPS architecture to WCET analysis mainly
includes the three tasks described in Section IV(B) . Although
building the component map table is not automated, it does not
need much effort for acesMIPS since it contains only a small
number of component classes, which are also very simple ones.
Table I presents this the map table.

There is one ADL component not mapped to the WCET
component library – BranchUnit. Usually, for a component to
be retargetable, either (1) its processing element has very sim-
ple timing behavior (i.e., the component is characterized by its
storage elements); or (2) the processing element has complex
behavior, but it does not change wildly across different proces-
sor models. Unfortunately, the branch processing unit does not
fall into either category. It is well known that branch process-
ing, including prediction and recovery, often spans across mul-
tiple pipeline stages and its behavior is highly architecture de-
pendent. Thus, it is difficult to write a branch processing unit
retargetable to a variety of processor models, either for ADL or
for WCET.

From above discussion, we can see that a hard-to-retarget
component in our framework is hard to retarget in ADL de-
scription in the first place, so what we can do is to read the code

4B-3

400

TABLE II
SIMULATION AND WCET ESTIMATION RESULTS

Benchmark Simulation Estimation Ratio
fdct 10310 12301 1.19
fft 2937925 3880257 1.32
isort 149057 175724 1.18
matmul 57431 72150 1.26
matsum 442556 482570 1.09

written manually in ADL and write its WCET counterpart.

C. Experimental results

In this part, we present the estimated WCET (an upper bound
on actual WCET) and compare it with the one from acesMIPS
simulator (a lower bound to actual WCET).

The results in Table II show that the estimation numbers are
close to the simulated ones. From the WCET framework pre-
sented in Section III, we know that there are two sources of
overestimation: program path analysis and basic block timing
analysis. Program path analysis is the same as in [10]. For
basic block timing analysis, the automatically constructed exe-
cution graphs capture all dependences and contentions that are
captured in [10]. So the retargetable framework introduces no
more accuracy loss than the manual method in [10].

This framework was implemented by one person (the first
author), and the amount of work can be viewed as two parts:
developing the retargetable framework and retargeting it to
acesMIPS. The first part includes (1) automatic construction
of execution graphs and generalization of the WCET analysis
in [10]; (2) the construction of the WCET component library;
(3) the EXPRESSION-WCET interface, e.g., parsing of ADL
description. This part was done in two months, and it is a one-
time effort. The second part includes (1) ADL-WCET com-
ponent mapping that results in a mapping shown by Table I;
(2) Handcrafted code for components not mapped (BranchU-
nit); (3) Simulation, estimation and result analysis. This part
was done in half month. Note that acesMIPS description is
provided by the EXPRESSION group. In general, writing a
processor model, no matter what tool is used, is a considerable
amount of work. As we are only concerned with WCET analy-
sis, writing a processor model is not considered as part of the
retargeting effort.

VI. CONCLUSIONS

Two factors contribute to the challenge of WCET analysis:
the complexities of the hardware, and the intolerance of any
underestimation, which means techniques for average perfor-
mance evaluation cannot be applied here. As a result, it is very
important to automate the process of hardware modeling. In
this paper, we have proposed a solution by using an architec-
ture description language (ADL), which are gaining acceptance
in describing embedded processors.

The retargetable framework in based on the key observation
that the behaviors of pipeline processing elements are often
dictated by their input/output storage elements, which can be

generalized into a few classes convenient for WCET analy-
sis. The effectiveness of the proposed framework has been
proved with a case study on a MIPS-like processor written in
EXPRESSION, an ADL for design space exploration of em-
bedded processors.

In the future, we will investigate better ways of interfacing
non-pipeline components with the pipeline to further reduce
human intervention in the analyzer.

ACKNOWLEDGMENTS

This work was partially supported by University Research
Council (URC) project R252-000-171-112 from National Uni-
versity of Singapore (NUS).

REFERENCES

[1] K. Chen, S. Malik, and D.I. August. Retargatable static software timing
analysis. In IEEE/ACM Intl. Symp. on System Synthesis (ISSS), 2001.

[2] A. Colin and I. Puaut. Worst case execution time analysis for a processor
with branch prediction. Journal of Real time Systems, May 2000.

[3] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, Sweden, 2002.

[4] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau.
EXPRESSION: A language for architecture exploration through com-
piler/simulator retargetability. In DATE, 1999. http://www.ics.
uci.edu/∼express/.

[5] M.G. Harmon, T.P. Baker, and D.B. Whalley. A retargetable technique
for predicting execution time of code segments. Real-Time Systems,
1994.

[6] R. Heckmann et al. The Influence of Processor Architecture on the De-
sign and the Results of WCET Tools. Proceedings of the IEEE, 91(7),
July 2003.

[7] M. Langenbach, S. Thesing, and R. Heckmann. Pipeline modeling for
timing analysis. In Static Analysis Symposium (SAS), 2002.

[8] X. Li, T. Mitra, and A. Roychoudhury. Accurate timing analysis by mod-
eling caches, speculation and their interaction. In DAC, 2003.

[9] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors
for software timing analysis. In IEEE Real-Time Systems Symposium,
2004.

[10] X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-order processors
for wcet analysis. Journal of Real-Time Systems, 34(3), 2006.

[11] Y-T. S. Li, S. Malik, and A. Wolfe. Performance estimation of embedded
software with instruction cache modeling. ACM ToDAES, 4(3), 1999.

[12] Prabhat Mishra and Nikil Dutt. Functional Verification of Programmable
Embedded Architectures: A Top-Down Approach. Springer, 2005.

[13] P. Puschner and C. Koza. Calculating the maximum execution time of
real-time programs. Journal of Real-time Systems, 1(2), 1989.

[14] M. Reshadi, N. Bansal, P. Mishra, and N. Dutt. An efficient retargetable
framework for instruction-set simulation. In CODES+ISSS, 2003.

[15] S. Hanono and S. Devadas. Instruction selection, resource allocation, and
scheduling in the AVIV retargetable code generator. In DAC, 1998.

[16] O. Schliebusch et al. RTL processor synthesis for architecture exploration
and implementation. In DATE, 2004.

[17] A.C. Shaw. Reasoning about time in higher level language software.
IEEE Transactions on Software Engineering, 1(2), 1989.

[18] W. Qin, S. Rajagopalan and S. Malik. A formal concurrency model based
architecture description language for synthesis of software development
tools. In LCTES, pages 47–56, 2004.

[19] R. Wilhelm and C. Ferdinand. On predicting data cache behavior for
real-time systems. In LCTES, 1998.

[20] S. Wilhelm. Efficient analysis of pipeline models for wcet computation.
In WCET Workshop, 2005.

4B-3

401

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

